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Запропоновано алгоритм розрахунку надійності (ймовірності руйнування) композитних матеріалів зі 

стохастично розподіленими дисперсними включеннями за умов складного напруженого стану. Розгля-

нуто детерміністичний критерій руйнування композита типу закону кулонівського тертя зі зчепленням. 

Отримано функцію розподілу руйнівного навантаження композита, яка є основою для запису статис-

тичних характеристик міцності і надійності матеріалів. Розраховані і побудовані діаграми залежності 

від прикладеного навантаження ймовірності руйнування плоского композитного зразка з різними стру-

ктурною неоднорідністю матеріалу та кількістю включень 

Ключові слова: композитний матеріал, імовірність руйнування, функція розподілу, руйнівне наванта-

ження, дисперсні включення 

 

1. Introduction 

Construction of failure mathematical models of 

structural elements from composite materials is the sub-

ject of intensive and versatile research. The composite re-

liability depends on various probabilistic factors. For the 

descriptive parameters of a composite material structure, 

randomness is characteristic, certain laws of probabilistic 

distribution. Therefore, the problem of the composite ma-

terials strength and reliability calculating using stochastic 

modeling is an actual problem. A joint consideration of 

defect and structure randomness allows for a more accu-

rate assessment of their strength and reliability. For mod-

ern statistical approaches to the failure problem of com-

posite materials is characterized by the tendency to fuller 

use the results of deterministic theories of the defects in-

fluence on the strength and conditions of defects such as 

cracks propagation. 

 

2. Literature review 

The complex application of composite materials 

failure deterministic mechanics and probabilistic statisti-

cal methods is considered in a number of authors’ works. 

In particular, the paper [1] presents a state-of-the-art re-

view of ultimate strength prediction and reliability analy-

sis for composite material structures with emphasis on 

laminated composite structures. In [2] a numerical simu-

lation and analytical probabilistic methods for the relia-

bility evaluation of composite structures are considered. 

The author [3] proposed a mechanical multi-scale model 

describing relationship between the crack-opening and 

composite bridging stress in brittle matrix composites 

with heterogeneous reinforcement. The work [4] con-

cerned with a statistical distributions of the critical frac-

ture toughness values with due consideration given to the 

scale size effect. Experimental investigations of the com-

posite glass fiber materials tensile strength and the statis-

tical analysis of the results obtained on the basis of the 

two-parameter Weibull distribution have been carried out 

in [5]. According to the experimental results, a probabil-

ity analysis was conducted on the degradation of tensile 

strength [6]. 

 

3. The aim and objectives of research 

The aim of research is calculation and analysis of 

the reliability (probability of failure) under certain load-

ing conditions of composite materials specimens with 

different numbers of randomly distributed elliptic disper-

sive inclusions that do not interact with each other. 

To achieve this aim, the following objectives need 

to be solved: 

– determine the failure criterion of a composite 

material with elliptic dispersive inclusions in the condi-

tions of a complex stress state; 

– choose the distribution laws of statistically in-

dependent geometric parameters of inclusions; 

– obtain the failure loading distribution function 

for a composite material element with one inclusion; 

– calculate and construct the diagrams of depend-

ence on the applied loading of failure probability of a flat 

composite sample with different structural material het-

erogeneity and different number of inclusions. 

 

4. Probability of failure calculation method for 

the composite material with randomly distributed 

dispersive inclusions 

Let’s consider a flat macro-element of a compo-

site material that is an elastic homogeneous matrix in 

which are evenly distributed N  elliptic inclusions from 

another elastic material that do not interact with each 

other. The macro-element is under the conditions of uni-

formly distributed forces P  and Q P  which can be 

considered as the main stresses for a flat stress state (Fig. 

