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Summary. This paper studies the problem of an thermoelastic anisotropic bimaterial with highly
conducting interface containing thin inclusions. Using the modified boundary element approach, the extended
Stroh formalism and complex variable calculus the Somigliana type integral formulae and corresponding
boundary integral equations for the anisotropic bimaterial with mechanically perfect and thermally imperfect
interface of base materials containing internal inhomogeneties are obtained. Derived integral equations are
introduced into the modified boundary method, which along with the models of thin thermoelastic inclusions allow
solving various problems for thermoelastic anisotropic medium composed with two half-planes with different
thermo-mechanical properties. The influence of the high temperature-conducting coherent interface on the field
intensity factors at the tips of thin inhomogeneties is studied.
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Problem setting. Composite materials as result of their adjustable thermo-physical and
mechanic properties during design and production phases are becoming more and more popular
in production of modern innovative engineering constructions. The production of the latter
faces the combination of two different in mechanic and thermal anisotropic thermo-elastic
materials. Such combination results in creation of thin transitive layer that perturbs the fields
of stresses and temperatures in the whole piecewise homogenous environment and especially
alters the physic-mechanic fields around powerful concentrators like thin heterogeneities,
particularly cracks. In case of minor or considerable influence of this layer they use the
conditions of ideal or non-ideal thermal and mechanic contact between the constituent parts of
bi-material matrix for mathematical modeling of the problem.

Analysis of the known research results. Generally, a lot of issues were devoted to
studies of anisotropic bi-materials [1-11]. Item [7] develops the boundary-element method for
the problems of thermo-elasticity of anisotropic bi-materials. The project [9] resulted in
obtaining of Green’s two-dimension function for anisotropic bi-materials with non-ideal weak
thermal contact and non-ideal deft mechanic contact. There were obtained the solution for
cracks in dissimilar anisotropic media [6] and clear close-end appearance of nucleuses of
integral equations for thermo-elastic anisotropic bi-material with ideal contact of constituent
parts [8]. The problem of thermo-elasticity of anisotropic bi-material under weak thermo-
conductivity and ideal mechanic contact between constituents was solved in [11].

Research objectives. The research project deals with comprehensive research of
thermo-elastic anisotropic bi-material with internal thin inhomogeneities (particularly cracks)
under high thermo-conductivity and ideal mechanic contact on the boundary of semi-planes
(coherent interface of high thermo-conductivity). To solve these problems there were used
results of [11], Stroh’s extended formalism [12] and complex variable calculus [13].

Corresponding author: Mykhailo Tomashivskyy; e-mail: tomashmyh@gmail.com_..............c.cocoeiiiiiiiiiiiinn . 23


mailto:tomashmyh@gmail.com

Integral equations for an thermoelastic anisotropic bimaterial with high temperature-conducting coherent interface

Task setting. Let’s take a look in immobile rectangular frame of axis Ox,x,x; at balance

equation, thermal balance and constituent correlations of flat (in plane Ox,x,) deformation of
linearly thermo-elastic anisotropic body and flat immobile thermo-conductivity [4, 12, 14]:

0, =0, h;=0 (i,j=12,3); (1)

Gij = Cijkm

Eun =By h=—k,0, 2)

Heree, = (u, , +u,,)/2 —components of deformation tensor; o, —components of stress tensor;

h, — components of vector for thermal stream density; u, — relocation vector; 6 — temperature

alteration against initial one; C,,  — elastic constants; k, — thermo-conductivity coefficients;

By = Cn i (i, j,k,mzl,..,3) — modules of thermal extension (coefficients of thermal
k

B; are symmetric. Comma in index indicators is differentiation due to indicated after comma

stresses); a, — coefficients of thermal extension. Tensors with components C,

o > @, and

,:/' 2
coordinate, i.e. u, ; = du, [Ox, .

