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ADSORPTION PROPERTIES OF THE FUMED INDIVIDUAL AND MIXED SI,
TI AND AL OXIDES AS PROXIES FOR THE ANTARCTIC ATMOSPHERIC
MINERAL AEROSOLS

ABSTRACT. The aim of the study is to determine the effects of structure and content of X, C
X
 in the oxides X/SiO

2
 (X = Al

2
O

3
, 

TiO
2
, Al

2
O

3
/TiO

2
) on the surface characteristics. The low-temperature nitrogen adsorption isotherms on the surface of 12 indi-

vidual and mixed fumed oxides of Si, Ti and Al, as proxies for the Antarctic atmospheric mineral aerosols, were measured by 

volumetric method. The specific surface areas of the oxides, S
BET

 were calculated by using the Brunauer–Emmett–Teller (BET) 

theory. The dependence between C
X
 and S

BET
 is not obeyed for the mixed oxides, which can be caused by effects of the reaction 

temperature of MCl
n
 (M = Si, Ti and Al) hydrolysis in the oxygen/hydrogen flame and by different concentration ratios of O

2
, 

H
2
 and MCl

n
 on the structural characteristics of the primary particles and their aggregates. The N

2
 adsorption energy distribu-

tions of the oxides surface were calculated by the regularization procedure. It was demonstrated that the surfaces are character-

ized by high energetic heterogeneity.  Result.  The Zero-Adsorption Isotherm (ZAI) approach was applied to describe the N
2
 

adsorption in the whole range of its pressures. The ZAI derived in approximation of adsorbed vapor as a set of molecular clusters. 

The specific surface areas for the oxides, A
s
, maximal numbers of the molecules in the adsorbed clusters, thicknesses of the ad-

sorbed liquid film and the free surface energies of the oxides in the absence of adsorption, γS0, were calculated using the ZAI 

equations. The A
s
 correlates well with SBET  and it measures 77.5% of the S

BET
. The γS0  increases as the N

2
 average adsorption 

energy grows. The dependence between γS0 and C
X
 (taking into account γS0 for X) is not obeyed for the mixed oxides. The γS0 for 

SiO
2
, Al

2
O

3
 and TiO

2
 rises as the permittivity and the index of refraction increase. The γS0 is within the range of dispersive com-

ponents of free surface energy, which is determined by other experimental methods and calculated using the Lifshitz’ theory. The 

obtained parameters allow estimate the activity of the oxide surface with respect to trace gases in the Antarctic atmosphere that 

is necessary for calculating their partition coefficients between particles and the atmosphere and the kinetics of their removal.
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INTRODUCTION

Atmospheric  aerosols  play  a  major  role  in  Earth’s  

cu  rrent  climate  due  to  their  impact  on  the  global  

radiation balance (Seinfeld and Pandis, 2006). Aero-

sols also lead to formation of cloud droplets and ice 

crystals  by  serving  as  cloud  condensation  nuclei  

(CCN) and ice nuclei particles (INP). Aerosols affect 

the  life  time  of  clouds,  size  distributions  of  cloud  

droplets, glaciation rates and the distribution of water 

mass in different atmospheric layers. Unfortunately, 

aerosols are still the least understood and constrained 

aspects  of  the  climate  system.  The  uncertainty  of  

aerosols’ climate impacts arise from the fact that how 

an aerosol affects the radiative balance is a function 

of both an aerosol’s chemical composition and phy-

si cal properties (e.g. size, shape). Both chemical and 

physical properties of aerosols are functions of emi-

ssion sources, atmospheric processing pathways, and 

lifetime in the atmosphere.
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The atmosphere  above Antarctica  constitutes  the  

cleanest part of the Earth's troposphere which allows 

here to study the composition and temporal change 

of  the  background  atmosphere  without  any  direct  

impact of civilization. Furthermore, with the exception 

of very few rocky terrains, the Antarctic continent is 

largely free of aerosol sources, so that the main part of 

the particles must be advected by long-range transport 

to Antarctica or has its source region in the surroun-

ding  Southern  Ocean.  Due to  this  unique  position,  

Antarctica is an outstanding place to document long-

term changes of the composition of our atmosphere 

in the industrial period. The Antarctic climate system 

can be linked with aerosol particles by complex feed-

back processes that involve aerosol-cloud inter actions. 

In  addition,  because  there  are  less  anthropogenic  

emission sources in Antarctica, it is a suitable place 

to  study  the  formation  and  growth  processes  of  the  

natural  aerosol  particles.  Mineral  dust  is  extremely  

important  in  the  nucleation  processes,  as  sites  for  

heterogeneous chemistry. Particles are for med from a 

large  numbers  of  minerals,  e.g.  alumina,  silica  and  

iron oxides, coated with sulfates, nitrates and organic 

species as small particles in the atmosphere. Mineral 

dust  always  acts  like  solid  core  for  trace  gases  con-

densation on their surface.

Another  important  aspect  of  studying  mineral  

aero sols in Antarctica is the need to interpret records 

of particulates observed in firn and ice cores. Mineral 

dust  is  one  of  the  more  studied  paleoclimatic  and  

paleo-environmental  proxies  among  those  that  can  

be recovered from the ice cores. Dust particles arrive 

in  the  remote  polar  area  after  long-range  transport  

from  deserted  and  semi-deserted  continental  areas  

located at lower latitudes. Many characters of dust in 

the  ice  are  measured,  because  of  their  potential  to  

provide  paleo-climatic  information  on  the  location  

and  aridity  at  the  dust  sources,  the  scavenging  and  

transport processes, and the atmospheric pathways. 

