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Abstract. The topic of determining informative 
predictors, forming rational exogenous variables, 
substantiating the dimension and structure of pre-
dictor spaces is considered. The purpose of design 
and selection of characteristics is to prevent the ef-
fect of retraining, reduce the dimension in studying 
the processes apart from a master, build classifiers, 
reflect the process of dividing data into classes and 
determine the boundaries of solutions in limited 
space, as well as reasonable interpretation, provide 
in-depth understanding of the model and data for 
studying, visualization in spaces, the dimension of 
which is perceived by the researcher. The design 
predictor spaces and develop effective procedures 
problems for estimating the parameters of econo-
metric models with multicollinear variables are de-
veloped. The study was made under alternative ap-
proaches to form the interdependencies models 
features. 

A mathematical toolkit is proposed for calculat-
ing the parameters of a linear econometric model 
in case of rank deficient observation matrix, based 
on the study of singular expansions. 

Using a singular toolkit for decomposing and 
analyzing the data matrix makes it possible to in-
crease the operational efficiency and predictive 
quality of the procedures for estimating economet-
ric models parameters. The mathematical approach 
to the construction of models of the interdepend-
ence of factors is intended to select characteristics 

 
 and construct predictor spaces in the study of sys-
tems with multicollinear variables and rank defi-
cient observation matrix. 
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INTRODUCTION 
 

The multicollinearity problem is relevant 
both for generalizing the factors interdepend-
ence of the complex systems simulation theo-
retical principles, and in terms of the opera-
tional aspect of the research. Applied modeling 
and mathematical description of cause and ef-
fect relationships as a form of regression de-
pendencies is a leading, effective and practi-
cally demanded direction in a wide range of 
applications for solving various behavior anal-
yses of technical, socio-economic, medical and 
biological systems problems. A model tool for 
identifying and formalizing interdependencies 
is used to solve the management problems of 
such systems and their components, in particu-
lar, for functioning regularities determining, 
decision-making support on determining the 
optimal parameters and operating modes, for 
their development trends forecast, as well as 
for justifying the strategies and scenarios of 
their behavior in the condition of uncertainty, 
indeterminacy, conflict, and, as a consequence, 
significant risk of external environment. 

In mathematical model sciences dealing 
with the interdependence of factors, for exam-
ple, engineering, study of operations, econo-
metrics, biometrics etc., classical are consid-
ered the works by D. Farrar, R. Glauber, J. 
Johnston, M. Kendall, L. Klein, M. Bartlett, H. 
Tail, J. Meier, G. Orkat. The scientific works 
of these authors include fundamental results on 
the problems of estimating the parameters of 
regression models, in which, in particular, 
methodological approaches and tools for tak-
ing into account the phenomenon of multicol-
linearity in the input data are developed. 

Thus, the work of D. Farrar and R. Glauber 
[17] on multicollinearity detection, diagnosis, 
evaluation, consideration and the subsequent 
correction of the design procedures for predic-
tion space in order to eliminate its negative 
consequences is well known in the wide range 
of engineering, natural systems researchers, 
ecologists and econometricians. This work was 
completed in 1965 in cooperation with the In-
stitute for Naval Research, which developed 
theoretical approaches and mathematical mod-
els to analyze the impact of the combination of 

factors on the maintenance condition and the 
cost characteristics functioning systems forma-
tion of the Navy. To the set of exogenous fac-
tors the researchers included, in particular, the 
age of the vessel and its dimensions, the inten-
sity of use in marine logistics and defense pro-
jects, fuel consumption, the time between the 
scheduled maintenance and their cost. 

Also the set of predictors includes the dis-
crete characteristics of the system, such as the 
type of power plant (steam, diesel, nuclear 
fuel), engine operation, equipment operation 
and maintenance complexity, as well as a 
number of functional and security subsystems 
qualitative parameters for radar patrol, guided 
missiles etc. The spatial samples for the data 
studied were various naval purpose objects, in 
particular, the destroyers of the Atlantic Fleet 
and others. 

Currently, the space of tools and technolo-
gies choice for estimating the models parame-
ters of interdependence of factors is expanding 
intensively. For example, the researchers of the 
applied natural science systems use mostly 
OLS (Ordinary Least Squares), implemented 
in most traditional statistical packages, econ-
ometricians mainly focus on the maximum 
likelihood approaches, and the latest intellec-
tual data analysis and machine study profes-
sionals use the wide range of regression mod-
els regularization. 

It is notable that all these approaches are 
procedurally oriented and are chosen by the 
researchers according to prior arguments. At 
the same time the decision to choose the best 
method for analyzing the interdependence of 
the factors is practically not related to the spe-
cifics of the initial data. 

Today the vast majority of regression tools 
application areas recognize the almost univer-
sal presence of multicollinearity, which is es-
tablished as an indispensable characteristic of 
the data base. Modeling technologies for pa-
rameter estimation offer an advanced tool for 
diagnosing, taking into account and eliminat-
ing the negative effects of this phenomenon, in 
particular, lasso methods, combing regression, 
dimension diminishing, selection of optimal 
subset of variables etc. 

It is important that in case of the implemen-
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tation of the Big Data concept and digital 
economy technologies in reaching the broadest 
scope of human activity and the involvement 
of vast amounts of predominantly unstructured 
information, the relevance of the problem of 
multicollinearity will increase. Thus, the de-
velopment of mathematical procedures for in-
depth study of the mechanisms of interdepend-
encies within the predictor spaces has not only 
an applied demand for forecasting the devel-
opment of complex systems but also a signifi-
cant operational relevance in terms of ensuring 
the adequacy of the constructed models and 
observing the target properties of the parame-
ters estimates. 

Here are the results of generalized ap-
proaches to the estimation of econometric 
models parameters with the multicollinearity 
and the rank deficient observation matrix, 
which were previously studied by the authors 
in a number of scientific works [5 − 7]. 