1). The elastic properties of the matrix and inclusions are 

given (the properties of all inclusions are the same), that 

is, the material is two-component. Let’s believe that the 

inclusions are soft and have the form of flattened ellipses 

( 2 / ( ) 2 / ,b a b b a b a    , a  and b  are the semi 

axes of ellipse). The influence of such inclusions on the 

strength is quite significant, because high local stress con-

centrations arise near their edges [7]. The geometric pa-

rameters of the inclusions (  and orientation angle  ) 

are statistically independent random variables. 
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The stress state in the inclusion is homogeneous, 

therefore, we assume that the failure of composite mate-

rial starts in the inclusion (in it a crack which has a 

length 2a  is formed). Cracks may occur across the in-

clusion, but the most dangerous are longitudinal. The 

composite strength is determined by the strength of its 

weakest element (the hypothesis of the weakest link). 

 

 
Fig. 1. Macro-element of composite material with  

randomly distributed elliptical inclusions 
 

Let’s consider the composite material to be mac-

ro-isotropic (all possible orientations of inclusions are 

equally probable). Then the distribution of the random 

variable   will be uniform and has a probability density 

distribution ( ) 2 /f    ( / 2 / 2)     . The prob-

ability density distribution of a random variable   we 

write the  -law [8] 
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where 
0  is a minimum, 

1  is a maximum value of 

the parameter  , 0r   is a parameter of the material 

structural heterogeneity. With increasing r  let’s ob-

serve an increase in the probability of meeting small 

values of a random variable   (decrease in the size of 

inclusions). 

According to (1) the integral probability distribu-

tion function of random variable   
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 (2) 

 

The mean value of the random variable   is de-

termined as follows: 
 

0 1 .
2r






 
                                                      (3) 

 

In accordance with the above assumption of the 

inclusions form, let’s consider that 0 0,5  . Then 

from the expression (3) obtain 

1
.

2( 2)r





                                                   

(4) 

 

The composite material heterogeneity of the 

structure is characterized by the joint probability dis-

tribution density of independent random variables  

  and   

 

 
4( 1)

( , ) ( ) ( ) 1 2 .
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f f f


      


        (5) 

 

Graphs of the joint probability distribution density 

(5) for some parameter values r  are shown in Fig. 2. 

 

 
Fig. 2. Joint probability distribution density ( , )f    for 

different parameter values r  

 

At 0r   distribution (5) becomes a uniform 

one. At 1r   have a linearly decreasing distribution. It 

is seen from the constructed curves that with the in-

creasing of the parameter r , the probability of a meet-

ing of random variables  , which are close to zero, 

increases. 

Let’s denote by indices 1 and 2 the values that are 

related respectively to inclusion and matrix. 

Let’s accept as a deterministic failure criterion for 

the inclusion a condition of a Coulomb friction law with 

clutch type [9] 

 
1 1 1 1,xy yK tg                                                 (6) 

 

where 
1

y , 
1

xy  are the stress in inclusion, 1K  is a clutch 

coefficient, 1tg  is a coefficient of material inclusion in-

ternal friction. 

The stress in inclusion, which inclines at an an-

gle α to the main axis (Fig. 1), is determined by the 

formulas [8] 

 

1 1 1 2

1 1 2 2 1
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                  (7) 
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where 
1 2,G G  are the shear modules (

1 2/ 1G G  ), 
1
, 

2
 are the elastic constants, which are expressed in 

terms of Poisson's coefficient   (
3

1









 for a plane 

stress state, 3 4    for a plane deformation). 

In accordance with the failure criterion (6) – (7), 

after conducting elementary transformations and neglect-

ing the terms of order 2 2

1 2/G G , let’s obtain the following 

expression for loading calculating, at which a crack with 

the length 2a  is formed: 

 
1 ( )

,
( 1 (1 )cos 2 ) (1 )sin 2

K L D M
P

B C




    



    
 (8) 

 

where  

 
1
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The value of the parameter   that corresponds to 

the given failure loading P  
min max( )P P P   is deter-

mined as follows: 

 

 

The dependence of the failure loading P  on the 

angle of inclusion orientation   and the correlation 

/Q P  is shown in Fig. 3. 

