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Abstract. The topic of determining informative
predictors, forming rational exogenous variables,
substantiating the dimension and structure of pre-
dictor spaces is considered. The purpose of design
and selection of characteristics is to preventefhe
fect of retraining, reduce the dimension in studyin
the processes apart from a master, build classifier
reflect the process of dividing data into classed a
determine the boundaries of solutions in limited
space, as well as reasonable interpretation, pgovid
in-depth understanding of the model and data for
studying, visualization in spaces, the dimension of
which is perceived by the researcher. The design
predictor spaces and develop effective procedures
problems for estimating the parameters of econo-
metric models with multicollinear variables are de-
veloped. The study was made under alternative ap-
proaches to form the interdependencies models
features.

A mathematical toolkit is proposed for calculat-
ing the parameters of a linear econometric model ‘
in case of rank deficient observation matrix, based
on the study of singular expansions. ) _

Using a singular toolkit for decomposing and and construct preo!lctor spaces In the study of sys
analyzing the data matrix makes it possible to in- tgms with mu!tlcolllnegr variables and rank defi-
crease the operational efficiency and predictive ClENt observation matrix.
quality of the procedures for estimating economet- _ _
ric models parameters. The mathematical approach ~ Key words: design features, econometric mod-
to the construction of models of the interdepend- el, multlcolllnearl_ty, matrix of obser_vatlons of-in
ence of factors is intended to select charactesisti COMPplete rank, singular schedule, eigenvalues
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INTRODUCTION factors on the maintenance condition and the
cost characteristics functioning systems forma-

The multicollinearity problem is relevant tion of the Navy. To the set of exogenous fac-
both for generalizing the factors interdepend- tors the researchers included, in particular, the
ence of the complex systems simulation theo- age of the vessel and its dimensions, the inten-
retical principles, and in terms of the opera- sity of use in marine logistics and defense pro-
tional aspect of the research. Applied modeling jects, fuel consumption, the time between the
and mathematical description of cause and ef- scheduled maintenance and their cost.
fect relationships as a form of regression de-  Also the set of predictors includes the dis-
pendencies is a leading, effective and practi- crete characteristics of the system, such as the
cally demanded direction in a wide range of type of power plant (steam, diesel, nuclear
applications for solving various behavior anal- fuel), engine operation, equipment operation
yses of technical, socio-economic, medical and and maintenance complexity, as well as a
biological systems problems. A model tool for number of functional and security subsystems
identifying and formalizing interdependencies qualitative parameters for radar patrol, guided
is used to solve the management problems of missiles etc. The spatial samples for the data
such systems and their components, in particu- studied were various naval purpose objects, in
lar, for functioning regularities determining, particular, the destroyers of the Atlantic Fleet
decision-making support on determining the and others.
optimal parameters and operating modes, for  Currently, the space of tools and technolo-
their development trends forecast, as well as gies choice for estimating the models parame-
for justifying the strategies and scenarios of ters of interdependence of factors is expanding
their behavior in the condition of uncertainty, intensively. For example, the researchers of the
indeterminacy, conflict, and, as a consequence, applied natural science systems use mostly
significant risk of external environment. OLS (Ordinary Least Squaresimplemented

In mathematical model sciences dealing in most traditional statistical packages, econ-

with the interdependence of factors, for exam- ometricians mainly focus on the maximum
ple, engineering, study of operations, econo- likelihood approaches, and the latest intellec-
metrics, biometrics etc., classical are consid- tual data analysis and machine study profes-
ered the works by D. Farrar, R. Glauber, J. sionals use the wide range of regression mod-
Johnston, M. Kendall, L. Klein, M. Bartlett, H.  els regularization.
Tail, J. Meier, G. Orkat. The scientific works It is notable that all these approaches are
of these authors include fundamental results on procedurally oriented and are chosen by the
the problems of estimating the parameters of researchers according to prior arguments. At
regression models, in which, in particular, the same time the decision to choose the best
methodological approaches and tools for tak- method for analyzing the interdependence of
ing into account the phenomenon of multicol- the factors is practically not related to the spe-
linearity in the input data are developed. cifics of the initial data.