1. Let there be a linear relationship between 
the variable Y  and m explaining the variables 

1 2, ,..., mX X X  and disturbance ε , ε  − the ran-

dom variable, we emphasize that we need only 
the existence of finite moments of the second 
order. 

 
METHODOLOGY 

 
If we have a sample of n observations on 

the modifications of Y  і , 1,2,... ,=jX j m then 

we can write 
 

m

j=1

= β +ε , (1, )=∑i ij j iy x i n .  (1) 

 
Equations (1) can be written in the matrix 

form 
 

= β + εY X ,   (2) 
where 
 

1 11 12 1

2 21 22 2

1 2

, ,

m

m

n n n nm

y x x x

y x x x
Y X

y x x x

   
   
   = =
   
   
   

K

K

M M M O M

K

 

1 1

2 2

m n

β ε

β ε
β= , ε=

β ε

   
   
   
   
   
   

M M
 

 
Through X ′ and ε′  we denote the matrices 

transposed to X and ε , respectively. 
Let the conditions be: 
 
1. ε 0;=M                (3) 

2. 2( ) ,M E′εε = σ − unit matrix;            (4) 
3. X  − matrix whose elements are deter-

ministic numbers    (5) 
4. X  range = m (matrix −X  full rank)   (6) 
 
The task (1 − 5) was considered by many 

authors [1, 2]. First of all, we give a very un-
derstandable version in the book of Wether-
burg [13] and Davies [11]. Especially useful 
are the books of Plackett [12, 14] and 
Voyevodin [3]. 

The case when the condition (3) is not ful-
filled was considered in [9] with M 0ε ≠ . 
There is some compromise between the bias 

value €β and value ( )D β
)

. Case when [2] is not 
fulfilled was considered by Aitken [10], who 
proposed a generalized least squares method 
on the condition that matrix X  is of the full 
rank. In this study Aitken's method extends to 
task (1, 2), provided that (6) is not fulfilled, 
but takes place 

 
rangX t m= <   (6′ ) 

 
at the same time takes place 

 
2( )M D W′εε = = σ ,  (4 )′  

 
where 2σ  is an unknown parameter, and D , w 
– are known symmetrically positive defined 
matrices of order n n× . Then D  admits the 
representationD PP′= , where the non-
developed matrix P  is positively determined. 
So D PP′=  that -1 -1P DP E= and 

-1 -1 -1P P D= . Let's denote -1P B= . D  com-
mutes with B . 

From (4)′  follows 
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-1 -1 2W D= σ , -1 2W BB BB= = σ . 

 
So the matrix of covariance 
 

2
1 1 2 12 1 1

2
1 2 12 2 2 2

2
1 1 2 2

2

( )

,

n n

n n

n n n n n

M

W

 σ σ σ σ σ σ σ
 σ σ σ σ σ σ σ ′εε = =
 
 σ σ σ σ σ σ σ 

= σ

K

K

M M O M

K

 

 
where 2 2

i i iM Dyσ = ε = − dispersion iy ,  

    covi j ij i j i jM y yσ σ ρ = ε ε =  − covariance iy  

and jy . W  – the known weight matrix. 

Let the vectors of the basis 

1 2 1, ,..., me e e H∈  − the linear space 1H  set in 

certain matching vectors 1 2, ,..., mf f f  of linear 

space 2H . Then there exists a linear operator 

X operating with 1H  in 2H , which translates 

each vector ke  into a corresponding one vector 

1

n

k i ki
i

Xe f
=

= α∑ . We can determine the operator 

X by equality 
 

.

k k k k
k k

k ki i i ki k
k i i k

X X e Xe

f f

β = β = β =

β α = α β

∑ ∑

∑ ∑ ∑ ∑
 (7) 

 
Between the linear operators X  and the 

matrices kiα  there is a one-to-one correspon-

dence. Since the symbols and properties of op-
erations over matrices and operators coincide, 
then any transformation of operator equality 
leads to the same matrix equality. Therefore, 
from a formal point of view, we do not care 
whether we are dealing with matrix or operator 
relations. 

Let's consider rectangular matrices of 
n m× dimensions, the rank of which coincides 
with the minimum from numbers,m n. Such 
matrices are called full rank matrices. Their 
characteristic feature is that they do not change 
their rank under any small disturbances. Sys-
tems of linear algebraic equations with full 

rank matrices have much in common with the 
non-degenerate matrices systems. 

Let the matrix X  of the system (1 − 6) be a 
full rank matrix. In this case the system may 
be incompatible. Otherwise, it's always com-
patible, but it has not the only solution. 

We will look for a normal pseudo-
connection of the system (1 − 6), that is such 

vector €β , which among all the vectors mini-
mizing the functional of the discrepancy 

2

0( )F X Yβ = β − has the smallest Euclidean 

norm. 
The invariance of the Euclidean norm to 

unitary transformations allows us to reduce the 
problem of finding normal pseudo-connection 
of the general type system to a simpler task. 

It is easy to verify that the task of determin-
ing normal system pseudo-connection (1) is 
equivalent to the solution of the same problem 
for another system. But transformations can 
always ensure that the matrix is sufficiently 
simple, for example, triangular, normalized, 
trapezoidal etc. On the construct rather effec-
tive numerical methods. 

If any of the methods does not provide the 
necessary accuracy of the solution of linear al-
gebraic equations system, then there is no rea-
son to hope that another method will provide 
the same system with better results. Probably 
such a system can be regarded as unstable. It is 
known [1 − 4] that the pseudo solution of a re-
defined system (2) with a full rank matrix is a 
common solution of the system 

 

X X X y′ ′β =
)

, 
 

with a square non degenerate matrix X X′  of 
order m m× . 

Normal solution of the system 
 

1( )X X X y−′ ′β =
)

. 
 