Due to Stroh’s extended formalism [4, 12] the general solution to equations (1), (2) will
be as follows:

0=2Re{g'(z,)}, 9=2kIm{g'(z)}, h=-8,, h,=39, k, =k fpy — K,

u=2Re[Af(z,)+cg(z,)], @=2Re[Bf(z.)+dg(z)], 0,=-9¢,, 0,=9¢,;
Z, =X, +DpX,; z, =X +p,x,; £(z) =[F1 (z,).F,(z,).F, (z3)T, (3)

where & — function of thermal stream; F), (za ) — certain analytical functions describing Stroh’s

vector of complex potentials f(z.); g(z,) — temperature potential; complex constant p, is a
root (with added imaginative part) of characterizing equation of thermo conductivity
ky,p} +2k,p, +k, =0. Matrixes A and B, vectors ¢ and d, constants p, (@ =1,2,3) are

determined from the problem associated with characteristic values of Stroh’s formalism [4].
Stroh’s potentials f(z.) and the vector of transposition and stresses function are linked

with correlations [1]:
f(z.)=B'u+A"¢g-B'u'-A"¢', u'= 2Re{cg(z,)} , ¢ = 2Re{dg(zt)} , 4

And due to (3) the function g’ (Zt ) , temperature and thermal stream function are as follows:

g'(zt)zl[9+i£]. 5)

2 k

t

Construction of integral inputs of complex potentials for bi-materials. Let us take insight
on plane deformation of medium, which consists of two thermo-elastic anisotropic semi-spaces

that are correspondingly located in semi-planes S, (x, >0) 1 §, (x, <0) (Figure 1). On the
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right line x, =0 (plane Ox,x3), which is a line (plane) of contact between these two bodies

there are fulfilled the conditions of non-ideal thermal interaction (high thermo-conductivity
interface)

90 (3, x, )‘ =9 (3., )‘ +Mg (9(12) (%15 % )) ; (6)
X, =0 X, =0 ’ Xy =
9(1) (xl,xZ) B = 6(2) (xl,xZ) B (7)
X,=0 x,=0
and ideal mechanical contact
(P(l) (xlaxz)x o (P(Z) (‘xlrxz)x 0’ u® (xlaxz ) o u? (xnxz ) 0" (8)
2 2 2 2

Here indexes 1 and 2 are used to identify the values of the fields that act in semi-planes
S, and S, respectfully. The equations (6) and (7) stipulate the boundary conditions that are
relevant to mathematic model of thin layer where the temperature has the same value at
antipodal points on layer surfaces, and the difference between normal constituents of thermal
stream is proportional to the derivative of temperature function. In case the parameter n,
describing the non-ideal character of thermal interaction, equals zero, then the interaction is
ideal, and if n, equals perpetuity, then there is no transposition of thermal energy from the first
semi-plane on the second one.

(1)
Z

Material 1 :

Figure 1. Thermoelastic anisotropic bi-material medium

Every semi-plane contains a system of smooth close-end contours (holes) I', =U,T"""
and T, =, T respectfully.
To derive the integral formulae for Stroh’s complex potentials one has to utilize

Cauchy’s integral formula [13], which describes the connection between arbitrary analytical
function ¢(z) on the boundary oS of the area S and within the mentioned above area:
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Integral equations for an thermoelastic anisotropic bimaterial with high temperature-conducting coherent interface

)

27 T—2z

J~ ¢(r)dr #(2) VzeS,
0 VzgS,

where 7,z € C are complex variables that determine the location of source and field points
correspondingly. They also state in (9) that, if the area (9) S is perpetual, then function ¢(7)

has to disappear at z — .
Thermo-conductivity. As the problem of thermo-conductivity is linear, then its solution

can be represented as a superposition of homogeneous solution g,, ( ‘”) and g, ( @) ) , which

must satisfy the marginal conditions (6) as well as perturbed solution that is caused with
available contours I', and I', due to certain marginal conditions.