Thus, the work of D. Farrar and R. Glauber Today the vast majority of regression tools
[17] on multicollinearity detection, diagnosis, application areas recognize the almost univer-
evaluation, consideration and the subsequentsal presence of multicollinearity, which is es-
correction of the design procedures for predic- tablished as an indispensable characteristic of
tion space in order to eliminate its negative the data base. Modeling technologies for pa-
consequences is well known in the wide range rameter estimation offer an advanced tool for
of engineering, natural systems researchers,diagnosing, taking into account and eliminat-
ecologists and econometricians. This work was ing the negative effects of this phenomenon, in
completed in 1965 in cooperation with the In- particular, lasso methods, combing regression,
stitute for Naval Research, which developed dimension diminishing, selection of optimal
theoretical approaches and mathematical mod- subset of variables etc.
els to analyze the impact of the combination of It is important that in case of the implemen-
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tation of the Big Data concept and digital B, £,
economy technologies in reaching the broadest B .
scope of human activity and the involvement B=| 7|, e=| 2
of vast amounts of predominantly unstructured :

information, the relevance of the problem of B €,

multicollinearity will increase. Thus, the de-

velopment of mathematical procedures for in-
depth study of the mechanisms of interdepend-
encies within the predictor spaces has not only
an applied demand for forecasting the devel-
opment of complex systems but also a signifi-

Through X"and €' we denote the matrices
transposed toX and ¢, respectively.
Let the conditions be:

; ; . 1. Me=0; (3)
cant operational relevance in terms of ensuring ' ) _ _
the adequacy of the constructed models and 2. M(g€’) = 0°E, — unit matrix; (4)
observing the target properties of the parame- 3. X — matrix whose elements are deter-
ters estimates. ministic numbers (5)

Here are the results of generalized ap- 4. X range = m (matrix X full rank) (6)
proaches to the estimation of econometric
models parameters with the multicollinearity The task (1 — 5) was considered by many
and the rank deficient observation matrix, authors [1, 2]. First of all, we give a very un-
which were previously studied by the authors derstandable version in the book of Wether-
in a number of scientific works [5 = 7]. burg [13] and Davies [11]. Especially useful
1. Let there be a linear relationship between are the books of Plackett [12, 14] and
the variableY and m explaining the variables Voyevodin [3].
X, X,,..., X and disturbance, ¢ - the ran- The case when the condition (3) is not ful-

dom variable, we emphasize that we need only f'lkl]ed was considered in [g]b withMe ¢h0. bi
the existence of finite moments of the second There Is some compromise between the bias

order. value ﬁand valud(B) . Case when [2] is not
fulfilled was considered by Aitken [10], who
METHODOLOGY proposed a generalized least squares method
on the condition that matrixX is of the full
If we have a sample of n observations on rank. In this study Aitken's method extends to
the modifications ofY i X, j=1,2,.m then task (1, 2), provided that (6) is not fulfilled,
but takes place

we can write
m rangK =t<m (6")
Y= % B, +5.i=(Ln). (1)
=1 at the same time takes place
Equations (1) can be written in the matrix N — .
formq (1) M (g€') = D = o'W, (4)
Y= XB+e ) where 6® is an unknown parameter, am, w
where — are known symmetrically positive defined
matrices of ordernxn. Then D admits the
y X, % X.. representatiod = PP, where the non-
! vt developed matrixP is positively determined.
v=| Y| x=| 2 2o K] So D=PP that P'DP'=Eand
: oo e P'P*= D" Let's denoteP*=B. D com-
Yn Xg X oo Xm mutes withB.
From (4) follows
Transfer of Innovative Technologies 77
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w*=D'%? W'=BB=0’BER.
So the matrix of covariance

2

O-1 0-10-20-12 0-pno-.“ll‘l
2
0,0,0 o 0p,0
M (EE') - 1 .2 12 .2 pn gl
2
0,0,0,, 00,0, .. 0O
= oW,
where o’ = Mg’ = Dy - dispersiony,,
00,0 = Mgg = covyy - covariancey,

andy;. W — the known weight matrix.

Let the vectors of the basis
€,€,...,6 1 H - the linear spacéi, setin
certain matching vectors,, f,,...,f of linear
spaceH,. Then there exists a linear operator
X operating withH, in H,, which translates
each vectorg, into a corresponding one vector
Xe = Zn: fa,,. We can determine the operator

i=1

X by equality

XB= XY B.g=> B Xg=
ZBkzakifi =Z fizakin'

(7)

Between the linear operatorX and the
matrices|a,| there is a one-to-one correspon-

dence. Since the symbols and properties of op-
erations over matrices and operators coincide,
then any transformation of operator equality
leads to the same matrix equality. Therefore,
from a formal point of view, we do not care
whether we are dealing with matrix or operator
relations.

Let's consider rectangular matrices of
nx mdimensions, the rank of which coincides
with the minimum from numbers, n. Such
matrices are called full rank matrices. Their
characteristic feature is that they do not change
their rank under any small disturbances. Sys-
tems of linear algebraic equations with full

78

rank matrices have much in common with the
non-degenerate matrices systems.

Let the matrix X of the system (1 — 6) be a
full rank matrix. In this case the system may
be incompatible. Otherwise, it's always com-
patible, but it has not the only solution.

We will look for a normal pseudo-
connection of the system (1 - 6), that is such

vector ﬁ which among all the vectors mini-
mizing the functional of the discrepancy

F,(B) =[|XB-Y| has the smallest Euclidean

norm.