Although global dust sources are absent, Antarctica 

is the largest polar desert in the world, where appro-

ximately 2% of its surface area is ice-free and contains 

active High Latitude Dust sources (HLD, Bullard et 

al.,  2016).  The  best-known  local  dust  sources  are  

located in West Antarctica, with the McMurdo Dry 

Valleys being the largest ice free area (approximately 

4,800 km2) with frequent dust suspension (Lancaster, 

2002; Ayling and McGowan, 2006; Atkins and Dunbar, 

2009;  Bullard  et  al.,  2016).  As  it  follows  from  dust  

samples collected in snow pits on Berkner Island, the 

dust sources are located also in the ice-free areas of 

East  Antarctica  (Bory  et  al.  2010).  Coastal  ice-free  

areas have also been identified as active dust sources 

around  the  Maitri  Station,  Larsemann  Hills,  and  

Neumayer  Station in  East  Antarctica  (Weller  et  al.,  

2008; Chaubey et al., 2011; Bud havant et al., 2015), 

as well  as in the Antarctic Peninsula region (Artaxo 

and  Rabello,  1992;  Kavan  et  al.,  2017;  Asmi  et  al.,  

2018).  Alternately,  the  mineral  particles  can  be  re-

sus pended from the surface of ablating glaciers (At-

kins and Dunbar, 2009). Long-range transport of dust 

from  other  HLD  sources,  such  as  South  America  

(Patagonia), New Zealand, and deserts in Australia 

and  Africa,  contribute  to  the  dust  depositions  in  

Antarctica (Ne and Bertler, 2015; Bullard et al., 2016; 

Asmi et al., 2018). The main non-Antarctic dust source 

for  the  Antarctic  Peninsula  region  is  in  Patagonia  

(Bullard et al., 2016). Patagonian dust was found in 

ice cores and snow samples in the Antarctic Peninsula 

and in East Antarctica (Basile et al., 1997; Pereira et 

al., 2004; McConnell et al., 2007; Bory et al., 2010; 

Delmonte et al., 2017).

The  dust  deposition  rates  of  >  100  g  m–2  year–1 

were  reported  from  Patagonia  (Bullard,  2016).  The  

rates measured in McMurdo Dry Valleys (< 8 g m–2 

year–1) are lower than other HLD sources (Lancaster, 

2002). Nevertheless, the dust fluxes of 7.8—24.5 g m–2 

year–1 (Atkins and Dunbar, 2009) and 0.2—55 g m–2 

year–1  (Chewings  et  al.  2014)  are  reported  in  this  

source.  The mass  concentrations  of  PM
10

 (particles  

with  a  diameter  of  <  10  μm)  and  PM
2.5

 (with  a  

diameter of < 2.5 μm) in boundary atmospheric layer 

were 5.1 and 4.3 mg m–3, respectively in the Larsemann 

Hills  during  summer  (Budhavant  et  al.,  2015),  and  

8.3 and 6.03 mg m–3 at the Maitri station (Chaubey et 

al.,  2011).  PM
10

 concentrations  from  McMurdo  

station during two summers in 1995—1997 were 3.4 

and  4.1  mg  m–3  on  average  (Mazzera  et  al.,  2001).  

Mean PM
10

 and PM
2.5

 concentrations of 4.4 mg m–3 

and  2.4  mg  m–3,  respec  tively  were  measured  in  the  
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Antarctic  Peninsula  during  the  late  1980s  (Artaxo  

and  Rabello,  1992).  Seasonal  variations  in  aerosol  

loadings showed increased concentrations in January 

and a decrease in February and March in Terra Nova 

Bay,  West  Antarctica  in  2000—2001  (Truzzi  et  al.,  

2005).  PM
10

 concentrations  of  2.1—5  mg  m–3  on  

average were reported from the Antarctic Peninsula, 

with  higher  concentration  in  summer  (October  to  

March) in 2013—2015 (Asmi et al., 2018). The con-

centrations of the particles near ly doubled in summer 

when winds were high (Asmi et al. 2018).

Because mineral dust may undergo processing as it 

is transported in the atmosphere, its impact on global 

processes  may  change  over  the  course  of  its  “life  

story”. Therefore, knowledge of its physicochemical 

pro perties, especially its adsorption characteristics, is 

very important for predicting its effects in atmospheric 

chemistry  and biogeochemical  cycles  in  Antarctica.  

Most of the experiments on the interaction of trace 

gases with mineral dust were performed with oxides 

such  as  SiO
2
,  Al

2
O

3
,  and  CaO  (Pokrovskiy  et  al.,  

1999; Al-Abadleh and Grassian, 2003).

The surface of mineral dust particles acts as a sink 

for many gases, such as sulfur dioxide (SO
2
), with the 

formation  of  sulfite  ion  (SO
3

2–)  associated  with  it,  

which is oxidized to sulfate ion (SO
4

2–) in the presence 

of ozone or other oxidizing agents. However, an evi-

dence  has  recently  been  obtained  of  an  alternative  

way of generating these ions for a series of reactions: 

in the presence of water vapor, titanium oxides, iron or 

mineral dust containing these oxides, exposure to the 

UV part of solar radiation produces gaseous sulfuric 

acid (H
2
SO

4
), which then reacts with the surface of 

the  particles  (Dupart  et  al,  2012).  Metal  oxides  in  

mineral dust act as atmospheric photocatalysts, pro-

moting the formation of gaseous OH radicals, which 

initiate the conversion of SO
2
 to H

2
SO

4
 in the vicinity 

of the particle. At a low concentration of dust in the 

atmosphere characteristic over Antarctica, this process 

can lead to the nucleation phenomena and the for-

mation of the CCN.