Let us mark Cauchy’s integrals for complex function of temperatures g, ( (’)) as

(l) (/) Ig’ T(l))dr(l) —(l) (j) J.g’ (l))dz-(’) (10)
T

@ _ (J) 4 (/) i
2 Z

r; t r; t

and extrinsic integrals due to unrestricted integration are as —oo0 < x; < +00.

m, (Z(j)) _ T a () dx, . P, (Z(j)) ZT (%) dx, (11)

t t .
X, _Z(j) x _Z(j)

) ) 1

Integration with the portions of extrinsic integrals will give

+00

T 0(x ;
pteen) o

Let us accept that function €(x,) approaches zero on perpetuity. Then the first summand in

T ,1(x1)d _ H(xl)

o T )
—Zt X, —Zt ‘

-0 771 1

(12) equals null and the second one is derivative of the function p/ (zf-’ )) . Hence

2 g w0 g2 (o 9(2)
J 0 = [, [ 2 (et (0). 1)

—o0 xl - Zt -0 771 t ) xl
Having used the correlation (5), (9) — (11), (13) and taking into account the marginal
conditions on the dissimilar anisotropic media of bi-material, Cauchy’s integral formula for the

functions gl( “)) Ta gz( ¢ )) will be as follows:

gi(2")=gl.(2")+ 21161,‘”( (“)+$pt(zf“)+—4ﬂlk(l) m, (zf”)+4’7k(1) p(z") vim(z") >0,
t

g1 (=) = b (=) + 5= () = =2 (57 - (=) Yim (=) <0.(14)

27wi Tl

and for determination of extrinsic integrals (11) via Cauchy’s integrals (10) we will obtain the
first order systems of linear differential equations
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VIm(zf”)>0: qta)(zt(l))_lpt(zt(n)_Lm (zf”)=0’

2 2k (15)
00 (e )i () s () 0
wim(z?)<0: q;z>(z;2>)_%p,(z;2>)+ﬁmt(z;2>):o,
’ (16)

" ()4 3 () g (=) 51 (1) =0

Accounting on the condition m, ( zV ’) — 0, at zfj ) — oo the solution for the systems (15), (16)

will be as follows

m, (200) = =2k g (00)+ ik {%“ g ()~ %f:)e;ﬁ (= )} SNGE)
m,(27) = 2272 (2 ) - ik {%f(:)a@ (=) %”w (=2 )} (18)
(=) =2 ()2 ) 19)
p.(=")= %2)552) (=) —%’Z)ef" (=) (20)

Functions e (z,” ) ) and ¢ (z“ ) ) are characterized with the following correlations:

t

e,(i) (zf-”) _ J'gl_r(z.tm ){(B(” (Tt(f) —z,(-’) ))drf” : 1)
L

Etm (zf”) _ J.g;(ftm ){ (B“) (;tm —Z,U)))dft(i), (22)
L

where

B0 :L(k,(” +kt(2))a B — —L(kt“) +kt(2))’ (23)
7, un

R.(z)=€"E,(z),a E, (z) — integral ratio function

o —t

E (z)= jerz . (24)

z

Having put the obtained solution into (14), we will gain the integral approximation for

(2)
t

complex functions g/ (zf”) and g, (z ) , which do not contain the integrals along perpetual

dissimilar anisotropic media
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Integral equations for an thermoelastic anisotropic bimaterial with high temperature-conducting coherent interface

VIm(z<")>0:

t

1) = () () + () - e (o)« 2K (1) s 9

VIm(z?)<0:

g' (Z(Z)) — g' (2(2))+L q(Z) (Z(Z))-l- 5(2) (Z(Z))_‘_it(l)e(l) (2(2))_it(2)g(2) (2(2)) (26)
2 t 20 t 2”1 t t t t ”70 t t ”70 t t :

Having utilized (5), one can build the integral approximation for functions g/ (z,“) ) and
g, (zf2 ) ) via ultimate values of temperature ¢ and normal component of thermal stream vector

h = hn. (n, —components of outer normal unit vector to curve I',).