It is necessary to demand 

2

1

min
m

i
i =

β →∑ .   (8) 

Definition 1. The matrix ( )X m n+ ×  is 
called the Moore-Penrose pseudo inverse for 
matrix X  if it satisfies the following four con-
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ditions: 
 
1 X XX X+ + +=  
2 XX X X+ =  
3 XX+  − symmetric, 
4 X X+  − symmetric.   (9) 
 
From (9) condition follows 
 

X XX X X XX X X X+ + + + + += ⇒ = , 
 

if 1X X P+ = , then 2
1 1P P= . 

In addition, from condition 4 1P  is symmet-

ric. So 1P  − orthoprojector. Similarly 

2XX P+ =  − orthoprojector. 

It can be proved that such a matrix X + al-
ways exists and is unique [2]. If X  is a non-
degenerate square matrix, then it obviously 
satisfies the conditions (1 − 4), ifX  is rectan-
gular and has a full rank, then 

1( ) .X X X X+ −′ ′=  It can be verified that the 
pseudo inverse to diagonal n m×  matrix 

 

1

2

0 0

0 0

0 0 0

0 0 0

m

σ 
 σ 
 
 = σ 
 
 
 
 
 

∑

L

L

M M M M

L L L

L

M M L M

L

, 

 
is a diagonal m n× matrix. 

 

1

2

0 0 0 0

0

0 0 0 0m

+

′σ 
 ′σ =
 
 ′σ 

∑

L L

L L L L L

M M O M M M M

L L

, (10) 

 

where 
1

1
1

1

1
, 0

0, 0


σ ≠σ′σ = 

 σ =


. 

 

Further we use [3] a singular matrix X  [3] 
 

X U V′= ∑ ,  (11) 

 
where U  is the orthogonal n n×  matrix, V′  
is the orthogonal m m×  matrix, and ∑ − the 

diagonal matrix, at which ijσ  = 0 for, i j≠ , 

ijσ  = 0.iσ ≥  Columns of the matrix U  are the 

intrinsic vectors of the matrix XX′ , and the 
columns of the matrix V  are the vectors of the 
matrix XX′ . Using (9), [2, 3] we obtain 
 

X V U
++ ′= ∑ . 

 
RESULTS 

 
The estimates of the least squares of the pa-

rameterβ  in (1) are defined as values 

1 2,  , ,  ,mβ β βK  minimizing 

 

1 1

( )

( )( )

min,

n n

i ij j k kj j ik
i k j j

L y x y x
= =

β

= − β − β α

→

∑ ∑ ∑ ∑
   (12) 

 
where the matrix ikA = α  is a symmetric 

positive definite matrix. 

Solution (12) 1 2,  , ,  mβ β β
) ) )

K  we will call 

task pseudo-solution (1 − 2). The solution will 
be linear towards y. In addition, under the con-

dition (3), 1Pβ
)

 will be unbiased estimate 1Pβ  

in (1). That is 
 

1 1( )M P Pβ = β
)

.  (13) 

 
The solution in general will not be the only 

one. We will require that the minimum was the 
amount (8). Then the solution (12) is unambi-
guous. 

2. Let be given two linear real Euclidean 
spaces 1 2,H H and a linear operatorX  operat-

ing with 1H in 2H . Operator *X , acting with 

2H in 1H , conjugates to X . Then for arbitrary 

vectors 1Hβ∈ and 2y H∈ equality is per-
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formed 
 

( , , ) ( , )X y X y∗β = β .  (14) 
 
For any arbitrary operator X  there is a con-

jugate operator *X , and thus it is only one. We 
choose in 1H

 
an orthonormal basis 

1 2, , , me e eK . Then for every one 1Hβ∈  there 

is a schedule 
 

1

( )
m

k k
k

e e
=

β = β∑ .  (15) 

 
Applying (15) to *X y we get 
 

1

( , )
m

k k
k

X y X y e e∗ ∗

=

=∑ . 

 
Then, taking into account (14) 
 

1

( , )
m

k k
k

X y y Xe e∗

=

=∑ . 

 
Definition 1. The linear operator B acting 

in 2H is called self-directed (symmetric), if for 

any 1 2 2 1 2 1 2, ( , ) ( , )y y H By y y By∈ ⇒ =  

Definition 2. If, ( , )By y > 0 for arbi-

trary 2y H∈ , then the operator is positively 

definite. When( , ) 0By y ≥ , then operator B  is 
called positive. 

Self-directed operator B  corresponds to a 
symmetric matrixB B′ = . 

Let’s define the operators ,  X BBX BXX B∗ ∗  
that act accordingly in 1 2,H H . 

Operators ,X BBX BXX B∗ ∗  are self-

directed according to 1 2,H H . It is X BBX∗  

positive in 1H , and the operator BXX B∗  is 

positive in 2H . 

In fact, for any 1Hβ ∈ , 2y H∈ we have 

 
( , ) ( , ) 0X BBX BX BX∗ β β = β β ≥  

( , ) ( , ) 0BXX By y X By X By∗ ∗ ∗= ≥ . 
 

Operators *X BBX , *BXX B are self-
directed, therefore they have a system of or-
thonormal vectors 1 2, , , me e e… , which are their 

own vectors for *X BBXand 1 2, , , nf f fK . 

They are the vectors for *BXX B . 
The operator BX translates the system 

1 2, , , me e e…  into some orthogonal system 

1 2, , , mBXe BXe BXe… . 

Indeed, 
 

2 2

( , ) ( , )

( , ) ( , ) 0

i j i j

i i j i i j

BXe BXe X BBXe e

e e e e

∗= =

ρ = ρ =
 at i j≠  

2 2( , ) ( , ) ( , )i i i i i i i iBXe BXe X BBXe e e e∗= = ρ = ρ . 