The invariance of the Euclidean norm to
unitary transformations allows us to reduce the
problem of finding normal pseudo-connection
of the general type system to a simpler task.

It is easy to verify that the task of determin-
ing normal system pseudo-connection (1) is
equivalent to the solution of the same problem
for another system. But transformations can
always ensure that the matrix is sufficiently
simple, for example, triangular, normalized,
trapezoidal etc. On the construct rather effec-
tive numerical methods.

If any of the methods does not provide the
necessary accuracy of the solution of linear al-
gebraic equations system, then there is no rea-
son to hope that another method will provide
the same system with better results. Probably
such a system can be regarded as unstable. It is
known [1 - 4] that the pseudo solution of a re-
defined system (2) with a full rank matrix is a
common solution of the system

X'XB = Xy,

with a square non degenerate mat¥xXX of
ordermx m.
Normal solution of the system

B=(XX)"XlYy.
It is necessary to demand
> B2 — min. (8)
i=1

Definition 1 The matrix X" (mxn is

called the Moore-Penrose pseudo inverse for
matrix X if it satisfies the following four con-

Transfer of Innovative Technologies
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ditions:
1 X*XX= X'
2 XX* X=X

3 XX* - symmetric,
4 X*X - symmetric.

9)
From (9) condition follows
XTXX = X'=> X' XX X= X ),

if X*X=PR,thenP?=R.

In addition, from condition 47, is symmet-
So B - orthoprojector. Similarly

XX* = B - orthoprojector.

ric.

It can be proved that such a mati" al-
ways exists and is unique [2]. K is a non-
degenerate square matrix, then it obviously
satisfies the conditions (1 — 4),4f is rectan-
gular and has a full rank, then

X*=(X'X)™ X. It can be verified that the
pseudo inverse to diagonak m matrix

[0, 0 - O
0 g, - 0
Z: . o,
0 O 0
10 0 0 |

o 0 0 0 0
0 o .
I IR 0
0 0 o. 0 0
, 0,720
wherea, ={ ! :
0, 0,=0

Transfer of Innovative Technologies
2018 Vol 1(1), 75-88

Further we use [3] a singular matrk [3]

X=U>V, (11)

where U is the orthogonain x n matrix, V'
is the orthogonamx m matrix, andz - the
diagonal matrix, at whicho; = 0 for, i #j,
0; = 0, 20. Columns of the matrixJ are the

intrinsic vectors of the matrixXX', and the
columns of the matri¥¥ are the vectors of the
matrix XX'. Using (9), [2, 3] we obtain

X*=vy'u.
RESULTS

The estimates of the least squares of the pa-
ramete in (1) are defined as values

B, Bss---, By, » Minimizing

n n

L= 204 =248 (¥ =2 %8

12)
— min,
®

where the matrix A=|o,| is a symmetric
positive definite matrix.
Solution (12) B, B,...., B,, we will call

task pseudo-solution (1 — 2). The solution will
be linear towards y. In addition, under the con-

dition (3), PB will be unbiased estimat&p
in (1). That is

M (PB) = PB. (13)

The solution in general will not be the only
one. We will require that the minimum was the
amount (8). Then the solution (12) is unambi-
guous.

2. Let be given two linear real Euclidean

spacesH,,H,and a linear operatd¢ operat-
ing with H,inH,. OperatoX”, acting with
H,inH,, conjugates toX . Then for arbitrary
vectors BUOH,and y[OH,equality is per-
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formed

(X,B.y) =B, X"y). (14)

For any arbitrary operatoX there is a con-
jugate operatoX ", and thus it is only one. We
choose in H, an orthonormal basis

€,6,..., €. Then for every onggdJH, there
is a schedule

B=3 (Be)s - (15)

Applying (15) to X"y we get
XPy=> (X" §) ¢
k=1
Then, taking into account (14)

XDy=i(y, Xg) €.

k=1

Definition 1 The linear operatoB acting
inH, is called self-directed (symmetric), if for

any y,, ¥, H,= (By, ¥,) = (% BY)

Definition 2. If, (By,y)> 0 for arbi-
traryyOH,, then the operator is positively
definite. Wher{By, y) > 0, then operatoB is

called positive.
Self-directed operatoB corresponds to a
symmetric matriB' = B.

Let's define the operatod$"BBX, BXX E
that act accordingly iH,,H,.

Operators X"BBX BXX'E are self-
directed according toH,,H,. It is X"BBX
positive in H,, and the operatoBXX"B is
positive inH,.

In fact, for anyBUH,, yUH,we have

(X"BBXB,B) = (BX3, BX)20
(BXX"By y=( X' By X By= 0.

80

Operators X BBX, BXX B are self-
directed, therefore they have a system of or-
thonormal vectors, e,,..., €,, which are their

own vectors for X’BBXand f,f,,...,f,.