On the basis of (5) and (25), (26) we will get integral approximations for the temperature
and thermal stream in arbitrary point & of bi-material

6() =j[®HC‘*(x,§)hn(x)—HHCI*(x,g)e(x)]ds(x)w” (&);
" (27)
h (&)= j@?c‘** (x,8)h, (x)dl“(x)—J‘HiHCI** (x,8)6(x)ds(x)+h"(8),

where functions 6~ (&) and h° (2’;) are eigensolutions for homogeneous medium (bi-material

with the same properties), and the expression for nucleuses ®"" (x,&) will be as follows:

xeS AkeS : 0" (x8)= %Re{ln w0+ K™ + (K + DA (BOw, ™ )} ,

27k,
S g - QT _I+K Rellnw ) + £ (BOw @D
xeS, AEeS,: (X,é)—m e{n e T ( ‘ )}
t
S S - @HCI* _ 1-K Re!l W(1,2) { B(Z)W(l,z)
xeS AgeS,: (x,&)——zﬁk(z) e{n 2y ( g )},

t

xeS,nEeS,: 0" (x,8)= %Re{ln oD - KW+ (1- )R (BPWC) (28)

2k,

Here
WD = Z® (x)—ij) (é), Ay (x)—Zf-” (é),
n" =n, (X) - pn, (x), oV =6,-pVs,, IV (z) = {,(B(i)z) +Inz.
The rest of nucleuses are determined from the correlations [15]

HY" (x,8) =—k,n, (x)@"" (x,8), @ =k O (x,8), H'™ =k H'"(x,8). (29)

it J i i
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Due to correlations (3) and (4) in order to develop the integral formulae of transpositions
and stresses one has to calculate the primary functions m, (z) and p,(z):

:f’"r( :_jln I(x,)dx,; (30)

2)=[p,(z)d :—J.ln 0 (x,)dx,. 31)

From the expressions (24), (25) we obtain

Yim(:")>0
B(20) = (1=K) Q™ ()= (1+ K) 0" () + (K ~1)e () + (K +1)3® (=),
M, (zf”) _ —2ik,“) (l—K)[Q“) (Ztm)+Qf2) (Zt(l))_gt(l) (zf”)}—2ik,‘2) (I—K)efz) (Zfl)); (32)
‘v’Im(zt(z))<0:
P(z7)=(1-K)0™ (=) - (1+K) Q" (22 )+ (1+ K ) (e (7) +22 (). )

M, (20) = 20k (14 K)[ B (220)+ 0 () e (=) |+ 282 (1- )& (7).

0" (z2), 0" (22), k —[11].
Thermo-elasticity of bi-material. Using (9) we will write Cauchy’s integral formula for
vectors f" (zi”) and £@ (/) of Stroh’s complex potentials that are analytical within the

areas S, and S, respectfully. As Cauchy’s integral formula have been determined for analytical

functions heading to zero on perpetuity, then complete solution for the problem of bi-material
thermo-elasticity can be interpreted due to Cauchy’s formula as a sum of perturbed solution and

represented with the functions f;”( i”) and foff)( ‘2)) homogeneous solution, which satisfies

the marginal conditions (8). According to it we get

R L O e L IO
A\n -z X, — z,

27i| S
l_jl<%>f“>( <‘>)++Ex]‘j—x;_;)f“> (x)=0 (Imz >0); (35)
l<n<zr—ig>>fm( 2)- IM{—’ZS)M(M) (Imz >0)=0; (36)
£2(z2) =12 () [ rj < (Z’T’Eziz)>f”)( ) - I<xd—);(2)>f(2)(xl)} (Imz” <0); (37)
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dr” T odx
J< CpE >f(1)( (1))+J;x1 _;;m f9(x)=0 (Imz(ﬁz) < 0); (38)
I<<fdia>“”@9)—7;%%aJQWn) (Imz;" <0) =0, (39)
r —0 V1 B

Where <F(z)> = diag[F1 (z,).F, (22),}7'3(23)] ,zy =x +py'x, (B=1,2,3).