 
Consequently k kBXe = ρ , where kρ are the 

singular numbers. 
Therefore, the vector kBXe  is non-zero, 

then and only if the proper value 2kρ of the op-

erator is not zero. 
The vector *

kX Bf  is the operator's vec-

tor *X BBX . Indeed 
 

2( ) ( )k k k kX BBX X Bf X B BXX B f X B f∗ ∗ ∗ ∗ ∗= = ρ  
2 2( ) ( ) ( )k k k k k k k kX Bf X Bf BXX Bf f f f∗ ∗ ∗= = ρ = ρ . 

 
Thus non-zero values of operators X BBX∗  

and BXX B∗  always coincide. Denote our own 
values through 2 2 2

1 2, , , tρ ρ ρK . However, without 

limiting generality 2 2 2
1 2 t, , 0ρ ≥ ρ ≥ ρ >K  , and 

the remaining eigenvalues 2kρ  are equal to ze-

ro. 
Obviously, the eigenvaluesv of the opera-

torsX BBX∗ , BXX B∗ differ only by the multi-
plicity of the null eigenvalue. Operator 
X BBX∗  has levelsm t− , operator BXX B∗  
has level n t− , which are called singular num-
bers of the operator X . 

We take as a basis in1H  the orthonormal 

system 1 2, , , te e eK  of eigenvectors of the op-

erator X BBX∗ . Then the vectors 1 2, , , te e eK  

form a basis in the domain of valuesX BBX∗ , 
and 1 2, , ,t t me e e+ + K the basis in the core of the 
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operator X BBX∗ . 

1 2, , , nf f fK  − orthonormal basis in 1H . As 

1 2, , , tf f fK  we take vectors obtained after 

normalization 1 2, , , tBXe BXe BXe… . That is 

,  1,2, ,i
i

i

BXe
f i t

BXe
= = K . Let's take any basis 

in the kernel BXX B∗ . It is clear that 

1 2, , ,t t nf f f+ + K  they are their own for the op-

erator BXX B∗ . Then we have 
 

,

0,

k k

k

f k t

BXe

k t


ρ ≤
= 
 >


  (16) 

,

0,

k k

k

e k t

X Bf

k t

∗


ρ ≤
= 
 >


,  (17) 

 

1 2, , , me e eK , 1 2, , , nf f fK  − singular bases. 

Let's have y X e By BX Be= β + ⇒ = β +
)

. 

We find a vectorβ
)

for which 
 

( ( )) ( ))

min

B y X B y X

e BBe

′− β − β =
′ →

) )

. (18) 

 
Self-regulated, positively defined operator 

in 2H , where 1 2,B p D p−= = , 1BB D−= . 

The pseudo-solution of the problem (18) is 
any vector 1Hβ∈  for which the function of 

the discrepancy (18) reaches its lowest value. 
A normal task pseudo-solution is called a 

pseudo-solution, for which 2
i minβ →∑ . 

We will prove that a normal pseudo-
solution (18) exists as unique. 

We will fix in spaces 1 2H ,H  singular bases 

1 2, , , me e eK and 1 2, , , mf f fK
.
 . 

Let 

1
1

m

k k
k

e H
=

β = β ∈∑   (19) 

2
1

n

i i
i

By f H
=

= γ ∈∑ .  (20) 

 
Then, taking into account (19), (20) 
 

1 1

1 1 1

1 1

1 1 1

)

( ) ( )  ,

(

( )

m n

kk i i
k i

m m n

kk i ii i
k i i m

m n

k k kk k k k
k k m

t m n

k k k k k k k k k k
k k t k m

f f

BX By BX fe

B X f fe

f f f

f

= =

= = = +

= = +

= = + = +

−

β ρ − γ + β ρ − γ −

β− = β γ∑ ∑− =

β γ γ∑ ∑ ∑− =

β ρ −γ γ∑ ∑− =

γ∑ ∑ ∑
 

 
where kf  − orthonormal, so 

 

( ) ( )

0

2 2

1 1

2

1

( ) ( ) ( ) ( )

( )

t m

k k k k k k
k k t

n

k
k m

F e BBe y X BB y X

= = +

= +

′ ′β = = − β − β =

= β ρ − γ + β ρ − γ +

+ γ

∑ ∑

∑

 (21) 

 
Obviously, the smallest value of a non-

compliance functional achieves under these 

valuesβ
)

in which the last m-t coefficientskβ  

are arbitrary, and the first t terms in (21) are 
equal to 0. 

 
If 2

i minβ →∑ , 

 

then t 1 t 1 m 0+ +β = β = = β =K

 
and k

k
k

.
γβ =
ρ

 

(k = 1, 2, ..., t). 
Normal problem solving (1) 
 

0
1

t
k

k
k k

e
=

γβ =
ρ∑   (22) 

 
Using (21) (22) we obtain that pseudo-

solutions and only they satisfy 
 

X BBX X BBy∗ ∗β =
)

. (23) 
 
Indeed, using (21) 
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1

2 2

1 1

1 1 1

∗ ∗

=

∗

= = +

∗ ∗

= = =

β = β =

= ρ β + ρ β =

= γ = γ = γ ρ

∑

∑ ∑

∑ ∑ ∑

m

k k
k

t m

k k k k k k
k k t

n n t

i i i i i i i
i i i

X BBX X BBX e

e e X BBy

X B f X Bf e

 

we obtain that k
k

k

γβ =
ρ

)
 for (1, )k t=  and ex-

actly 0 for the other m−t coordinates. 
We have a pseudo-connection 
 

( )X BBX X BBy∗ ∗ ∗β =
)

 (24) 
 

the same 
 

t
k

k
k 1 k

e
=

 γβ =  ρ 
∑

)
 

 
Let operator X  operate from space 1H  in 

2H . Then we assign to each vector 2y H∈ a 

uniform vector 0β  − normal pseudo-solution 

of the equation (18), which means the solution 
BY BX B= β + ε . This correspondence defines 

some operator BX +  that acts from 2H  in 1H and 

is called a normal pseudo-inverse to X . 
Therefore, by definition 0 BX Y+β =  for any 

2y H∈  that is 

 
1

.

