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Summary. Based on the application of coupling principle for continua of different dimension the
mathematical models of thin deformable inclusions for thermomagnetoelectroelastic solids are proposed.
Corresponding integral equations are derived and the boundary element method for their solution is developed.
The key features of the latter are the usage of discontinuous boundary elements, special shape functions, nonlinear
mappings for smoothing the sub-integral at the element’s boundary and the modified Kutt’s quadrature for
numerical evaluation of singular integrals. All these made possible to develop efficient numerical approach for
the solution of the stated problem class. Numerical example is considered, which studies thin inhomogeneity of
paraboloidal shape.
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Statement of the problem. Thermomagnetoelectroelastic materials are widely used
now for the production of different devices by modern advanced high-tech manufactures, fine
mechanic devices in particular. These materials are intellectual composites created on the basis
of the mechanical combination ( stochastic or ordered ) of the pyroelectric ( ferroelectric ) and
magnetoelectric ( piezomagnetic ) materials, which will make possible to transform the fields
of different physical nature, that is, it is the method for creating the sensors, position fine sensors
in particular. In its turn, the science is challenged by the production to deal with the tasks and
problems to build integral mathematic models and analysis methods of certain bodies, which
have both structure defects and specially introduced thin layers, which change the operation
macro-and micro-properties of these bodies.

Analysis of the available investigations. Nowadays the methods of analysis of the
mechanical, electric and magnetic fields interaction in the anisotropic intellectual materials are
developed efficiently, the boundary element method in particular. For example, Rungamornrat
and Mear [1], as well as Rungamornrat et al. [2] have obtained the symmetric Galerkin
boundary element method for the investigation of the spatial cracks in the piezoelectric bodies.
Zhao et al. [3] have proposed the method of boundary integral equations for extended jumps of
physical-mechanic fields for the study of the vertical crack systems in the magnetoelectroelastic
medium. Mufioz-Reja et al. [4] have developed three-dimensional boundary element method
for the study of the mechanic problems of the anisotropic magnetoelectroelastic materials
fracture.

On the contrary to the tasks, where the thermal effects are taken into account, there are
only some available papers, which deal with the flat defects, in the papers [5 — 7] the tasks on
thermoelectroelasticity being analysed for the transversal-isotropic bodies with one or two
concentric disk cracks.

Only recently it was managed to obtain the integral equations of the three-dimensional
thermomagnetoelectroelasticity of the anisotropic bodies of arbitrary shape with the hole
system or internal sections [8, 9], which made possible to study the interaction of fields with
different physical nature in the anisotropic bodies with the spatial cracks [9]. These integral
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relations make possible to analyse more thouroughly the class of tasks, bodies with thin
inclusions in particular.

The objective of the paper. To derive the integral equations and highly precise and
effective scheme of the boundary elements method for the numerical analysis of the anisotropic
thermomagnetoelectroelastic bodies with the thin non-flat inclusions, non-smooth in particular.

Statement of the task. According to [8 — 1] in the fixed rectangular coordinate system
Ox,x,x, the balance equation, the Maxwell equation (Gauss theorem for electric and magnetic

fields) and balance relations of the heat conduction in the stationary case will look like:
o,,+/,=0, D,—q=0, B, +b, —f,=0 (i,j=12,3). (1)

Here o, — stress tensor components; /4, — heat flow density vector components; D, — electric
displacement; B, — magnetic field induction; f, — volume forces; g — free charges density;

f, — density of distributed heat ( discharge ) sources; b, — DC volume density, which equals

zero for the dielectric. In the formulas the Einstein summarising rule due to the repetitive index
is assumed. Comma in the indexes is treated as differentiation according to the coordinate, the
index of which follows the comma, that is, u, , =ou, [ox, .