Using the equations (4) and (8), extrinsic integrals in the equations (34) — (39) can be
written as follows

- (AR B'Re|c g, d
J' f(J)d)f;) :Ajm(Z?)_,_ij( (I)) 2].( eI: ( l)]+ j(i) el:c/g_/ ()C] )J) xl’
e X _Zﬁ X _Z,B
e ( )dx s u(x )dx 4
. ¢(x .
ef)=[TE e

In the first correlation (40) we will integrate the second summand from constituent parts and,
due to (4), obtain

° f‘”dx
[ =AImG B +r M, (5)) =R (2 )+ namp, () (@D
dd| ﬂ
° f<2>dx _
[ =AmE) Bip()) M, (7)) =3P (2))). (42)
o dd| B

where such indicators as p, 1 A, have been used for the complex constants:

B, = 1;” (A]Im[d,]+B Im[c,]), A, =A/Re[d,]+B; Relc,]. (43)

t

Cauchy’s integrals in expressions (34) — (39) will be marked as

(J —(j -
() (0 e ) a ) (6 s
Ty _Zﬂ T —

z
L r; B

B, = 1;” (A] Im[d,]+B] Im[c,]), A, =A/Re[d,]+B/ Re[c,]. (45)

t

Now, according to the developed markers (44), (45), the equations (34) — (39) can be written
as follows:

M

W%ﬁﬁ_ﬂwﬁﬁ+£fbxﬁﬁ+

— Iﬁ(AlT ( )+B p( “)))+

(0, (=) = (a0 o (),

B0 ettt s ISSN 1727-7108. Scientific Journal of the TNTU, No 4 (84), 2016
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6,(z')+ Alm (") + Bip (=)' )+ M, (2" )i = B (=) ) +mop (2 ) = 00 (47)

. ()~ Alm ()~ BIp(=)) M, (= D+ 20 )i -0 49
(2) 2)) _ ¢ Z(2) 1 (2)

(=) =10 ()L [, (27)

3 (Am (=) B () (0, (=7 o+ (2 (), |

p=

ql(z(ﬁZ))+A1T ( (2))+B p( (2))+Mz(z(2) ul_R(Z(ﬁ'z))}‘l—i_nopt(z(;))ul:0; (50)
a.(z)") - Aim(z)-Bip (=) - M, (= ), + B (= )2, = 0,

where 1, = diag| 5,,,5,,,5,, |.

The equations (47) (48), (50), and (51) facilitate description of extrinsic integrals (41)
through the integrals in accordance with the contours T, :

m(=)=(R B -AB) (B, () By (=)

p(Z,(Bl)) :(]_3151*1 _BzA; )_ (A Y1 - Z 1)

yl( (1)) —‘ll( ) M( m)ulJrP( “’)k Uopt(zl))ﬁl, (52)

yz(z‘ﬁ”)=qz(zﬁ>)—M( ‘”)uﬁP( 5 )

p(z)=(B.A; -BA) (Ay, (z;” )-ATy. (25)). (53)

Having input the obtained solution (52), (53) into the equations (46), (49), we will obtain
Cauchy’s integral formulae for the bi-material with non-ideal thermal interaction that do not
contain any integrals along perpetual interval of integration:

f(])(Zil)):fo(ol)(Zfl))‘i'zl |: ( (1))+Z3:Iﬁ (G(l)ql(Z(l))+G§l)q2(2(l)))+
Tl B=1 (54)
+<Q“)(z,f”)>6§”+<Qt(2)(z,§”)>6(2”+<e(2)( (1>)>K(1>+< (1>( (1))>K§1>];

f<z>(z,§2>) f<2>( <z>) 1 { ((2)) ilﬁ(G§2>q1(2<ﬁz>)+G<2)q2(z(2’))
27 = (55)

(') (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2)
<Q >6 +< >5 +<e, (= )> +< E )>K2 ]

where
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K(j) — {_6l(j _2lk[(j (ul +Gij)u[) (l - ])’ (56)

i —8\) +2ik"G P, (i# j)

and 8" are the same as in [11].