In the present work, highly dispersed fumed silica, 

alumina,  titania,  and  mixed  X/SiO
2
 oxides  (X  =

= Al
2
O

3
, TiO

2
 and Al

2
O

3
/TiO

2
) are used as proxies of 

mineral aerosols. These oxides produced by conden-

sa tion processes are often of more theoretical interest 

because  it  is  easier  to  control  their  nucleation  and  

growth  rate,  particle  size  and  size  distribution,  and  

rate  of  disappearance.  They  can  therefore  be  used  

more readily to study the various theories of aerosol 

formation and destruction. The choice of oxides SiO
2
 

and  Al
2
O

3
 is  due  to  their  dominance  in  the  earth’s  

crust  and in the composition of  the mineral  dust  as  

ice nucleating particles, while TiO
2
 has semiconductor 

properties and can serve as a natural photocatalyst for 

the formation of H
2
SO

4
, which is the main component 

of CCN that have a significant impact on the Antarctic 

climate.  Natural  analogues  of  these  oxides  can  be  

mineral  particles  formed during volcanic eruptions,  

for example, Mt. Erebus in Antarctica, as a result of 

high-temperature hydrolysis of metal halides, MHal
n
 

(M = Si, Al, Ti; Hal = Cl, Br, I) in presence of water 

vapor.  Nitrogen was used as an adsorbed substance. 

The  main  goal  of  the  work  was  to  determine  the  

influence of the oxides composition on the adsorption 

characteristics of their surface.

MATERIALS AND METHODS

Highly dispersed fumed individual  silica,  alumina, 

titania  and  mixed  oxides  X/SiO
2
 (X  =  Al

2
O

3
,  TiO

2
, 

Al
2
O

3
/TiO

2
) (synthesized at the experimental plant of 

the  Institute  of  Surface  Chemistry  of  the  National  

Academy of Sciences of Ukraine, Kalush, Ukraine) 

were studied at various concentrations (C
X
) phase X 

oxide (Table 1).  Titania, titania/silica and alumina/

titania/silica  contain  a  mixture  of  anatase  (particle  

shell, main part) and rutile (core of particles). Alumina 

includes ≈ 20% (by weight) of the crystalline γ-phase 

and ≈ 80% of the amorphous phase, whereas in alu-

mina/silica  and alumina/titania/silica  it  is  completely  

amorphous. Silica is  completely amorphous in all 

fumed oxides. Alumina/titania/silica includes ≈ 22% 

Al
2
O

3
, ≈ 28% SiO

2
 and ≈ 50% TiO

2
 (a mixture of 88% 

anatase and 12% rutile). The phase composition and 

other properties of these mixed oxides are reported in 

(Gun’ko et al. 2007).

The  nitrogen  adsorption/desorption  isotherms  on  

the  oxide  surfaces  were  measured  at  77.35  K  and  

relative pressure x = P/P
S
 (P and P

S
 are the equilibrium 



6 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)

M. S. Bazylevska, V. I. Bogillo

vapor  pressure  of  nitrogen  and  its  saturated  vapor  

pressure, respectively) in the range from ≈ 5 × 10–7 to 

≈  0.99  by  using  an  ASAP  2010  V-3.00  volumetric  

multigas sorption analyzer (Micromeritics, Norcross, 

GA).  Before  measurements,  the  samples  were  sub-

jected to treating in vacuum at 393 K for 6 hours to 

remove physically adsorbed water and other volatile 

impurities  from the surface  of  the  oxides.  The total  

pore volume was estimated by converting the volume 

adsor  bed  at  the  relative  pressure  of  0.985  to  the  

volume of liquid nitrogen.

Methods for the calculation
of adsorption parameters

BET theory

The specific surface area of the samples was calculated 

in accordance with standard Brunauer – Emmett – 

Teller (BET) procedure based on adsorption data in 

the x = P/P
S
 range from 0.06 to 0.25 (Brunauer et al., 

1938; Gregg et al, 1982)

  
(1)

 S
BET

 = a
m
σ

m
N

A
 (2)

 , (3)

where a is the number of moles of adsorbed substan-

ce  per  unit  weight  of  adsorbent  (mol  g–1), a
m

 is  the  

capacity of the monolayer of adsorbed substance per 

unit  weight  of  adsorbent,  σ
m

 is  the  average  area  

occupied by the adsorbed molecule in the monolayer 

(for N
2 
it is assumed to be 16.2 Å2), N

A
 is the Avogadro 

number, ΔQ
A

 is  the  average  differential  heat  of  ad-

sorption, ΔQ
V
 is  the  heat  of  vaporization  of  the  ad-

sorbed substance, R is the universal gas constant, T is 

the adsorption temperature in K.

Regularization procedure

The nitrogen adsorption in the monolayer taking into 

account  the  energetic  heterogeneity  of  the  oxide  

surface was studied using the modified regularization 

procedure proposed in (Pyziy et al., 1997; Bogillo and 

Shkilev,  1999).  Using  the  capacities  of  the  monolayer  

obtained by the BET method, a
m
, for those values of 

a  for  which  a
m
 ≥ a,  we  can  determine  the  overall  

surface coverage with adsorbed substance within the 

monolayer, Θ(P,T)  =  a/a
m
.  Adsorption  within  these  

limits is generally described by the Fredholm integral 

equation of the first kind

 ,  (4)

where θ(P, T, E
A
) is the coverage of the local surface 

area  with  the  adsorption  energy E
A
, ρ(E

A
)  is  the  

normalized  differential  surface  distribution  on  E
A
, 

E
A(min)

 and E
A(max)

 are the lower and upper limits of this 

distribution.