They are the vectors fdXX B .
The operator BX translates the system

€,6,...,€ Into some orthogonal system
BXe, BXe,..., BXe.

Indeed,

BXe, BXe)=( X BBXe =

(BXg, BXe) =( CH ati % |

(P’g.8)=p*(e £)=0
(BXe, BXg) =( X BBXe, p=p"(; § )=n "

ConsequentlyBXg|=p,, wherep, are the

singular numbers.

Therefore, the vect®@Xe, is non-zero,

then and only if the proper valyg?® of the op-
erator is not zero.
The vector X Bf, is the operator's vec-

tor X ' BBX. Indeed

(X"BBX) X’Bf = X' B BXX B f= X &
(X"Bf, X"Bf) =(BXX Bf f)=p( f ) =p%

Thus non-zero values of operataXs'BBX
and BXX"B always coincide. Denote our own
values througtp?,p3,...,p. . However, without

limiting generality p?>p2>,...,p>>0, and

the remaining eigenvalugs. are equal to ze-
ro.

Obviously, the eigenvaluesv of the opera-
torsX "BBX, BXX"Bdiffer only by the multi-
plicity of the null eigenvalue. Operator

X"BBX has levelsn—t, operator BXX"B
has leveln—t, which are called singular num-
bers of the operatoX .

We take as a basis ) the orthonormal

systeme, e,,..., € of eigenvectors of the op-
erator X"BBX. Then the vectorg,e,,..., e

form a basis in the domain of valuésBBX,
and e,,,€,,,...., the basis in the core of the

Transfer of Innovative Technologies
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operator X "BBX.
f, f,....,f, — orthonormal basis iH,. As

’'n

f,f,....f, we take vectors obtained after
normalization BXe, BXe,..., BXt. That is

By:zyi fOH,. (20)
i=1

Then, taking into account (19), (20)

f :ﬁ, i=1,2,.. 1. Let's take any basis BXB-By= BXYBe-y f=
in the kernel BXX"B. It is clear that ZBkB(X ek)—gvi f.-;"ﬂvi f=
foa fron..., T, they are their own for the op- Zml(Bp foy.f)- 3 y.f =

erator BXX"B. Then we have

ZI_:(kak_yk)fk"' _Zm: Bw-vofi- Zn: ykfk '

o f., kst
BXg = (16) where f, — orthonormal, so
0, k>t
FR@) =(BBg=(y- ) BBy R)=
t 2 m 2
A8 kst =Y (Bo-v) * Y (Bo-y) + Y
)(DBfk = , a7 k=1 k=t+1
0, k>t +> )’
k=m+1
e,e,..,e, f,f,,.., f —singular bases. Obviously, the smallest value of a non-

compliance functional achieves under these
valuess in which the last m-t coefficienfg
are arbitrary, and the first t terms in (21) are

Let's havey = XB+ e= By= B3+ B.
We find a vecto for which

_ _ equal to 0.
(B(y= XB)) B(y- X)) =
: (18) . _
€ BBe- min If > B2 - min,
Self-regulated, positively defined operator Y
in H,, whereB = p*,D= p?,BB= D. thenf,, =B, =...=B, =0 andp, =—.

k

The pseudo-solution of the problem (18) is (k=1,2,..1).
any vectorB0H, for which the function of Normal problem solving (1)
the discrepancy (18) reaches its lowest value.

A normal task pseudo-solution is called a Y,
pseudo-solution, for WhicIZBi2 - min. B _kZ:;p_keK (22)
We will prove that a normal pseudo-
solution (18) exists as unique. Using (21) (22) we obtain that pseudo-

We will fix in spacesH,,H, singular bases  solutions and only they satisfy

e,e,....,eandf,f,....f . R
: X"BBXB = X" BB). (23)

Let
B=YBeOH, (19) Indeed, using (21)
k=1
Transfer of Innovative Technologies 81
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X"BBXB = XDBB%Bk p= B=(X"BBX)" X°BBXY3+( X BBYX X BB,

t m
TR Piber 2, B BB B=PB+(X"BBX)" X'BE, (25)
n n t
=X"BY v f=> v X'Bf=> ype Mp = PB.
i=1 i=1 i=1
we obtain thaB, =Yk for k=(Lt) and ex- Where P = (X"BBX)* X’ BBX and
k
actly O for the othem—t coordinates. .
We have a pseudo-connection e, 1=t
qu - 0 ’ | >t ’

B=(X"BBX)" X’BBy  (24)
B - orthoprojector orL (g, &,..., €).
Likewise P, = (BXX" B"( BXX B

B:Z{ﬁ}ek {f., i<t
k=1 ( Py P2 fi = !