The obtained equations (54), (55) facilitate writing the correlations that link stresses and
transpositions at any point of thermo-elastic bi-material with values on contour T', of

temperature, thermal stream, transposition and stress vectors. Eventually, having used (3), (4),
(54), (55), we will get Somigliana type integral formulae for bi-material with non-ideal thermal
interaction between its constituents.

u(é) =u” (§)+J.[me (x,é)t(x)—Tbm (x,é)u (X)+1’HCI (x,@)@(x)+ vy (x,é)hn (X):| ds(x),

o,(8) =07 (&)+ [P} (x.8)t() -8 (x.8)u(x)+ )" (x.8)0(x) + W (x.8), (x) ]ds (x),

r

(57)

where nucleuses U™ (x,§), T™(x,§), D" (x,&), S'"(x,&) are the same as for bi-material

with ideal contact between semi-plates [5], and others are marked with such correlations:
xeS Ages :

YHe! (X,?;) _ lIrn{Al |:_<f* (W*(]’I))>lll _23:<f* (Wﬂ(l,l))>cil)lﬂl—ll n

T =
+L<f*(n7(l,1>)>5<l> I(l)( TS 1)) (1)}_
2k c k“iB“> !

—%;”[f*(m(l’l))-i-l(f* (VIZ(M))} B(z)no I(l)(W(l 1))}

xeS,AnEes :

v (x,é) = ——Im{Al [i< (Wﬂ(z’l) )>G(21)Iﬂp2 +#.(2)<f* (W,iz’l) )>6(21) +

pB=

ic,(1-K) .. oy\ i(K-De
ot 2 0 [ L) e b )

xeS Agesl,:

e (x,é) _ ilm{A1|: <f* (Wﬂ(l’Z))>G§2)Iﬂul _

p=1

S |-
; . K+1

_211:;21) (1+K)f (Wta,z)) zk((l)B—:_Z))I(Z)( «, 2))};

xe S, Agels,:
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Vi (x,8) = lIm{A2 [—<f* (m22))m, +23:<f* (722))G1, 1, +
=

w
g O = S 20 (7 |- °Y
' : . (7 c,(1-K =
—%[f (Wt(z'z))—Kf (VVzO’Z))]_l;ZEz)B(z))I(z)(Wr(z'Z))}’

and expressions

(%) =k (,8)m, (%), o)
1 (5,2)=~Cp 2 (5.2) # B H (5,8). 01 (%) = - 1S (08) 4,07 ().

In variable-free expressions for nucleuses there were used the following markers:
p, = Al Re[p”d ]+ B} Re[p¢,], " =hn, (x)=pn(x), Z(x)=x+ pl'x,,
i.)) _ 7 @) () _ 7 () ) 7 _ 70 ()
Wl =20 (x)=2.7(8), Wi =2, (x)=27(8), Wy =7 (x)-2." (%),

WD = 20 (x) -2 (8), Wi =20 (x)-2(8). 6 =(6,-6,p").

The correlations (58) and (59) indicate that in order to determine the temperature,
thermal stream, transpositions and stresses at any point of bi-material it is necessary that
marginal conditions on contours I' would have been determined for all components of the

functions & (X) , h, (x) , u (X) and t(x) (Vx € F) . However, during setting of boundary

problems they input only a mutually sequenced half of these components. To determine other
unknown boundary values we will apply Sokhotski-Plemelj formula [13], which links the
boundary function value with its main value. Thus, according to (58), (59) and [13, 15] for
smooth close-end contours I' in thermo-elastic bi-material we obtain the following integral
equations to determine previously unknown boundary functions values:

%H(y) =6" (y)+RPV_[®HCI* (x,y)hn (x)ds(x)—CPVIHHC[* (x,y)&(x)ds(x),

Su(y)=u" @)+ RPY [ U™ (x.y)¢(x)ds (x) - CPV [ T (x.¥)u(x)ds (x)+ (60)

+ RPVJ‘rHCl (x,y)0(x)ds(x) +J'VHCI (x,y)h, (x)ds(x),
T T
where RPV — the main value of extrinsic integral; CPV — the main value of Cauchy’s integral.
Integral equations (60) become extinct when certain close-end contours I'; of line I’

become the boundaries of mathematical cuts I' ; (simple open-end semicircular arcs). In this

case one has to apply the theory of dual hyper-singular equations [8, 14, 15] and integrals due
to corresponding contours I', are transformed into the integrals due to T, where the

temperature, thermal stream, stress and transposition vectors are associated with multiplication
factors around the nucleuses.