,  

0 ,  
B k

k kX
e k t

f
k t

+

−ρ ≤= 
 >

 
 

Again, consider the equation (1, 2) under 
the condition(6 ),  (4 )′ ′  and let 

 
1 1M D B B− −′εε = = , thenBY BX B= β + ε . 

[ ]var( ) var( ).

,  ,

B M B B

BDB E де B

′ ′ε = ε ⋅ ε εε =

= ε = ε  

 
where 

 
1 1

1 1

( ) ( )

( ) ,

X BBX X BBy X D X X D Y

X W X X W Y

∗ + ∗ ∗ − + ∗ −

− + −

β = = =
′ ′

)

 

( ) ( )  ,X BBX X BBX X BBX X BB∗ + ∗ ∗ + ∗β = β + ε
)

 

1 ( )  ,P X BBX X BB∗ + ∗β = β + ε
)

                 
(25) 

 

1M Pβ = β
)

. 

 
Where 1 ( )P X BBX X BBX∗ + ∗=  and 

 

1

,

0 ,
i

i

e i t
Pe

i t

≤
=  >

, 

 

1P  − orthoprojector on 1 2( , , , )tL e e e… . 

Likewise 2 ( ) ( )P BXX B BXX B+ + +=  

 

2

,

0 ,
i

i

f i t
P f

i t

≤
=  > . 

 
We have 2 2

1 1 2 2,  P P P P= =  , 1 2,  P P  - orthore-

complexes, otherwise orthoprojectors 
 

( )M X BBX X BB∗ ∗β − β = ε
) )

 

We use (25) 2BB BB= σ , BB E′εε = ,then 

2 2

var (( )( ))

( ) ( )

( ) ( ) ( )

M M M

M XBBX X BB BBX X BBX

X BBX X BBX X BBX X BBX

+ ∗ ∗ +

∗ + ∗ ∗ + ∗ +

β = β − β β − β =
′σεε =

σ = σ

) ) ) ) )

 
Let's calculate 2σ . Let 
 

 ;

Y X BY BX B

y X e By BX Be

BY BX B

Be By BX

= β + ε = β + ε 
⇒ ⇒ 

= β + = β + 

= β + ε


= − β

) )

)

 

2

( )

( )

( ) ( )  ,

Be B X BXX Y

BX B B XX X BXX

B E XX B E P

+

+ +

+

= β + ε − =
β + ε − β − ε =

− ε = − ε
 

 
where 2P XX+= - ortoprojector; 2P  − idempo-

tent, symmetric matrix. 
That's why 2-E P  is also an orthoprojector. 
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Let P = 2E P− , thenBe BP= ε . 

So ijP P=  a matrix of sizen n× . 

Denote 
1

n

ii
i

spP p
=

= ∑ . 

 
Calculate ( )Be Be′ . We haveBe BP= ε , so 
 

1 1 1 1

(( )  .
n n n n

ij i j i j ij i j
i j i j

BP PB PB BP

P M M P M M
= = = =

′ ′ε ε = ε ε =

= ε ε − ε ε + ε ε∑∑ ∑∑

 
Where , (1, , )i iB i nε = ε = K , so 

 

1 1

( ) ( )
n n

ij i j i j
i j

Be Be e BBe P M M
= =

′ ′= = ε ε − ε ε =∑∑  

2 2( ( ) ) ( )ii i i ij i j i j
i j i j

P M P M M
= ≠

= ε − ε + ε ε − ε ε∑ ∑ . 

 
So 

2

1

2

( ) cov( )

( ).

n

ii ij i j
i i j

M e BBe P P

spP

= ≠

′ = σ + ε ε =

= σ

∑ ∑
 

 
Because cov( ) 0i jε ε = , so 2( )M E′εε = σ  

 

2

( ( )

( )

( )

( ) .

n

n

spP sp E X X BBX X BB

spE spX X BBX X BB

spE spX X BBX X BB

n sp X BBX X BBX n spP n r

+

+

+

′ ′= − =
′ ′= − =
′ ′= − =

′ ′= − = − = −

 

 
2( )Me BBe n r′ = σ −  and it means that it is 

 

2

( )

Me BBe

n r

′
σ =

−
 also 

( )

e BBe

n r

′
−

 

 
an unassigned estimate 2σ . 
 

So 
( )BX X BBX X B+ +′ ′=  , then B BX X B+ += . 

 
We prove that BX +  satisfies the Moore-

Penrose conditions (9), which are necessary 

and sufficient for the matrix BX +  to be pseudo-

inverse to BX  [3]. 
 
Proving 

1

1) ( ) ( )

( ) , and  .

B B

B B B B

X BXX XBBX XBBX XBBX XB

XBBX XB X X BXX PX

+ + + +

+ + + + +

′ ′ ′ ′= =

′ ′= = =  

 
Where 1P  is the orthoprojector on the linear 

shell 1 2( , , , )tL e e e…  

 

2) 
1

( )

( )

BBXX BX BX X BBX X BBX

BX X BBX X BBX BXP BX

+ +

+

′ ′= =
′ ′= = =

, 

3) 1( )( )BX BX X BBX X BBX P+ ′ ′= =  

 
− orthoprojector on the linear shell 

1 2( , , , )tL e e e…  self-preservation. 

 
4) ( )BBXX BX X BBX X B+ ′ ′=  − symmetric. 

 
Thus BX + , it satisfies the Moore-Penrose 

conditions, and hence ( )BX BX+ += , on the 

other hand, 1( )BX X B+ + −=  [ ]2  under the fol-

lowing condition: the set of values of B  is an 
invariant subspace forX X′ , and the set of val-
ues X ′  is an invariant subspace forBB′ . 