In  the  simplest  case,  the  local  coverage,  θ(P, T, 

E
A
), is described by the Langmuir isotherm:

 ,  (5)

where K
L, 0

 is a preexponential factor depending on the 

rotational, vibrational, and translational degrees of free-

dom of a polyatomic molecule adsorbed on the sur face 

and in the gas phase. This value can be approximately 

estimated using the ratio (Bogillo et al., 1998)

 K
L, 0

 ≈ P
s
 exp(ΔQ

V
 / RT).  (6)

One of the important problems in describing ad sor-

ption equilibria on a heterogeneous surface remains 

the choice of the minimum information necessary for 

a stable calculation of the distribution ρ(E
A
). The main 

idea of the numerical regularization is  to replace the 

ill-posed problem of minimizing the selected function 

by a well-posed problem which smoothes the calcu-

la  ted  distribution  and  distorts  the  origin  problem  

insignificantly.  Thus,  the solution of  equation (4) is  

replaced by minimizing the functional:

  

(7)

 

.
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where α  (1 ≥ α  > 0) is the regularization parameter 

depending on the  relative  errors  in  determining the  

adsorption isotherm.

To obtain the optimal α,  we proposed a two-step 

procedure. First, the functional Φ[ρ(E
A
)] is minimized 

at α = 0. Thus, this minimum can serve as an measure 

of the accuracy of experimental data for m points on 

the adsorption isotherm:

( )
2/1

1

20 )(),,(),(1min ⎥
⎦

⎤
⎢
⎣

⎡
−Θ= ∑

=

m

j
AA EETPTP

m
ρθξ .

In the second step, the value of α is calculated at 

which  the  distribution  ρ1(E
A
),  which  minimizes  the  

func tional Φ[ρ(E
A
)], satisfies the following condition:

  
(9)

                                                                 
  .

A feature of this modified method is the possibili ty 

of improving the solution by varying the free parame-

ter η.  The  calculations  showed  that  none  of  the  

methods for  estimating α  proposed in the literature 

leads to stable solutions of equation (4) in the absence 

of η. The distributions ρ(E
A
) were calculated on the 

basis  of  part  of  the  nitrogen  adsorption  isotherms  

corresponding to the monolayer surface coverage.

ZAI theory

A new isotherm, so-called Zeta Adsorption Isotherm 

(ZAI) was recently derived to describe accurately the 

adsorption in the full range of P up to P
S
 (Zandavi 

et  al.,  2014).  This  isotherm is  obtained  in  the  app-

roximation  of  adsorbed  vapor  as  a  set  of  molecular  

clusters, of which at least one is adsorbed by one of 

the M  adsorption  sites.  Each  adsorbed  cluster  is  

approximated  as  a  quantum-mechanical  harmonic  

oscillator with a binding energy that depends on the 

number  of  molecules  in  the  cluster.  The  maximum  

number of molecules which cluster can consist of is 

ζ
m
. Using the canonical ensemble, the dependence of 

the  amount  of  adsorbed  matter  on  the  solid/vapor  

interface per unit surface on the vapor pressure ratio 

is described as

 .  (10)

Parameters c
Z
 and α

Z
 are related to distribution of 

the clusters with different number of molecules and 

to  the  chemical  potential  of  the  adsorbed  liquid  at  

standard pressure, respectively. 

In ZAI, the number of adsorption sites per unit of 

mass  of  a  solid,  M
g
 is  related to the specific  surface 

area, A
s
, as

 M
g
 = A

s
M.  (11)

In  the  derivation  of  ZAI,  it  is  assumed  that  one  

molecular cluster occupies one adsorption site. The 

average cross-sectional area of the adsorption site or 

the molecular cluster of a given vapor (I) is denoted 

as σ(I). Then the specific adsorption surface area of 

the solid, A
s
 is given as

 σ(I) M
g
(I) = A

s
.  (12)

When the  specific  volume of  the  adsorbed  liquid  

film is equal to that for a pure liquid in the volume, 

v
f
,  the  thickness  of  the  adsorbed  liquid  film,  τ

af
,  is  

defined as 

                           . (13)

Equation  10  together  with  the  Gibbs  adsorption  

equation for this surface allows to derive the ratio for 

surface tension or free surface energy of a solid in the 

absence of adsorption, γS0 (Ghasemi et al., 2009):

  ,          (14)

where γLV is the surface tension or free surface energy 

of the adsorbed substance in the liquid/vapor system 

and k
B
 is the Boltzmann constant.

Lifshitz theory

The value of γ S0, in the general case, is the sum of the 

dispersive, γ
S

D  and polar, γ
S

p components of the free 

surface energy:
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 γS0 = γ
S

D + γ
S

p.  (15)

The  dispersive  component,  γ
S

D  is  related  to  the  

Ha maker constant of the material, A
H

 (Israelachvili, 

1992):

 A
H
 = 24πD

0

2γ
S

D,  (16)

where D
0
 is the smallest equilibrium distance between 

two identical materials in a vacuum. Given the Born 

repulsion, this distance is 1.6 A.

On  the  other  hand,  the  approximate  expression  

from the Lifshitz’ theory for A
H

 in vacuum or in air 

can be written as (Dzyaloshinskii et al., 1961):

  ,   (17) 

where n
0
 is the refractive index, ε

k
 is the permitti-

vity  of  the  material,  ν
c
 is  the  main  frequency  of  

electron absorption in the UV range (ν
c
 = (3÷5) × 

× 1015 s–1), and h is the Planck constant (h = 6.626 × 
× 10–34 J s).