Its minimum value 
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                    (10) 

 

is reached at the orientation angle  

 

* 0,5
C

arctg
B

   

 

and parameter 0 0 . 

Maximum value for biaxial tension 
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                                   (11) 

 

is realized at the parameter 
1 0,5  and angle / 2  . 

The maximum value P   for tension-com- 

pression is reached at 
1 0,5  and angle 
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For 0  loading is equal 
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For / 4   we obtain a loading 
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a 

 

 
b 

Fig. 3. Range of failure loading change: a – biaxial ten-

sion; b – tension-compression 
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The following orientation angles corresponds to 

the given failure loading P  
min max( )P P P   and ratio 

/Q P : 

 

 

where  
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The failure loading for a composite element with 

one inclusion is a random variable having an integral dis-

tribution function 
1( , )F P  , which can be written simi-

larly to the results of [8] as follows: 

 

 1

2
( , ) 1 ( ( , , )) ,

S
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          (18) 

 

where the parameter ( , , )P    is determined from (9). 

The integration area S  depends on the ratio   of the 

applied loading. 

Taking into account the expressions of the integral 

distribution functions (2), (18) and the range of variation 

of the random variable  , we obtain 
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Let’s introduce the notation 
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Taking into account 

the notation (20) and the rela-

tionship (10)–(17), the integral 

distribution function (19) for a 

composite element with one 

inclusion is written as follows: 

– for biaxial tension (0 1) 
 

 

 

Let’s note separately the case of biaxial symmetric 

tension ( 1, 0)P Q   . Considering normalization 

condition for density ( )f  , we obtain from formula (21) 

 

 
1

( ,1) 1 1 2 ( , , ) ,
r

F P P  


  

 
 

min max .P P P 
                                                

(23) 

 

The failure probability of a composite material 

macro-element containing N  inclusions is determined 

[10] as follows: 

 

 1 min max1 1 ( , ) , .
N

fP F P P P P    
       

 (24) 

 

Substituting in formula (24) expressions of failure 

loading distribution function (21) – (23), let’s obtain a ra-

tio for determining the failure probability of the consid-

ered composite material with different number of inclu-

sions and different structural heterogeneity for given ra-

tios of the applied loading: 

– for biaxial tension (0 1) 
 

 

– for tension-compression ( 0)  
 

 

 

 

 

1 2 min 1

1 3 1 2

3 2 max

1 1 ( , , , ) , ( 0);

1 1 ( , ,0, ) ( , , / 4, ) , ( 1); (25)

1 1 ( , , , / 2) , ( 0);

N

N

f

N

F P P P P

P F P F P P P P

F P P P P

   

     

   

     



      

    

     

1

22 2 2 2 2

2 2

( 1) ( 1) ( ) 4 2 ( 1)
0,5arcsin ,

( )(1 )

C T B C T B B C T B TB

B C



   





         


 

     

2

22 2 2 2 2

2 2

( 1) ( 1) ( ) 4 2 ( 1)
0,5arcsin ,

( )(1 )

C T B C T B B C T B TB

B C



   





         


 

1

1 2 min 1

1 3 1 2

3 2 max

( , )

( , , , ), ( 0);

( , ,0, ) ( , , / 4, ), ( 1); (21)

( , , , / 2), ( 0);

F P

F P P P P

F P F P P P P

F P P P P



   

     

   



  


    
   

– for  tension-compression  
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In particular for biaxial symmetric tension 

 

  1
1 1 2 ( , , ) ,

N
r

fP P  


     

 

min max .P P P                                              (27) 

 

In the expressions for the loading let’s introduce 

instead of the parameter   its mean value   (formula 

(4)) and carry out the replacement of the variable 
1/p P K  (introduce a dimensionless loading). 

Let’s write the expressions to determine the prob-

ability of failure for single cases of the applied loading 

ratio. 