 
So -1

BX X B+ += . 

 

Definition 3. An estimationβ
)

 of the pa-
rameter β  is called X  - unshielded, if 

MX Xβ = β
)

, i.e if X
)
β - unmatched assess-

ment Xβ . 

Lemma 1. Evaluation X BY+β =
)

is an X -
unplanned estimate β . 

Proving. We use (2). Then, 
 

1 1

( )+ +

+ − + −

+ +

β = = β + ε =

= β + ε =
= β + ε

)

B BX BY X BX B

X B BX X B B

X X X

 

 



Materials Science, Information Technology 
 

Transfer of Innovative Technologies 
2018 Vol 1(1), 75-88 

84 

therefore, from (3) and (9) 
 

( ) ( )

.

M X M XX X XX

XX X X

+ +

+

β = β + ε =
β = β

)

 

 
Lemma 2. The covariance matrix of the 

( )D Xβ
)

 parameter − Xβ
)

 estimate in the mod-

el (2) is equal to 2( ) ( )D X X X BBX X+′ ′β = σ
)

, 

where ( )X BBX +′  − pseudo-return to( )X BBX′  
Proving. We use [2] 
 

( ) ,

( ) .
B BX X BBX X B X By

X BBX X BBX X

+ + +

+ +

′ ′= =
′ ′ β + ε

 

 
Then 
 

.X XX Y XX X XX X XX+ + + +β = = β + ε == β + ε
)

 
Then using (3), (4), (9) we obtain 
 

( ) ( )( )

( , ( ) )

D X M X X X X

M XX XX+ +

′β = β − β β − β =
′ ′ε ε =

) ) )

 

2

( ) ( )

( ) .

MX X BBX X BB BBX X BBX X

X X BBX X

+ +

+

′ ′ ′ ′εε =
′ ′σ

 

 
Let it 1 2( , ,..., )mC C C C= . 

 
Let 1 2( , ,..., )nL X X X the linear shell of the 

strings of matrix X . 
 
Theorem 1. 
 

1 2( , ,..., ) ( )nC L X X X M c c∈ ⇒ β = β
)

 

 
Proving 
 

1 2( , ,..., ) ,nC L X X X C X∈ ⇒ = γ  

 

where 1 2 nγ={γ ,γ ,...,γ }, ( ) ( )M c M Xβ = γ β
) )

 

 
According to Lemma 2. 
 

MX Xβ = β
)

this ( )M c X cβ = γ β = β
)

. 

That iscβ
)

 - a linear unmatched estimate 
cβ . Calculate 

 
( ) ( )( )

( )( )

D c M c c c c

M X X X X

′β = β − β β − β =
′γ β − γ β γ β − γ β =

) ) )

) )  

( )M XX X X′+ +′ ′ ′γ εε γ =

( ) ( )M X X BBX X BB BBX X BBX X+ +′ ′ ′ ′ ′ ′γ εε γ =
2( ) ( )

( ) .

X X B X X BBX X BBX X

X X BBX X cX BBXc

+ +

+

′ ′ ′= γ γ =
′ ′ ′ ′ ′= γ γ =

 

 
3. By assumptions in the linear model 

(1 − 5), rang X m< . The matrixX BBX′  has 
the order m m×  and it is symmetric and inex-
tricably defined. Therefore, it has m  intrinsic 
eigenvalues 2 2 2 2

1 2 3 mρ , ρ , ρ ,…, ρ , such as 

 
2 2 2 2 2
1 2 t t 1 m 0+ρ ≥ ρ ≥ ρ ≥ ρ = = ρ =K L . 

 
Then takes place (11), where U  is an or-

thogonal n n×  matrix, and V  is an orthogonal 
m m×  matrix. 

The columns of the matrix U  are the intrin-
sic vectors of the matrix, and the columns of 
the matrix V  are the own vectors of the ma-
trix X BBX′ . That is, the matrix 

1 2( , , , )mV = ν ν … ν , formed by its own vec-

tors, iν  denotes a vector column correspond-

ing to its own value2
iρ . 

We have 2( ) i i iX BBX V′ = ρ ν  in addition to 

mV V E′ = . 

Let 1 2 3( , , , , )tL V V V V…  the linear sheath of 

vectors  1 2 3, , , , tV V V V…  and let 

 

1 2 1 2( , , , ) ( , , , )m tC C C C L V V V′ ′= ∈K K . 

Then
1

t

i i i
i

C C V
=

′ ′= ν α ⇔ ⇔ α∑  

where 1 2 tα=(α ,α ,…,α ) . 

 
Theorem 2. 
 

2 2 1

1

( ) ( ) ( )

( ) ( )

D XBBX XW X

X BBX X D X

+ − +

+ − +

β = σ = σ
′ ′= =

)
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Proving. Let X BY+β =
)

a normal pseudo-
solution. Also takes place (2), from where 

( )X X X X X+ + +β = β + ε = β + ε
)

. From (3), in 
general, mathematical expectation 

1M X X+β = β = ρ β
)

. 

Scattering ( )D β
)

is relatively ( )M β
)

 equal 
 

( ) ( )( )

( , )

( ) ( ( )

( ) ( )( ) ( ) .

D M X X X X

M X X

X BBX X BB BBX X BBX

X BBX X BBX X BBX X BBX

+ +

+ +

+ +

+ + +

′β = β − β β − β =

′′ε ε =
′ ′ ′ ′εε =
′ ′ ′ ′=

) )

 

 
The theorem is proved. 

We have c V′= α . Let's calculate ( )D cβ
)

, 

where cβ
)

 − unmatched estimate cβ . 
 