Let operator X operate from spacéi, in
H,. Then we assign to each vectgilH,a We haveP? =B, F¥ = B, ,P, B, - orthore-
uniform vector B, — normal pseudo-solution ~complexes, otherwise orthoprojectors

of the equation (18), which means the solution _ _ .
BY = BX3+ B. This correspondence defines ~ B—MB=(X"BBX) X’BR

the same

some operatoX;, that acts front, in H,and We use (25)BB = 0" BB, BBee' = E then
is called a normal pseudo-inverse Xo . varp f_M (@- |\_/|_f3)([3 ‘_E/' B)) =
Therefore, by definitionB, = XY for any M (XBBX)" X’BByee' BBX X BBX =
yOH, thatis o?(X"BBX)" X’BBX X BBX =0?( X BBK
K f {p e kst Let's calculates. Let
0 k>t {Y=x3+e {§Y=_B)<B+_Ei
S o=y T o
Again, consider the equation (1, 2) under y=Xp+e [By=BXp+ Be
the conditior(6'), (4) and let BY=BX+ B
{§e= By- B3 ;

Meg'=D =B™"B™, thenBY = BX3+ B.
var(Be)= var€ [£'). M[Bee'B| =
BDB=E, oe € =B¢g ,

Be= B( X3+¢)— BXX Y=
BXB+ Be— B( XX X3)- BXXe=
B(E- XX")e= B E- P,
where
R where B, = XX" - ortoprojector; P, — idempo-
B=(X"BBX)" X'BBy=( X D" ¥* X D ¥ tent, symmetric matrix.
(XW™?X)" XW?'Y That's whyE - B, is also an orthoprojector.

82 Transfer of Innovative Technologies
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Let P=E - B, thenBe= BR. and sufficient for the matrixX; to be pseudo-
SoP= H P H a matrix of sizex n. inverse toBX [3].
n P .
DenotesSpP = Z R . roving
i=1

1) X:BXX, =(XBBXY XBBX XBBK 'XE

Calculate(Be)' Be. We havéBe= BR, so

=(XBBX)" XB= X, and X BXX= PX.
BPe'ePB= PR's BP=

=) > R(EE - MEME) +
=1 j=1

n

> PMEME .  WhereR is the orthoprojector on the linear
i=1 j=1
shell L(g, &,..., &)

Whereg, =Bg,,i =(1...,n), so
BXX: BX= BX XBBX XBBX

2) :

S __ n.n - = BX(X'BBX)" XBBX= BXP B:
(B Be= €BBe ) ), e - N )= 3) X:BX = ( XBBX( XBBX= J
=N P((E2-(ME)H+> P(EE - ME Mt).

; (&~ (M&)) ; 7 (&5 FME) - orthoprojector on the linear shell

L(g,e,..., €) self-preservation.
So
M (¢ BBQ = Z po? + Y PCov(sE )= 4) BXX; = BX( X BBX X - symmetric.
i=1 i%]
= o%(spP). Thus X;, it satisfies the Moore-Penrose

conditions, and henceX; =(BX)", on the
other hand,(BX)" = X* B [2] under the fol-

B __ _ lowing condition: the set of values & is an
spP= s E= X XBBX X BB invariant subspace fo¢'’X , and the set of val-
=spE - spX XBBX XBB ues X' is an invariant subspace 8B’ .

=spE, - spX XBBX XBB
=n-sg XBBY" XBBX n spR .

Becausecov(gE, )= 0, soM (€€) = °E

So X; = X*B.

Definition 3 An estimatiof of the pa-
rameter p is called X - unshielded, if
MXB = XB, i.e if XB- unmatched assess-
ment X3.

Lemma 1 Evaluation = X*BYis an X -

unplanned estimatg.
Proving We use (2). Then,

Me BBe= 0?( - ) and it means that it is

, _M€eBBe € BBe
also

(n—=r) (n—=r)

an unassigned estimatg .

So R
X: =(X'BBX)® XE, thenX; = X:B. B=XzBY= X (BB+ B)=
=X'B'BX3+ X' B'B=
We prove that X, satisfies the Moore- =X"XB+ X'e
Penrose conditions (9), which are necessary
Transfer of Innovative Technologies 83
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therefore, from (3) and (9)

M (XB) = M(XX" XB+ XX¢€)=
XX XB= Xp.

Lemma 2 The covariance matrix of the
D(XP) parameter =X estimate in the mod-

el (2) is equal t®(XP)=c*X'(XBBX" X,
where (X'BBX)" — pseudo-return 1oX'BBX)
Proving We use [2]

X;=(XBBX)' XB % By
(X'BBX)* XBBY+ Xe.

Then
XB=XX'Y= XX B+ XXe== B+ XX
Then using (3), (4), (9) we obtain

D(XB) = M(XB~ XB)( XB~ XB) =
M (XX"g, &' ( XX)) =
MX(XBBX)" XBRe' BBX XBBX X
o?X'(XBBX)" X
Letit C=(C,C,,...,G,).