Constitutive relations of the linear thermomagnetoelectroelasticity and heat
conductivity according to [10] look like:

=C ~h,H,~ B0,

ljkmuk m PU p

D etkmukm+K'E +7/H +Zi0’ 2
:hiknzukm+7/lpEp+/»l H VZ.H, ( )
h=—k,0,,

where u, — body points displacement; ¢ — electric potential; y — stationary magnetic field

potential; & —temperature change compared with the initial; C,,, —elastic constants; &, — heat

ijkm

conductivity coefficients; S, — thermal expansion moduli (thermal stress coefficients); e, —
piezoelectric constants; x,; —material dielectric constants; s, — piezomagnetic constants;
y, — material magnetic and electromagnetic permeability; y, — pyroelectric coefficients; v, —

pyromagnetic coefficients. The tensors with components C,,, &, x;, #;, 7; and B, are

ijkm > "Vij
considered to be symmetric.
The equations ( 1 ) and ( 2 ) are easily to be unificated and presented as follows:

6..+f=o h,—f,=0; (3)

=C - B0, h=-k0,, 4)

Iij

where
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0, =0;,0,,=D;, 05, =B
Cijkm = Cijknz ; Cij4m =€ “ajtm = Cjm> C4j4m =K )
CijSm = hmi/” CSjkm = hjkm > CS_/'Sm =M

C4j5m :_7/jm’ C5j4m :_717‘”’
By =Bys By ==2;:Bs; =V,

Here and below the indexes marked by capital letters change from 1 to 5, and those by
small ones — from 1 to 3, thatis, 7=1,2,...,5, i=1,2,3.

According to [9] boundary value problems for the differential equations in the partial
derivatives (3), (4) in the case of the body with the discontinuous surfaces of the physical-
mechanical fields deal with the solving of such systems of hypersingular integral equations:

— heat conduction

220(x,) =[]0 (x.x,) Zh, (x)dS (x) - CPV [ H" (x.x,)A0(x)d5 (x),

Fa(3) = (5) €9V [[07 (58,38 (3)a5(x)- ©

—HFP [ H" (x,x, )Ae(x)ds(x)},

— thermomagnetoelectroelasticity

%Af, (x0)=n, {cpv [[ Dy (x.%,) S, (x)dS (x) = HFP [ 5, (x,x, ) Adi (x)dS (x)

(7)
+CPV ”Qz,- (X’Xo)Aa(x)dS(X)J”.U Wy (%%, ) Zh, (x)dS(X)},

where S — discontinuity surface of the physical-mechanical fields with the shores S* and S~
correspondingly; %f = f* + f; Af = " — f~; n, — components of the normal unit vector to

the surface S (S+ ) ; 1, =& ,n, — components of the extend stress vector; A, = /n, — heat flow
through the surface; CPV — Cauchy Principal Value; HFP — Hadamard Finite Part. Nucleus of
these integral dependencies are presented in [9].

Modelling of thin inclusion. While modelling the bodies with thin inhomogeneity the
principle of coupling the continua of different dimension [11] is often used. The essence of it
is in the displacement of the thin inclusion of some volume by some discontinuous surface of
the stress fields, displacements, temperature, electric or magnetic potentials, etc. (Fig. 1). The
most often this surface is chosen as the medium surface of this inhomogeneity. The inclusion
is excluded from the analysis as the geometric unit and it is assumed, that its effect is treated as
formation of some surface in the body (in two-dimension tasks) of the physical-mechanical
fields discontinuity line. Here according to the function jump method [11] the study of the body
stress state can be associated with the unknown jump functions and analysed without real
properties of the inclusion, material being taken into account. It is clear, that it depends on the
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jump function, properties of the body material, geometric configuration of the task, contact
conditions of the thin inhomogeneity with the medium and external loading.