( )M c M V V X X+′ ′β = α β = α β
) )

 and 

c Mc V X+′β − β = α ε
) )

 

2 2

( )

( ) ( )

( ) ( )  ,

D c M VX X V

M V XBBX XBB BBX XBBX V

V XBBX V D c

+ +

+ +

+ +

′ ′ ′β = α εε α =
′ ′ ′ ′ ′ ′α εε α =
′ ′ ′ ′σ α α = β = σ α α∑

)

)
 

 
where 

 

2
1

2
2

2
m

(0) (0)(p ) (0) (0)

(0) (0)(0) (p ) (0)

(0) (0)(0) (0) (p )

+

+

+

+

=

 
 
 =
 
 
 

∑
KL

KL

M O MM M O M

KL

 

and where 

2
22

2

1
, 0

( )

0, 0

i
ii

i

p
pp

p

+

 ≠= 
 =

, 

 
so that 
 

2 2 2
2 1 2

2 2 2
1 2

( ) ( )t

t

D с L
α α αβ = σ + + +
ρ ρ ρ

)
. (26) 

 
We see that the variance of a linear combi-

nationcβ
)

 depends on inverse eigenvalues. 

And due to the smaller absolute value, the 
characteristic root has the greatest influence on 
this dispersion. 

We are interested in a separate coeffi-

cient i
′β , then let the vector 

(0,0, ,1, ,0)′= α = K Kc V  have a unit on the i 
position, and the remaining coordinate is equal 
to zero. 

We require: 1 2 3( , , , , )tc L V V V V′∈ K . We will 

C V′= α  get with it

1

2

i

i
i

it

eV

′ν 
 ν α = =
 
 ν 

M
, 

where i1 i1 i1, , ,ν ν νK  the elements of the line 

are matrix V. 
 

Consequence 1. 
 

2 2 2
2 1 2

2 2 2
1 2

( ) ( )i i it
i

t

D
ν ν νβ = σ + + +
ρ ρ ρ

)
L  i (1,m)=  

With  1 2 3( , , , , )i te L V V V V∈ K .        (27) 

4. Let it 
 

{ }1 2, , , mC C C C= K
2 2 2
1 2 t 0ρ ≥ ρ ≥ ρ >K  - own 

values( )X BBX′ . 
 

1 2( , , , )tL V V V…  − a linear shell  of vec-

tors 1 2 3, , , , tV V V V…  for which - respectively 
2 2 2
1 2 t 0ρ ≥ ρ ≥ ρ >K . 

 

Let { }1 2, , , mC C C C ′′ = ∈K  

1 2 1 2( , , , ) , ( , , , )t tL V V V c V′∈ ⇒ = α α = α α αK K  

 
and is a solution of the system  
 

1 1 1 2 1( ) ( ) ( )tV V V c′α + α + α =K ,      (28) 

 
or in a matrix record c V′= α . 

Let +
BX Y  the normal pseudo-solution of the 

problem (2 − 5, 6). As shown above, takes 
place (28). We put in (28) 
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2 2 2
1 2 0k k t+ +α + α + …+ α =   (29) 

 

then 
1

V
k

k i i
i

c
=

= α∑  − shifted estimate c, 

 

1 1 2 2( ) ( ) ( )k k k k t tV V V+ + + +α + α + …α  − bias, and 
2 2 2

1 2k k k tN + += α + α + + αK  – shift value kC
)

. 

 
Then from (26) − (29) 
 

2 2 2
2 1 1

2 2 2
1 2

( ) ( )k
k

k

D C
α α αβ = σ + +…+
ρ ρ ρ

))
. 

 

Let €€( )k k kM N D C= + β  
 

The 

2

1

2
2 2

2
1 1

2
2

2
1

, 0

,1 1

,  .

t

i
i

k t
j

k j
j j kj

t
j

j j

k

M k t

k t

=

= = +

=


 α =

 α= σ + α ≤ ≤ − ρ
 α
 σ =

ρ

∑

∑ ∑

∑

 

 
Looking for min kM  ( 0 k t≤ ≤ ) so 
 

21
2 2

1 2
1

2
2 2

2
1

21
2 2

1 2
2

2 2 2 2
2 2

1 2 2
1

2 2 2 2
2 21

1 1 12 2
1 1

 .

i t
j

i j
j jj

t t
j

i j
j j ij

i t
j

i j
j jj

i i
i i i i

i

i i
i i i i

i i

M

M

M

M M

M M

−

−
=

= +

+

+
=

−

+
+ + +

+ +

α
= σ + α

ρ

α
= σ + α

ρ

α
= σ + α

ρ

 α σ σ − ρ− = − α = α  ρ ρ 

 α σ σ − ρ− = − α = α  ρ ρ 

∑ ∑

∑ ∑

∑ ∑  

 

Minimum M i  when 1M Mi i −− changing the 

minus sign to plus 
 

2 2 2 2
2 2 2

12 2 2 2
1 1

0

0
i i

i i

i i

+
+ +

 σ − ρ ≤ ρ ≥ σ
⇒ ⇒ ρ ≤ σ ≤ ρ σ − ρ ≥ ρ ≤ σ 

. 

The first case 2 2
1 1 0i iM M −σ ≥ ρ ⇒ − > . 

 

Hence iM  grows. The minimum iM  for 

i = 0 and is equal, to 
 

2 2 2
0 1 2 mintM = α + α +…+ α →  

 
The second case 
 

2 2 2
1i i+ρ ≤ σ < ρ . 

 

The minimum €( )k kN D C+ under 
 

1 1k t≤ ≤ −  is equal to 
 

€€( )i kN D C+ β =  
2 2 2

2 21 1
2 2 2

11 2

( )

min при 0 .

t
i

j
j iip p p

k t

= +

α α α= σ + + + + α →

→ ≤ ≤

∑L
 

 
The third case 2 2

iσ < ρ , iM comes down. 