Let L(X,, X,,...,X,)the linear shell of the
strings of matrixX .

Theorem 1.

COL(X,, Xy X )= M(B)= @
Proving

COL(X, X,,...; X, )= C=y X,

wherey={y,,7,....¥ .}, M(cB) = M(yXB)

According to Lemma 2.

MXB = XB thisM ()= yXp = B.

84

That iscB - a linear unmatched estimate
3. Calculate

D(cB) = M(B-B) (B~ |) =

M (YXB = yXB)(yXB - yXB)' =

M (yXX*eg' X+ X'y) =
MyX(X'BBX)* X BBe' BBX XBBX ¥ =
=yX(X'B*X)" XBBX XBBX X=
=yX'(X'BBX)" Xy = cXBBXc

3. By assumptions in the linear model
(1 - 5), rangX <m. The matrixX BBX has

the ordermx m and it is symmetric and inex-
tricably defined. Therefore, it has intrinsic

eigenvalues?, p3, p,..., p>, such as

pI=piz...pizpl, = =p2:=0.

Then takes place (11), whet¢ is an or-
thogonalnx n matrix, andV is an orthogonal
mx m matrix.

The columns of the matri¥ are the intrin-
sic vectors of the matrix, and the columns of
the matrixV are the own vectors of the ma-
trix X' BBX. That is, the matrix

V =(v,,V,,...,v,), formed by its own vec-
tors, v, denotes a vector column correspond-
ing to its own valug’.

We have (X'BBX)V =p?v, in addition to
VV=E,.

Let L(V,V,,V;,...,\{) the linear sheath of
vectorsV,,V,,V,,...,\ and let

C'=(GCors GY O LV Ve, V).
ThenC' :Zt:viai = Ce=aV
Where(x:((xl,az_,...,at).

Theorem 2
D(B) = 0?(XBBX)" = 0?( XW?! X"

=(XBBX)" =(XD' X"
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Proving. Let B = X*BYa normal pseudo-
solution. Also takes place (2), from where
B=X"(XB+e)= X" XB+ X'e. From (3), in
general, mathematical expectation
MB=X"XB=pp.

Scatterind () is relativelyM (B) equal

D) =M (B~ X"XB)(B~- X' Xp) =

M (X*e,e'X") =

(X'BBX)" X( BBe' BBX XBBX =
(X'BBX)"( XBBX( XBBX =( XBBX.

The theorem is prove.
We have c=aV'. Let's calculate D(cB),
wherec - unmatched estimaie .

M (cB) = MaVB=aVX" X3 and
B-MB=aVXe
D(dB) = MaV'X'eg' X W' =
MaV'(XBBX* XBBe BBK XBBX &=
o’aV'(XBBY W' = [ B)=c’ad o,

where
5=
(p7)" (0) (0) (0) (0)
_| 0 @) (0) (0) ... (0)
0) (0) (P, ) (0) (0)
1
—, p°#0
and where(p?)" = p’ P :
0, p°’=0
so that
D(cﬁ)zoz(a—;2+°‘—§+L+g—§). (26)

We see that the variance of a linear combi-
nationc depends on inverse eigenvalues.
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And due to the smaller absolute value, the
characteristic root has the greatest influence on
this dispersion.

We are interested in a separate coeffi-

cient3’, then let the vector
c=aV'=(0,0,..,1,.. ,0 have a unit on the i
position, and the remaining coordinate is equal

to zero.
We require:c' 0 L(V,,\,, V,,..., ). We will

— -

C=aV' getwithitd =§V=| .° |

where V;;,V;,...,V;; the elements of the line
are matrixVv.

Consequence. 1

2 2 2

DB) =0’ (2 +Y2 ...+ Y =)
1 2 t

with e 0LV, \,, \..., V). 27)

4. Letit

c={C.C,....G} p’zpi=...p?>0 - own
valueg{ X'BBX) .

LM, VY,,....,\V)) —alinear shell of vec-
torsV,,V,,V,,...,\{ for which - respectively

p2=pi>...p?>0.
LetC'={C,C,,...,G} O
oLV, V,,...,V)= c=aV,a=(a,,0,,..,0,)
and is a solution of the system
a,V)+a,(V,)+..aM)=¢, (28)

or in a matrix recorcc=aV'.
LetX;Y the normal pseudo-solution of the

problem (2 - 5, 6). As shown above, takes
place (28). We put in (28)
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al,+0l,,+...+a’=0 (29)

[
thenc, =Y a,V, - shifted estimate,

i=1
Oy (Vi) + 0oV, ) +...0 (V) — bias, and
N, =a?, +0a2,+...+a? - shift valueC, .