>
X, . o >
,\‘2

R
Figure 1. Sketch for modeling of thin inclusion based on the coupling principle

On the other hand, because of small thickness of inclusions stress and displacement
vectors, temperature and the heat flow, electrical potentials and displacements on its opposite
shores must be somehow connected. Corresponding dependencies, which contain physical-
mechanical properties of the inclusion and its thickness, are the mathematic model of the
inclusion, which do not depend on the properties of the main material and can be treated as
some internal task. The mathematic model of the thin inclusion must meet only three main
requirements [11]: 1) The number of equations must be equal to the number of unknown values
on the shores, of the mathematic section in the outside task (number of the jump function);
2) the model must be simple enough in order the resultant equation system to be solved easily
or at least possible; 3) the model must be adequate enough to demonstrate specific
characteristics of the inclusion deformation and other investigated processes.

Using the conditions of the body and inclusion contact in the mathematic model makes
possible to obtain the so-called conditions of the inclusion and body interrelation, which can be
interpreted as the special conditions of the non-ideal contact between the body surfaces, which
are adjoining to take opposite shores of the inclusion. Because of it the specific characteristics
of the physical-mechanical properties of the inclusion and its contact with the medium are in
the interrelation condition itself. If basing on the outside task the stress and displacement
vectors, thermal flow and temperature, electrical potentials and displacement, magnetic
potential and induction on the opposite shores of the inclusion are found and presented in the
interrelation conditions, the equations of the unknown functions of the jump will be obtained.

As the solutions of the outside and inside tasks in the method of jump function are
absolutely independent, the change of the interrelation conditions under the same solution of
the certain outside task makes possible to analyse the tasks for the same body with the different
models of the inclusion. The specified interrelation conditions, moreover, the model or the type
of inclusion, can be associated with the different solutions of the outside tasks.

In the paper in question the principle of different dimension continua coupling is used.
Thus, the outside tasks relatively the inclusion is described by the relations (6), (7). The
inclusion model is obtained by averaging the initial equations (3), (4) under the small inclusion
thickness, having assumed there being softly and insufficient electrical, magnetic and thermal
permeability (as compared with those of the body properties) of its material. The equations are
written as follows:
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Aﬁ(xo)—v(xo)ZQ(x0)+2EO (xo); (8)
V=0'CiQ; v=Q'p!.

Here Q — rotation matrix to the coordinate system, the axis Ox; of which is directed

along the normal m; 2k — inclusion thickness; /,, t, — outside thermal and magneto-

0>
electromechanical loading applied to the inclusion.

The relations (7), (8) form the system of integral equations relatively the unknown
functions of the temperature jump A@ and the extended displacement vector Au on the shores
of the medium surface S of the model thin inclusion. The solution of these integral equations,
especially in the case of non-canonic shape surfaces, is easily made numerically taking
advantage of the boundary elements method.

The boundary element method for non-flat thin inclusions. The scheme of the
boundary element method proposed in the paper [9] is the basis for our work. According to it
the surface S is divided into quadrilateral square discontinuous boundary elements. It means,
that collocation nodes are exclusively on the element, and not on its boundary. In the case of
non-flat surfaces the application of such boundary elements makes possible not to calculate the
boundary transitions and gradients at the collocation point threshold, as the latter always is on
the smooth surface.

The curvilinear coordinate system O&p is connected with every boundary element and

the element itself is mapped onto the square —1 <& <1, —1<7 <1, here the interpolation nodes

of the element geometry being in 9 points, for which the curvilinear coordinates are equal
correspondingly —1; 0; 1, and the collocation nodes are in nine points, for which

&=(-2/3;0;2/3); n=(-2/3;0,2/3).
Boundary conditions with the unknown boundary functions and the jump functions are
interpolated with the collocation points on every boundary element I", as follows:

3

3
w(6m) =2 2,034, (£) 4, (n), ©)
=1l j=1
where b =(6,A6,26,h,,Zh,,Ah, i, ,Ai,, 20,151, At) and the shape discontinuous
functions are presented like

¢.(f)=§[§f—§j, %(5){1—%5)(“%5), ¢3(5)=§(35+§]. (10)

8

Beside the shape function (10), the other ones can be used in the equation ( 9 ), that is,
while modelling the front line of the thin inclusion or the crack in order to take into account the
root characteristics of the thermal flow fields and expended stresses the shape functions for the
temperature jumps and extended displacements are chosen as follows [ 9 ]
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@A(f):«/lié[q)ﬁ+Z®§.(li§)j_1], (11)

j=2
where @ constants are found from the equations system ¢,(&,) =5, at &, =(-2/3;0;2/3).