RESULTS AND DISCUSSION

Fumed oxides, such as silica, titania, alumina, silica/

alumina, titania/silica, alumina/titania/silica are wi-

de  ly  used  in  industry  as  adsorbents,  pigments,  

catalysts, fillers and additives in polymers. There is a 

multistage hierarchy of the oxides structure related to 

the features of their synthesis when using MCl
n
 (M = 

= Si, Ti, and Al) in an oxygen/hydrogen flame at T > 

1300  K.  Variations  in  the  reaction  temperature  and  

the ratio between the O
2
/H

2
 and MCl

n
 concentrations 

affect  the  structural  characteristics  of  the  primary  

particles and the concentration of hydroxyl groups on 

the surface of the oxides. Nonporous spherical primary 

particles  with  a  diameter  of  5—100  nm,  depending  

on the  synthesis  conditions  and the  composition of  

the oxides, form aggregates with a diameter of 100—

500 nm, and then loose agglomerates (>1 μm). These 

structural levels differ significantly in apparent density, 

ρ
ap

.  For  example,  for  fumed  silica,  ρap  is  1—3%  for  

agglomerates, ∼30% for aggregates, and ∼100% of the 

specific  density  of  primary particles  (Gun’ko et  al.,  

Table 1. The specific adsorption area of the oxides surface, S
BET

, the С constant of the BET equation,
the nitrogen average isosteric adsorption heat, ΔQ

A
, the apparent pore volume, v

p
, the nitrogen average

adsorption energy in the monolayer, E
A(av)

 and its standard deviation, σ
Ea

Sample Composition

S
BET

v
p

C

ΔQ
A
 E

A(av)
σ

Ea

m2g–1 cm3g–1 kJ mole–1

T
100

100% TiO
2

60 0.17 98 8.53 7.9 2.9

ST
29

SiO
2
-29%TiO

2
73 0.16 93 8.49 7.3 4.2

ST
20

SiO
2
-20%TiO

2
65 0.13 263 9.16 7.6 6.5

ST
14

SiO
2
-14%TiO

2
217 0.49 117 8.64 6.6 3.1

ST
9

SiO
2
-9%TiO

2
198 0.47 116 8.63 7.1 2.2

S
100

100%SiO
2

267 0.62 126 8.69 7.1 2.5

SA
1..3

SiO
2
-1.3%Al

2
O

3
294 0.68 129 8.70 7.7 1.6

SA
3

SiO
2
-3%Al

2
O

3
156 0.35 165 8.86 7.6 4.7

SA
23

SiO
2
-23%Al

2
O

3
311 0.74 106 8.58 7.4 1.6

SA
30

SiO
2
-30%Al

2
O

3
239 0.57 106 8.58 7.5 1.8

A
100

100%Al
2
O

3
159 0.42 133 8.72 7.3 1.5

SAT SiO
2
-22%Al

2
O

3
-50%TiO

2
32 0.08 97 8.52 6.9 8.3
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2007). The smaller these particles, the stronger they 

are bound in the aggregates and the narrower is  the 

particle size distribution.

Roughness and amorphisms of the particle surface, 

variations in the types and concentration of hydroxyl 

groups on the surface can be the main reasons for the 

structural  and energetic  heterogeneity  of  the  oxides  

surface with respect to various adsorbates. Since some 

phases in mixed oxides are amorphous (SiO
2
, Al

2
O

3
), 

while  others,  for  example,  TiO
2
,  can  be  crystalline,  

their  surface  heterogeneity  can  increase.  The  

interfaces  between  the  amorphous  and  crystalline  

phases  in  such  oxides  include  strained  bonds,  

incompletely  coordinated  metal  atoms  (Lewis  acid  

centers),  single  and  bridged  hydroxyl  groups  

(Bronsted  acid  centers),  strongly  bonded  water  

molecules,  and  other  adsorption  centers  that  cause  

high surface heterogeneity.

One of the main characteristics of the adsorption 

capacity of materials is the specific adsorption surface 

area, S
BET

. The higher it is, the greater the substance 

amount is held by a unit weight of the adsorbent, i.e., 

the more efficient the adsorption. These S
BET

 for the 

studied  oxides  are  given  in  Table  1.  It  also  presents  

the  pore  volumes  of  materials,  v
p
,  corresponding  to  

the  effective  volume,  since  nitrogen  adsorption  

occurs  not  only  in  the  internal  free  volume  of  the  

aggregates, but also in the free volume of agglomerates, 

that is, on the outer surface of the aggregates.

Fig.  1  shows the  experimental  isotherm of  nitro-

gen  adsorption  on  the  surface  of  mixed  SAT  oxide  

(Table 1) in the P/P
S
 range from 0 to 1.0 (a) and up to 

0.35 (b). Its shape corresponds to the type II adsorp-

tion isotherm according to the Brunauer classification 

(Gregg et al., 1982), which is characteristic of vapor 

adsorption  on  the  surface  of  non-porous  materials.  

The absence of a plateau on the adsorption isotherms 

observed  at  P/P
S 

>  0.9  (Fig.  1,  a)  and  the  lack  of  

hysteresis,  i.  e.  coincidence  of  the  adsorption  and  

desorption  isotherms,  testifies  that  mesopores  con-

tri bution in the total pore volume of the studied ma-

terials is negligible.