According to [16] the functions of stresses and transpositions leaps around the tops of
thin inhomogeneities, which are not located within dissimilar anisotropic medium, describe
generalized rates of stresses intensity (RSI) that characterize the first terms of asymptotic
dependence within physical-mechanical fields around the fronts of thin inhomogeneities:
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Kk :{igg\/gL.Au(s), k‘”=—§gg,/?2t(5)~ (61)

Here k", k® — vectors of generalized RSI K, [14-16]; L =-2y/-1BB" — Barnett — Lothe

real tensor [9].

Integral equations (60) alongside with certain mathematical model of thin thermo-elastic
component [ 14] facilitate solving 2D-problems of thermo-elasticity for unlimited or limited bi-
material body with non-ideal thermal interaction between components containing thin
inhomogeneities or holes with predetermined arbitrary marginal conditions on their surface.

Analysis of numerical results. To solve certain 2D-problems for bi-material with
coherent interface of high thermo-conductivity and internal inhomogeinities one should apply
integral equations (60), mathematical model of intercalation [14] (or any other) and modified
method of boundary elements [14, 15]. There was investigated an example of anisotropic bi-
material with similar mechanical and thermal properties of its components and isotropic rigid
intercalation 2a long and 24 =0,02a thick, on the angle « up to the boundary oh high thermo-

conductivity in semi-plane x, > 0 (Figure. 2). The center of inclusion is located at the distance
d to dissimilar anisotropic medium. In semi-plane x, < 0 at similar distance 4 from dissimilar

anisotropic medium and at distance « to the right and to the left from omitted inclusion center
to the boundary of perpendicular there are located the source and drainage of thermal energy
that is the same in terms of intensity value. The bi-material components are made of anisotropic
fiberglass with the following properties: E, =55 GPa, E, =21 GPa, G;,=9,7 GPa,

vj, =0,25, o, =6310"° g, 0y =2,0-107 K7, k;, = 3,46 W/(m'K),
k,, = 0,35 W/(m'K). The value of these material constants correspond to directions of main

axes of orthotropy converging with axes of coordinates (a = 0). In calculations for distribution
of inclusions we used only 20 3-nodal boundary elements including 2 special final ones.

Figure 2. Bimaterial with identical properties of
components
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Research results. The figures below display the dependence between generalized RSI
and parameter u (77, =k,,-a-10*), which describes the rate of non-ideal thermal interaction.
RSIs are limited with K, = /na - E; - o, / ky; - q . The graphs are made for different values of
non-dimensional parameter d, =a/d , tilting angle of inclusion ¢ and for fixed value of

relative rigidness of inclusion k£ =10°.
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Figure 3. Stress intensity factors for the inclusion inclination angel o = 0 (a,c)and o = 15 (b, d)

Figure 3 — 6 shows that the closer the source and drainage of thermal energy and
inclusion to bi-material dissimilar anisotropic medium, the bigger RSIs are. The growth of
inclination angle « of inclusion at first increase all RSIs, and their maximal values are reached
ata = 45°. Remarkably that for all RSIs the biggest growth takes place when parameter x of
limited contact resistance of bi-material dissimilar anisotropic medium is around zero (ideal
thermal interaction).

In g it should be mentioned that at o =30° RSI K, changes its behavior comparing

to @ =0° and o =15°, and the growth of value of limited contact resistance  results in
decrease of the RSIs at o >30°.
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Figure 4. Stress intensity rates for the inclusion inclination angle o = 30 (a,c)and a = 45" (b, d)

Figure 4 shows that in case o =45° the growth of distance between center of inclusion
and contact boundary results in smooth alteration of behavior of intensity rate K,, : the growth

of p parameter is followed with growth of RSIs and d,, parameter.