These shape functions make possible to calculate very precisely the generalised intensity
factors of the physical-mechanical fields on the front of the thin inhomogeneity [9].

Besides, in the case of the inflexion line on the surface S, the shape functions must be
chosen taking into account the peculiarities appearing on this line. That is why while finding
integrals (6), (7) on the boundary elements tangential to the inflexion line or to the inclusion
line, non-linear reflections were proposed to be used

£=16-8)a. n=33-n ). dzin=20-)0-n')agan. (2

smoothing the sub-integral expression on the boundary element, as the variables substitution
jacobian there equals zero.

Such mappings make possible to increase sufficiently the accuracy of the numerical
realisation of the method, which, in its turn, contributes to the efficiency of calculations as the
result of smaller number of the division elements.

While calculating singular and hyper-singular integrals the transition to the polar
coordinate system has been given advantage of and further application of the modified Kutt’s
quadrature [9], which will make possible to find easily the main value and the finite Adamar’s
part of the special surface integral.

Numerical example. Let us analyse the transversal-isotropic pyroelectric tyntanatum
barium medium possessing such properties [12]:

e modulus of elasticity (MPa): C, =C,, =150; C,,=146; C,=C,=C, =66;

C,=Cy=44; Cy=(C, -C,)/[2=42;
e piezoelectric constants (C/m?): e, =e,, =—4.35; e,, =17.5; ¢, =¢,, =11.4;
e dielectric steels (nF/m): x,, =«,, =9.86775; x,; =11.151;
e heat conductivity coefficients (W/(m'K)): k,, =k,, =k;; =2.5;
e heat expansion coefficients (K™'): o, =a,, =8.53-10°; a,; =1.99-10°°;
e pyroelectric constants (GV/(m-K)): 4, =13.3-107°.

The rest of the mentioned above coefficients are zero. Here the Voigt sign being used
(10), according to which the index pairs in (3) are substituted by one index according to the rule
111; 224 2;3343; 23,32<>4;13,31<>5;12,21<>6.

Let us analyse thin inhomogeneity, the medium surface of which forms the section of
the elliptic paraboloid of rotation:

x3=p(x12+x22), X +x, <R*. (13)
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The inclusion is considered to be very yielding (non-permeable crack), because in this
case the intensity factor of the physical-mechanical fields is the greatest. Besides, let us assume,
that the inclusion is not affected by the heat expansion.

Let the given self-balanced heat loading /4, =const be on the inclusion surface.

Additional mechanical loading is not available: t, = 0. Any other loading is not applied to the

thermomagnetoelectroelastic medium with the inclusion.
Let us divide the medium inhomogeneity surface into 12 boundary elements so, as it is
shown in Fig. 2 (the view along the Ox, axis).

Figure 2. Boundary element mesh

Let us analyse the effect of the p parameter of the inclusion medium surface shape
(crack) on the intensity factors of physical-mechanical fields on inhomogeneity line, here the
rating factors being the values K, ZhO,BUR\/ﬂ'R/kH , K, = }10;(3R\/7ZR/k11 ,

K,, =—2h, R/7 . Calculated for the fixed values p (0,2; 0,4; 0,6 and 0,8) the values of the

intensity rating factors of the physical-mechanical fields are shown in Fig. 3.
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p=0.8

180 | ——
0.04 0.05

270 270

180

270 270

Figure 3. Field intensity factors at inclusion’s front line

It is seen, that intensity factors of the physical-mechanical fields are, in fact, constant
along the front. Insufficient oscillations are caused by the approximation of the real circular
threshold surface by the square boundary elements. It can be noticed, that these vibrations are
symmetric and similar at every of the elements. But they are within only 0,7%. Constant values
of the intensity factors along the front is caused by the fact, that it is in plane of the medium
material isotropy, and the inclusion medium surface itself (crack) is the rotation surface around
the polarization axis Ox;.