Fumed TiO
2
 includes primary crystalline particles 

of anatase (70÷85%) and rutile (15÷30%), while fumed 

Al
2
O

3
 ≈ 20% of its crystalline γ-form. Fumed SiO

2
 is 

completely amorphous. Obviously, the observed dec-

rea se in S
BET

 during the transition from silica to tita nia/ 

silica and titania, as well as close S
BET

 values for silica, 

silica/alumina and alumina are due to the contribution 

of  crystalline  forms  of  TiO
2

 and  Al
2
O

3
 to  S

BET
 for 

mixed  oxides.  Low  v
p
 indicate  the  con  den  sation  of  

adsorbed nitrogen in the secondary pores formed due 

to  the  interparticle  space  of  the  aggregates  upon  

contact of the primary non-porous oxide particles.

Fig. 1. Experimental and calculated according to the theories of ZAI and BET nitrogen adsorption isotherms on the surface of 

alumina/titania/silica (SAT) at 77.35 K in the P/P
S
 range from 0 to 1.0 (a) and up to 0.35 (b)

a b
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The average differential heats of nitrogen ad sorp-

tion calculated on the basis of the C constant of the 

BET equation are given in Table 1. All of them are in 

a rather narrow range (8.52÷9.16 kJ mol–1), but ex-

ce  ed  the  heat  of  vaporization  of  nitrogen  (5.58  kJ  

mol–1), which is usually equated to the non-specific 

contribution (dispersion interaction) to the adsorption 

energy.  Such a difference may indicate a significant 

con  tribution  of  the  specific  (quadrupole  –  dipole  

and/or quadrupole – ion) interaction of a quadrupole 

nitrogen molecule with polar single or bridging OH– 

surface  groups  or  with  coordination-unsaturated  

metal ions at the oxide phase boundary.

Some distributions of the oxides surface on the N
2
 

adsorption  energy  in  the  monolayer  range,  which  

com puted by using the regularization procedure, are 

shown in Fig. 2, a, b.

It is seen that the oxides surface is characterized by 

a  high  degree  of  heterogeneity  with  respect  to  N
2
 

adsorption, which manifests itself in the presence of 

several  peaks  in  the  distribution  curves  and  their  

considerable width. Since the distributions allow only 

a  qualitative  comparison  of  them  for  the  surface  of  

various oxides, we approximated them with a Gaussian 

distribution.  The average N
2 
adsorption energies and 

their standard deviations are given in Table. 1. Note 

that ΔQ
V

 for  N
2
,  which  characterizes  the  ability  of  

the dispersion interaction of N
2
 with surface sites, is 

5.4  kJ  mol–1.  The  upper  limits  of  the  distributions  

significantly exceed this value, which may be due to 

the contribution of the electrostatic interaction of the 

quadrupole  of  N
2
 molecule  with  OH  group  dipoles  

and ions of the oxide surface sites. The highest E
A
 

at Θ(p.T) → 0 (Fig. 2, a) and E
A(av)

 + σ
Ea

 (Table 1) 

are typical  for  TiO
2
,  ST

29
,  and  SAT,  in  which  the  

content of crystalline phases is maximum.

As follows from Fig. 1, the BET isotherm is close 

to  the  experimental  one at  P/P
S
 <  0.3,  but  deviates  

significantly  from  it  at  large  P/P
S
.  It  is  well  known  

that  the  BET  isotherm  describes  adsorption  on  the  

surface  of  non-porous  materials  only  in  a  limited  

pressure  range  corresponding  to  the  filling  of  the  

monolayer (Gregg et al., 1982). At P → P
S
, the BET 

equation  predicts  infinite  adsorption  and  negative  

adsorption  at  P  >  P
S
.  Other  adsorption  isotherms  

(Frenkel – Halsey – Hill or Aranovich – Donahue) 

more  accurately  describe  adsorption  at  high  P,  but  

they also predict infinite adsorption at P ≈ P
S
. Then 

the  Zeta  Adsorption  Isotherm  (ZAI)  used  here  to  

describe accurately the adsorption in the full range of 

P up to P
S
. Table 2 shows the specific surface areas of 

oxides, A
s
, their monolayer capacitances, M

V
 and M

g
, 

Fig. 2. Distributions of surface of SiO
2
, TiO

2
, TiO

2
/SiO

2
, TiO

2
/Al

2
O

3
/SiO

2
 (a) and SiO

2
, Al

2
O

3
, Al

2
O

3
/SiO

2
 (b) on the N

2 
adsorp-

tion energy
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Table 2. The specific adsorption area of the oxides surface. A
s
, the monolayer capacities. M

V
 and M

g
,

the α
Z
, c

Z
 and ζ

m
 parameters of Eq. 10, and the square of the correlation coefficient for the Eq. 10, R2

Sample A
s
, m2 g–1 M

V
, cm3 g–1 M

g
 × 106, mole g–1 α

Z
с

Z
ζ

m R2

T
100

43 9,98   445 0,916 6137 70 0,955

ST
29

60 13,76   614 0,862 1167 72 0,947

ST
20

51 11,68   521 0,862 3096 62 0,946

ST
14

176 40,36 1801 0,874 1239 58 0,966

ST
9

159 36,43 1625 0,881 1059 54 0,970

S
100

204 46,86 2091 0,885 1650 71 0,963

SA
1..3

225 51,69 2306 0,887 1833 56 0,959

SA
3

116 26,60 1187 0,882 2053 61 0,956

SA
23

240 55,17 2461 0,887 1305 72 0,959

SA
30

184 42,23 1884 0,886 1205 59 0,962

A
100

123 28,13 1255 0,901 3483 59 0,963

SAT 223 5,24   234 0,897 1954 112 0,933

Table 3. The thickness of adsorbed N
2
 film on the oxides surface, τ

af
, the free surface energy of the oxides

in the absence of adsorption, γS0, this energy, estimated for mixed oxides, γS0
(calc)