Probability of failure for biaxial symmetric ten-

sion ( 1)
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Probability of failure for uniaxial tension ( 0)
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min 2.p p p                                                               (29) 

       Probability of failure for tensile-

compression (net shear) ( 1)   

 

min 1p p p                                                  (30) 

 

Let’s consider approbation of the obtained analyt-

ical results. In accordance with [11] and physical consid-

erations, let’s take the following values of material con-

stants (disperse composite of gray cast iron type): 
 

G1/G2=0,081,  

G2=4,4·10
-4

MPa,  

1 2 0,25   ,  

1 0,6tg  ,  

1 2 2,2   (plane stress state). 

 

Conduct numerical research of the dispersive 

composite material probability of failure by formulas 

(28)–(30) and analyze its diagrams for the different mate-

rial structural heterogeneity (parameter r ) and the dif-

ferent number of inclusions (parameter N ).  

Fig. 4 shows a disperse composite probability of 

failure diagrams with different number N  of inclusions 

at 1r   for the following types of loading: biaxial sym-

metric tension ( 1) , uniaxial tension ( 0) , tensile-

compression ( 1)  . 

In Fig. 5 the dependence of the dispersive compo-

site probability of failure on the number of inclusions 

(the dimensions of the composite) and the material struc-

tural heterogeneity for given loading ( 2,4p  ) are in-

vestigated. 

The influence of loading types and material struc-

tural heterogeneity on the dispersive composite probabil-

ity of failure in its fixed dimensions ( 50N  ) are ana-

lyzed in Fig. 6. 
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Fig. 4. Probability of failure for different types of loading (solid for 0 , dashed for 1 , dotted dashed for 1  ) 

 
 

Fig. 5. Probability of failure for given loading (solid for 0 , dashed for 1 , dotted dashed for 1  ) 

 

 

 
 

Fig. 6. Probability of failure for various material structural heterogeneity (solid for 0 , dashed for 1 , dotted 

dashed for 1  ) 

 

5. Research results 

Fig. 4 observes the dependence of the probabil-

ity of failure on the type of stress state (from η). The 

probability of failure increases with the increase in the 

number of inclusions N  for a fixed loading. At a cer-

tain loading range we observe a small probability of 

failure. 

Fig. 5 shows the dependence of the probability 

of failure on the material structural heterogeneity (pa-

rameter r) and the number of inclusions for different 

types of applied loading. Each structural material het-

erogeneity and the loading level correspond to the 

composite dimensions, which increases the probability 

of failure. 

In Fig. 6 the influence of a composite material 

structural heterogeneity on different types of loading in 

the case of its fixed sizes (fixed number of inclusions) is 

analyzed. With an increase of the parameter r at a fixed 

loading, the probability of failure decreases, which we 

observe for each type of stress state. 

Similar statistical pattern are observed in [12] 

when calculating the reliability (probability of failure) of 

orthotropic composite materials with uniformly distribut-

ed defects such as cracks that have a prevailing orienta-

tion in the direction of reinforcement. 

 

6. Conclusions 

1. Written failure criterion of composite material 

with elliptic dispersive inclusions in a complex stress 

state allows to investigate the reliability of composite 

material, taking into account the stochastic nature of its 

structure. 

2. Selected distribution laws of the statistically in-

dependent inclusions geometric parameters α and δ make 

it possible to write the failure loading distribution func-

tion F1(P,η) for a composite element with one inclusion.  

3. The received failure loading distribution func-

tion F1(P,η) for a composite element with one inclusion 

has all the properties of a random variable integral distri-

bution function and is the basis for obtaining a number of 

strength statistical characteristics. 

4. The constructed diagrams of the probability of 

failure Pf of the composite sample allow to investigate its 

dependence on the material structural heterogeneity (pa-

rameter r), its dimensions (number of inclusions N), and 

the type of stress state (parameter η). 
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