Then from (26) — (29)

2 2

L+ +a—;).
P

DER =%+

1

a
2
2

Let M, =N, + D(€f

The
t
> at,k=0
i=1
k az t
M,=40?> —-+ > aflskst-1
=1 P =+
t az
02> —L k=t
=1 M

2I—l az t )
— i
Mi—l_o —2+qu
N EE
t o? t
M=o’y e Y a
T
2i+1 o’ t )
— j
|\/||+1—O' Z_2+Za1
i Py =
2 2 2 2
_a;0 2_ 210 =P
MI_Mi—l I2 _al _ai|: 2 I:|
P; Pi
2 2 2 2
_ 0,0 2 _ 210 —Pp
M|+1_M| |+21 _ai+1 ai+1|: 2 I:|
Pin i+1

Minimum M, when M, —M,_, changing the
minus sign to plus

0’ -p2<0 :{pfzoz

2 2 2
=P <0 Sp-
2 2 2 2 i+1 i
0" P20 P SO

—
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The first cases® 2 py = M, -M,_, > 0.

Hence M; grows. The minimumM, for
i =0 and is equal, to

M,=0f+0a2+...+0aZ - min
The second case
paSO”<p’.
The minimunmN, + D(€) under

l<k<t-1lisequalto

N, + D(E®) =

2 2 2 t
o, a a
:0‘2(%+_é+...+_')+ E a]? N

B ﬂz =
- min mpu 0<k <t.

The third cases” <p’, M, comes down.
The minimum forl =t is equal to

2 2 2
a a a .
:0’2(_;+_1+...+_t2) = min

M
Pl P

t

Consequence 2.
Under conditions 1)32<Pi2;

2)é =(0,...,1,0,.JOLY N ... ¥V )=

2 2 2
S 2,V7 V5 V. )
DB)=0(5+—% +L+—“2 ~ min,
1 2 t

Consequence 2 is not valid for ﬂ be-
cause alg cannot belong toL(V,,V,,...,\),
since they ares -linearly independent (1, 2, ...,
m), butrangX < m.

CONCLUSIONS

In econometric modeling, the design of the
structure of the predictor space by the re-
searcher is a tool for obtaining a prognostically
effective specification of exogenous variables.
According to the authors, the process of select-
ing signs and constructing prediktornym spac-
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es is appropriate to apply iterative. An ap-
proach to the selection of explanatory vari-
ables based on the study of singular schedules
is effective for constructing econometric mod-
els with multi-collinear variables and the ma-
trix of incomplete observations. Despite the
moderate increase in time for making deci-
sions on the structure of the econometric
model, the "personalization” of constructing
patterns of interdependence of factors will
contribute to the growth of their adequacy.
Currently, the toolkit of research analytics
is intensively expanding with the latest proce-
dures that provide high predictive efficiency.
In econometric modeling, the problem of de-
termining informative predictors, the forma-
tion of a rational set of exogenous variables,
the justification of the dimension and structure
of predictor spaces is relevant. The basic ap-
proaches to choosing the optimal set of fea-
tures are, in particular, the overview of all
combinations, direct selection and reverse ex-
clusion, the weighting of signs in linear and
logistic regression algorithms, the importance
of features in decision trees and the variants of
ensembles, for example, "random forest", etc.
Modern Data Technologies, Data Mining,
Machine Learning (ML) provide a wide array
of feature design techniques. The purpose of
designing and selecting features is to prevent
the effect of re-training, to achieve greater
compactness of the model by eliminating ex-
cess regressors, reducing the dimensionality of

the learning processes without a teacher, con-—

structing classifiers, mapping the process of

partitioning data into classes, and determining 3.

the boundary of solutions in the reduced space,
as well as substantiated interpretation, provid-

ing in-depth understanding of the model and 4.

learning data, visualization in spaces, the di-
mension of which will be perceived by the re-
searcher.

Determining a subset of signs is an impor- >.

tant component of machine learning and
greatly affects the accuracy of ML models.
The concept of machine learning maximizes
the ability to define templates in the data

achieved, in particular, by aggregating a set ofg_

attributes. The informatively weak sign can
significantly increase its own prognostic utility

Transfer of Innovative Technologies
2018 Vol 1(1), 75-88

and become strong in the presence of another
effective set of features.

Reconstruction and selection of features
contributes to increasing the automation of the
learning process. When studying ML models
in large numbers, there is a danger of retrain-
ing, but clear selection rules can reduce their
number. Consequently, the purposeful varia-
tion in the number of signs should be used by
researchers to calibrate and study the model,
since it enables us to justify the choice of a ra-
tional set of independent variables that deter-
mine the structures in the data and subse-
qguently successfully predict trends in the
behavior of economic systems.