, the dispersive component
of free surface energy of the oxides determined by immersion calorimetry, γD

(exp)
, by method of inverse gas

chromatography at finite concentrations, γD
(IGC)

, and calculated by the Lifshitz’ theory, γD
(calc)

, the refractive
indices, n

0
 and permittivity, ε

k
 of individual oxides

Sample

τ
af

γ S0 γ S0
(сalс)

aγD
(expp)

bγD
(calc)

cγD
(IGC)

n
0

ε
k

nm mJ m–2

T
100

25 81,8 72 79 35,2 2,8 21,3

ST
29

26 67,3 74

ST
20

22 73,7 73 44,9

ST
14

21 68,3 73

ST
9

19 67,7 72

S
100

25 70,9 32 34 28,6 1,5 4,6

SA
1..3

20 71,7 71

SA
3

22 72,1 71

SA
23

26 69,5 72

SA
30

21 68,9 73 32,5

A
100

21 76,9 85 80 51,8 1,8 10,4

SAT 40 72,8 78

a from the calorimetric data of the immersion of oxides in n-heptane (Medout-Marere, 2000). b based on the Hamaker constants 

calculated by the Lifshitz theory (Bergstrom, 1997). c from data of inverse gas chromatography at finite concentrations (Bogillo 

et al., 1996).
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the parameters of Eq. 10, and the squares of the co-

rrelation coefficients. 

As follows from Fig. 1, a, the isotherm calculated 

by the ZAI equation deviates noticeably from expe-

rimental one in the range 0 < x < 0.35, but it is close 

to the experimental one in the range 0.35 < x < 0.99, 

while  the  isotherm calculated by  the  BET equation 

deviates significantly from it and a → ∞ as x → 1.0. 

Using  the  σ(N
2
)  =  16.2  Å2  for  the  surfaces  of  all  

oxides, the M equals to M
g
/A

s
 = 1.0244 × 10–5 mole 

m–2. A comparison of the A
s
 values with the S

BET
 from 

Table 1 indicates a close relationship between them: 

A
s
 =  (0.775  ±  0.012)  · S

BET
; R2  =  0.999.  The  lower  

surface areas obtained using ZAI compared to BET 

may be due to variations in the orientation of nitro-

gen molecules (e.g., orthogonal) in clusters (ZAI), in 

contrast to the strictly parallel orientation of mo le cu-

les in the adsorbed layer, as is assumed in the classical 

BET theory.

The Table 3 shows the thicknesses of the adsorbed 

nitrogen  film  on  the  oxide  surface,  the  free  surface  

energies of these oxides in the absence of adsorption, 

these  energies  estimated  for  mixed  oxides  based  on  

γ S0  for component X  in the oxide, γ S0
(calc)

,  dispersive 

components of the free surface energy of individual 

oxides, determined by the calorimetric method, γD
(exp)

 

and by the method of inverse gas chromatography at 

final concentrations, γD
(IGC)

, calculated using Lifshitz’ 

theory, γD
(calc)

,  as  well  as  refractive  indices,  n
0
 and 

permittivity, ε
k
 of individual oxides. In the calculations 

for  nitrogen at  71.1  K,  γLV  = 10.3 mJ m–2  was  used 

(Prausnitz, 1966).

We estimated γ S0 for mixed oxides based on these 

values  for  individual  oxides  and  the  fraction  of  

component X. As can be seen from the data in Table 

3,  for  most  mixed oxides,  the  calculated γ S0 exceed 

the experimental  ones by 2.5–6.7 mJ m–2.  Only for 

samples  ST
20

,  SA
1,3

,  and SA
3
 there is  a  slight  excess  

(by 0.7÷1.1 mJ m–2) of experimental values over the 

calculated ones.

The assumed additivity of  γ S0  for  mixed oxides is  

valid for an external mixture of oxides forming par ti-

cles, while for an internal mixture that is inhomo ge-

neous  in  volume  of  a  particle,  it  will  be  violated.  

Among  the  studied  individual  oxides,  silica  has  a  

mi ni mum γ S0 and is part of all mixed oxides. There-

fore,  we  can  assume  a  higher  SiO
2

 content  in  the  

upper shell of mixed oxide particles compared to its 

bulk content, while Al
2
O

3
 and crystalline TiO

2
 pha-

ses form  mainly  the  core  of  these  particles.  This  

assumption is consistent with the conclusions about 

the  particle  structure  of  fumed  mixed  oxides  in  

(Gun’ko et al., 2007).

Square  root  of  free  surface  energy  of  oxides  as  a  

function  of  the  average  nitrogen  adsorption  energy  

within the monolayer is shown in Fig. 3. 

An increase in E
A(av)

 leads to an increase in (γS0)1/2, 

and  a  linear  relationship  is  observed  between  these  

parameters:

; R = 0.523.