In the case p =0 of the flat disk-like crack the calculation results coincide with those
known [9], which verifies the developed approach. When the p parameter increases, which
specifies the “non-flat” thin inhomogeneity, stress intensity factors of the Mode I increase, and
those of the Mode II — decrease. Stress intensity factors of the Mode III equal zero. The heat
flow intensity factors increase to, because the crack surface size increases, when p is greater.
For the non-flat defects, on the contrary to those flat ones, the electric displacement intensity
factors K, becomes sufficiently.
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Conclusions. The mathematic model of the thermomagnetoelectroelastic body with thin
inclusions, as well as the boundary element method, which will make possible to solve certain
spatial tasks more efficiently (highly precise and quick), have been developed. The
characteristic of the proposed boundary-element approach is taking advantage of the coupling
principle for continua of different dimension for modeling of thin inclusions, as well as
application of the discontinuous boundary elements, non-linear mapping and modified
quadratures for the solving of the obtained on its basis the principle of the integral equation
system. Besides, using special shape functions it is possible to take into account both the
characteristics on the inhomogeneity front and those corresponding on the fracture lines or in
the angle points. All these make possible to solve precisely the thermomagnetoelectroelasticity
tasks for the bodies with the non-flat thin inclusions or cracks, which could not be done before
using conventional numerical approaches, the boundary or finite elements methods in
particular.
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TEPMOMATI'HITOEJIEKTPOIIPYKHICTbD
AHI3OTPOIIHUX TIJI I3 TIPOCTOPOBUMMU HEINVIOCKUMH
TOHKUMH BKIIIOYEHHAMUAU

Poman Ilacrepnak!; SIpocaas Macrepnax'; Teopriii Cyaum?
L Iyyokuti nayionanvuuii mexniunuil ynieepcumem, Jlyyok, Yepaina
2 Jlvsiscoruil Hayionanoruli yHisepcumem imeni leana Ppanka, Jlvsis, Yrpaina

Pestome. Ha ocuogi 3acmocysaHHs NPUHYUNY CAPANCEHHS KOHMUHYYMI6 PIZHOI S8UMIPDHOCMI
3aNPONOHOBAHO MameMamuyti Mooeni MOHKUX OeOPMIBHUX BKIIOUEHb ) MePMOMACHIMOENeKINPONPYHCHUX
minax. Ilobydoeano inmezpanvui pieHAHHA GIONOGIOHOI 3a0aui ma MemoOd ZSPAHUYHUX eleMeHmie O
po3e’asyeanns. Kniouwosumu ocobausocmamu oCmannb020 € 6UKOPUCIAHHS POZPUSHUX eleMEHMIB, CReyianbHUuxX
@dyHKYT hopmu, HeMIHIUHUX 8I000pAdCeHb 0N 321A0CY8AHHS NIOIHMESPATbHUX 8UPA3I68 HA MEJCAX eeMeHmi8
ma moougixosanux keaopamyp Kymma ons obuucienns ocobausux inmeepanis. Yce ye 0ano moociusicmo
Ccmeopumu  8UCOKOeMEeKMuUGHULl YUCI08Ull NIOXIO0 po36’A3y8anHHs chopmynvboganozo Kiacy 3aoau. Hasedeno
YUCTOBUL NPUKAAOD I3 BUBHEHHS TMOHKOT HeOOHOpIOHOCmI Yy opmi napabonoioa.

Kniouosi cnosa: mepmomaznimoenekmponpyslcHimo, moHKe 6KII0OYEHHS, [HMeSPAaNbHi PiGHAHHS, Memoo
SPAHUYHUX eNeMeHmiB.

Ompumano 28.08.2017
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