Figure 5 displays that growth of inclusion inclination angle (« ) and distance from its
center to dissimilar anisotropic medium (d, ) is followed with RSI maximal values at ¢, ~ 0,8,

and later they go down.
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Figure 5. Stress intensity rates for the inclusion inclination angel o = 60° (a,c)and a = 75 (b, d)

If the inclusion is perpendicular to the interface (a =90°) RSI values are minimal
(Figure 6), if RSI d, parameter grows, they also increase unlike all previous cases.

a
0,005 K\‘Z/Kﬂ
0,004 -
| dn_ 0,9 a’“:
0,003 d(,: 0,8
= -0,0004—
00024  d,=0,7 N ]

0,001

'
oo

b
0,0004—

Figure 6. Stress intensity rates for the inclusion inclination angle o = 90’

Conclusions. The article deals with the comprehensive research of Somigliana type
integral formulae and boundary integral equations for 2D-problem of thermo-elasticity of
anisotropic bi-material with high thermo-conductivity of dissimilar anisotropic medium and
ideal mechanical interaction between them in case of available internal holes or/and thin
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inhomogeinities like cracks particularly. The nucleuses of all integral equations (Green’s
functions that consider the peculiarities of interaction between thermo-elastic anisotropic semi-
planes) were represented in explicit close-end form. The combination of obtained integral
equations with dependences of mathematical models of intercalations, marginal thermal and
mechanical conditions on holes boundaries as well as application of the scheme for modified
boundary method enables efficient solving of practically arbitrary problems both for unlimited
and limited bodies.
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VJIK 539.3

IHTEI'PAJIBHI PIBHAHHA J1JIAA TEPMOIIPYKHOI'O
AHI3OTPOIIHOI'O BIMATEPIAJIY I3 KOTEPEHTHUM
IHTEP®EHCOM BUCOKOI TEILIOMPOBIJJHOCTI

Teopriii Cysum'; SIpociaas Iacrepuax?; Muxaiiio TomamisebKkuid!

Ulvsiecoruil nayionanonutl ynieepcumem imeni leana @panka, Jlveis, Yipaina
2Jlyybkuti Hayionanvruil mexuiynuil ynieepcumem, Jlyyok, Yrpaina

Pe3tome. 3 6UKOPUCMAHHAM 2DAHUYHOETEMEHMHO20 MemoOy (DYHKYIN CMpubKa pO3SASAHYMO 3a0auy
NIOCKOI MePMONPYAHCHOCHE AHI30MPONHO20 OiMamepiany 3 6UCOKOIHMEHCUBHUM Hei0ealbHUM Menio8umM ma
i0eanbHUM MeXAHIYHUM KOHMAKMOM MeXNCi ROOLLY 6a3068UxX Mamepianie | GHYmpiuHiMu MOHKUMU 6KIIOYEHHIMU,
mpiwunamu abo omeopamu, Ha MexNCi AKUX MONCHA 3a0a8amu 00GLIbHI MeMnepamypHi i Mexaniyni Kpauoei
yMOo8uU (Kozepenmuuil inmepetic sucoxoi menionpogionocmi). Bukopucmogyiouu poswupenuti popmanizm Cmpo
ma meopito QyuKYii KOMNIEKCHOI 3MIHHOI, ompumano inmezpanvhi cniggionouwlenns muny Comiteanu ma
8I0N0GIOHI KpaloGi iHMe2panvhi piGHAHHA 051 KOHMYPIE 0MEOpi6 i cepeOUHHUX NIHIll (N0BEPXOHb) GKIIOUEHD 3
a0pamu, wo micmame @ynxyii Ipina, axi aemomamuuno épaxosyioms egexm inmepdpeiicy. Iloconanns yux
DIBHAHb 13 MAMEMAMUYHUMU MOOETIMU MOHKUX 0epOPMIBHUX BKIIOUEHb MA HANEHCHUM YUHOM MOOUDIKOBAHO20
MEMOOY 2PAHUYHUX eleMeHmMI8 0A€ MONICIUGICMb 30IUCHUMU PO3PAXYHKU (DI3UKOMEXAHIYHUX NOLI8 Ma IXHbOT
KOHYenmpayii Ha HeOOHOPIOHOCHISX.

Kniouosi cnosa: anizomponnuii 6imamepian, mepmonpylIcHicmy, HeideanbHull Meniosuil KOHMakm,
BUCOKA MENTONPOBIOHICIb, MOHKe BKIIOYEHHS, MPIUHA.

Ompumano 15.12.2016
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