Note that even taking into account the rep-
resentative set of algorithms for designing the
features, implemented on the basis of plat-
forms ML type R, Python, the researcher often
has difficulties in designing sign spaces, and
the choice of the conceptual approach and
tools is ambiguous. When necessary to take in-
to account the specifics of origin and data for-
mats in Big Data technologies, along with their
further unification and ensemblevization, there
is a need for a researcher-driven "intervention”
in a fast ensemble of large data analysis tech-
nology.
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AHaJIU3 NapaMeTpPoB MYJIbTHKOJJIMHEAPHBIX
IKOHOMETPHYECKHX MojieJiell ¢ MaTpuuei
Ha0/1101eHUIi HeN0JIHOTO PaHTa

Buxmop Kymosoii, Onvea Kamynuna,
Onee lllymosckuii

AnHotamusi. PaccmoTrpena npobiema onpeje-
JieHnsT MHGOPMATUBHBIX TPETUKTOPOB, (GOPMHUPO-
BaHUS PAIMOHAIBHON COBOKYITHOCTH 3K30T€HHBIX
MEPEMEHHBIX, OOOCHOBaHHUS Pa3MEPHOCTH H
CTPYKTYpPBI TPEIUKTOPHBIX IMpOocTpaHcTB. Llenpro
MPOEKTUPOBAaHUS W OTOOpa TPHU3HAKOB SBIISETCS
npegynpexaeHue sddexra mnepeoOydeHusi, CHU-
KEHUE Pa3MEPHOCTH B mpoueccax oOydyeHus Oe3
YUUTENs], TIOCTPOCHUE KIACCU(PHUKATOPOB, OTpaxKe-
HHUE Tpolecca pa3OMEeHUs] NAaHHBIX Ha KJIacChl U
OTIpeleNICHHs] TPaHHIl PEUICHUH B PEAYyLHMPOBaH-
HOM TIPOCTPAHCTBE, a TaKXKe OOOCHOBaHHAsl WH-
TeprpeTarus, o0eCIeUeHHe YIITyOJEHHOTO TOHH-
MaHMs MOJENIM U JaHHBIX Uil 00y4YeHus], BU3yalu-
3amysg B TMPOCTPAHCTBAX, Pa3MEPHOCTh KOTOPBIX
BOCIPUHUMAETCS HcclienoBareneM. PaccMoTpeHsl
BOMPOCH TMPOEKTHPOBaHMS NPEIUKTOPHBIX IPO-
CTpaHCTB W pa3paboTku 3(P(PEeKTUBHBIX MPOLEAYD
OIIEHWBAHUS TIAPaMETPOB SKOHOMETPHUYECKHUX MO-
neneil ¢ MyJBTHKOJUIMHEapHBIMH TEPEMEHHBIMHU.
[IpoBeneHo wuccienoBaHue ajlbTEPHATUBHBIX IOMI-
XOMIOB K (hOPMHPOBAHUIO COBOKYITHOCTH TpH3HA-
KOB B MOJIEJISIX B3aMO3aBUCHUMOCTEH.

[IpennokeH MaTeMaTHUECKUH UHCTPYMEHTApUI
JUIS. BBIYMCJICHUSI TIapaMEeTpPOB JIMHEHHON 3KOHO-
METPHUYECKOW MOJIENH B Cllydae MaTpHIlbl HaOro-
JCHUH HETOJHOTO paHra, 0a3upylomuiics Ha Hc-
CJICZIOBAHUU CUHTYJISIPHBIX Pa3JIOKEHHUH.

Hcnonp30BaHMe CHHTYISAPHOTO HHCTPYMEHTA-
pust A7 AEKOMIIO3ULIMK M aHalln3a MaTpUIlbl JTaH-
HBIX [TO3BOJISACT MOBBICUTDH OINEPaMOHHYIO 3 dek-
TUBHOCTH U TIPOTHOCTHYECKOE KaueCTBO MPOIEAYP
OIIEHWBAHUS ITapaMETPOB SKOHOMETPHIECKHUX MO-
neneil. MaremaTuueckuii moaxod K MOCTPOCHUIO
Mofenel  B3aMMOOOYCJIOBIEHHOCTH  (haKTOpPOB
MpeaHa3HadeH A BhIOOpa TPU3HAKOB M KOHCT-
PYUPOBaHUS MPETUKTOPHBIX MPOCTPAHCTB IPU HC-
CIIEZIOBAHUU CHCTEM C MYJBTHUKOJUIMHEAHBIMH Iie-
PEMEHHBIMU U MaTpHIIEH HaOIIOMEeHUH HETIOITHOTO
pamnra.

KiioueBble ciioBa: MpOSKTUPPOBaHUE MPHU3HA-
KOB, DKOHOMETpHUYECKasi MOJIENb, MYJIbTHKOJIIHHE-
apHOCTH, MaTpHIla HAOIIONEHNI HEMOJHOTO PaHTa,
CHHTYJISIPHOE Pa3lIoKEeHHE, COOCTBEHHBIE YHCIa.
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