The minimum for I = t  is equal to 
 

2 2 2
2 1 1

2 2 2
1 2

( ) mint
t

t

M
p p p

α α α= σ + + + →L  

 

Consequence 2. 

Under conditions 1) 
2 2

iσ <ρ ; 
 

2) 1 2(0, ,1,0, ) ( , , , )i te L V V V′ ′= ∈ ⇒K K K  
2 2 2

2 1 2
2 2 2
1 2

( ) ( ) mini i it
i

t

D L
ν ν νβ = σ + + + →
ρ ρ ρ

)
. 

 

Consequence 2 is not valid for all i
€β , be-

cause all ie cannot belong to 1 2( , , , )tL V V V… , 

since they are ie -linearly independent (1, 2, ..., 

m), but rangX m< . 
 

CONCLUSIONS 
 
In econometric modeling, the design of the 

structure of the predictor space by the re-
searcher is a tool for obtaining a prognostically 
effective specification of exogenous variables. 
According to the authors, the process of select-
ing signs and constructing prediktornym spac-



Materials Science, Information Technology 
 

Transfer of Innovative Technologies 
2018 Vol 1(1), 75-88 

87 

es is appropriate to apply iterative. An ap-
proach to the selection of explanatory vari-
ables based on the study of singular schedules 
is effective for constructing econometric mod-
els with multi-collinear variables and the ma-
trix of incomplete observations. Despite the 
moderate increase in time for making deci-
sions on the structure of the econometric 
model, the "personalization" of constructing 
patterns of interdependence of factors will 
contribute to the growth of their adequacy. 

Currently, the toolkit of research analytics 
is intensively expanding with the latest proce-
dures that provide high predictive efficiency. 
In econometric modeling, the problem of de-
termining informative predictors, the forma-
tion of a rational set of exogenous variables, 
the justification of the dimension and structure 
of predictor spaces is relevant. The basic ap-
proaches to choosing the optimal set of fea-
tures are, in particular, the overview of all 
combinations, direct selection and reverse ex-
clusion, the weighting of signs in linear and 
logistic regression algorithms, the importance 
of features in decision trees and the variants of 
ensembles, for example, "random forest", etc. 

Modern Data Technologies, Data Mining, 
Machine Learning (ML) provide a wide array 
of feature design techniques. The purpose of 
designing and selecting features is to prevent 
the effect of re-training, to achieve greater 
compactness of the model by eliminating ex-
cess regressors, reducing the dimensionality of 
the learning processes without a teacher, con-
structing classifiers, mapping the process of 
partitioning data into classes, and determining 
the boundary of solutions in the reduced space, 
as well as substantiated interpretation, provid-
ing in-depth understanding of the model and 
learning data, visualization in spaces, the di-
mension of which will be perceived by the re-
searcher. 

Determining a subset of signs is an impor-
tant component of machine learning and 
greatly affects the accuracy of ML models. 
The concept of machine learning maximizes 
the ability to define templates in the data 
achieved, in particular, by aggregating a set of 
attributes. The informatively weak sign can 
significantly increase its own prognostic utility 

and become strong in the presence of another 
effective set of features. 

Reconstruction and selection of features 
contributes to increasing the automation of the 
learning process. When studying ML models 
in large numbers, there is a danger of retrain-
ing, but clear selection rules can reduce their 
number. Consequently, the purposeful varia-
tion in the number of signs should be used by 
researchers to calibrate and study the model, 
since it enables us to justify the choice of a ra-
tional set of independent variables that deter-
mine the structures in the data and subse-
quently successfully predict trends in the 
behavior of economic systems. 

Note that even taking into account the rep-
resentative set of algorithms for designing the 
features, implemented on the basis of plat-
forms ML type R, Python, the researcher often 
has difficulties in designing sign spaces, and 
the choice of the conceptual approach and 
tools is ambiguous. When necessary to take in-
to account the specifics of origin and data for-
mats in Big Data technologies, along with their 
further unification and ensemblevization, there 
is a need for a researcher-driven "intervention" 
in a fast ensemble of large data analysis tech-
nology. 
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Аннотация. Рассмотрена проблема опреде-

ления информативных предикторов, формиро-
вания рациональной совокупности экзогенных 
переменных, обоснования размерности и 
структуры предикторных пространств. Целью 
проектирования и отбора признаков является 
предупреждение эффекта переобучения, сни-
жение размерности в процессах обучения без 
учителя, построение классификаторов, отраже-
ние процесса разбиения данных на классы и 
определения границ решений в редуцирован-
ном пространстве, а также обоснованная ин-
терпретация, обеспечение углубленного пони-
мания модели и данных для обучения, визуали-
зация в пространствах, размерность которых 
воспринимается исследователем. Рассмотрены 
вопросы проектирования предикторных про-
странств и разработки эффективных процедур 
оценивания параметров эконометрических мо-
делей с мультиколлинеарными переменными. 
Проведено исследование альтернативных под-
ходов к формированию совокупности призна-
ков в моделях взаимозависимостей. 

Предложен математический инструментарий 
для вычисления параметров линейной эконо-
метрической модели в случае матрицы наблю-
дений неполного ранга, базирующийся на ис-
следовании сингулярных разложений.  

Использование сингулярного инструмента-
рия для декомпозиции и анализа матрицы дан-
ных позволяет повысить операционную эффек-
тивность и прогностическое качество процедур 
оценивания параметров эконометрических  мо-
делей. Математический подход к построению 
моделей взаимообусловленности факторов 
предназначен для выбора признаков и конст-
руирования предикторных пространств при ис-
следовании систем с мультиколлинеаными пе-
ременными и матрицей наблюдений неполного 
ранга. 
Ключевые слова: проектиррование призна-

ков, эконометрическая модель, мультиколлине-
арность, матрица наблюдений неполного ранга, 
сингулярное разложение, собственные числа. 