Thus, using Eqs 16 and 17, we can estimate γ
S

D 

of the material. The values of n
0
 and ε

k
 for indivi-

dual oxides are given in the Table 3. The calculated 

γ
S

D
(calc)

 values (in mJ m–2) are varied in sequence: TiO
2
 

(216)  >  Al
2
O

3
(70)  >  SiO

2
(33),  which  qualitatively  

coincides with the sequence of changes in γ S0 of these 

oxides  (TiO
2 

(82)  >  Al
2
O

3
(77)  >  SiO

2
(71)).  Using  

A
H

 calculated  ta  king  into  account  various  spectral  

corrections from (Bergstrom, 1997), lower γ
S

D values 

for  TiO
2

 (77÷82  mJ  m–2)  are  obtained,  which  are  

Fig. 3. The surface free energy of the individual and mixed Si, 

Ti and Al oxides as a function of their average N
2
 adsorption 

energy within the monolayer
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close  to  those  found  for  Al
2
O

3
 (69÷72  mJ  m–2), 

however for SiO
2
 in all  cases,  the calculation leads 

to lower γ
S

D (27÷31 mJ m–2).

Plots of A
H
 for inorganic materials from (Bergst-

rom,  1997)  and  γS0  for  the  oxides  on  n
0
 and  (ε

k
)1/2 

values are shown in Fig. 4. It can be seen that in all 

cases there is a tendency for A
H

 and γS0 to increase 

as the n
0
 and (ε

k
)1/2 rise. The relations (A

H
 × 10–20 = 

= (14.1 ± 1.6)n
0
 – (13.5 ± 3.1), N = 30, R = 0.854 

and A
H
 × 10–20 = (7.2 ± 1.8) (ε

k
)1/2 – (8.3 ± 5.1), N = 

= 30, R = 0.636) allow to estimate easy the A
H
 values 

of materials.

The γ
S

D value based on A
H
 determined by ca lo ri-

metric  immersion  of  metal  oxides  in  n-hexane  

(Me dout-Marere,  2000) is  shown in Table 3.  It  is 

seen  that,  in  contrast  to  the  calculated  γ
S

D  and  

experimental γS0,  the  reverse  sequence  of  oxide  

activity (Al
2
O

3
 > TiO

2
) is observed, however, lower 

γ
S

D  is  obtained  for  SiO
2
,  which  is  close  to  that  

calculated  using  the  equations  of  the  Lifshitz  

theory.

The Table 3 shows also γ
S

D determined from data 

of inverse gas chromatography at finite concentrations 

at 403 K (Bogillo et al., 1996). As in previous case, γ
S

D 

Fig. 4. The dependence of Hamaker constant for inorganic materials (a, b) and free surface energy of the metal oxides in the 

absence of adsorption (c, d) on the index of refraction (a, c) and on the square root of permittivity of the materials (b, d)



14 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)

M. S. Bazylevska, V. I. Bogillo

for SiO
2
 is lower than for other oxides and for Al

2
O

3
 

γ
S

D is higher than for TiO
2
. If for SA

30
, γ

S
D is between 

γ
S

D of individual SiO
2
 and Al

2
O

3
, then γ

S
D for ST

20
 is 

significantly higher than that obtained for indi vidual 

Si  and  Ti  oxides.  For  the  same  oxide,  the  highest  

constant  С  of  the  BET  equation  (263)  is  observed  

(Table 1) compared with other oxides (93÷165) and, 

accordingly, the highest isosteric heat of adsorption, 

ΔQ
A
 (9.2 kJ mole–1) in compared with the rest oxides 

(8.5÷8.9 kJ mole–1).

The comparison of γ
S

D  and γS0  values for various 

silicas (Bilinski et al., 1999; Pokrovskiy et al., 1999) 

shows that these values depend on the method used, 

the temperature of preliminary sample preparation, 

the nature of the adsorbed substance, the adsorption 

temperature, and γ
S

D varies from 28.6 to 71 mJ m–2 

(Bilinski et al., 1999), which coincides with γ
S

D
(IGC)

 

and γS0  values  from  the  Table  3.  Even  greater  

variations  are  observed  for  γ
S

p  (11.9÷160  mJ  m–2), 

which  is  associated  with  a  significant  influence  of  

the  choice  of  a  polar  adsorbed  substance  for  de-

termining this parameter (Bilinski et al., 1999). Si-

milar  significant  variations  in  γ
S

D
(IGC)

 and  γS0 were 

also  noted  for  other  oxides,  minerals,  carbon  and  

solid  organic  materials  (Pokrovskiy  et  al.,  1999).  

Slight  variations  of  γS0  for  the  studied  oxides,  in  

contrast to the calculated and ex perimental γ
S

D and 

the dependencies shown in Fig. 4, c, d suggest that 

the main contribution to γS0 is made by its dispersive 

component.

The  obtained  parameters  for  the  metal  oxides  

allow  evaluating  the  adsorption  activity  of  their  

surface  with  respect  to  other  trace  gases  in  the  

Antarctic  atmosphere.  For  these  parameters  it  is  

necessary  to  calculate  the  partition  coefficients  of  

these  gases  between  particles  and  the  atmosphere,  

K
SA

,  and  the  kinetics  of  their  removal  from  the  

atmosphere (Bogillo et al.,  2008). The K
SA

 value for 

the adsorbed substance/material surface pair can be 

calculated by knowing the specific surface area of the 

material,  its  free  surface  energy,  or  the  Hamaker’  

constant, as well as the γLV value (Bogillo et al., 1998; 

Pokrovskiy et al., 1999), or the critical temperatu -

re  and  critical  pressure  of  the  adsorbed  substance  

(Mauer et al., 2001).

CONCLUSIONS

Using the volumetric method, low-temperature nit-

rogen  adsorption  isotherms  on  the  surface  of  12  

fumed individual and mixed oxides of Si, Ti, and Al, 

as  components  of  mineral  aerosols  in  the  Antarctic  

atmosphere, were measured. The aim of the work was 

to determine the effect of the origin and concentration 

of  X,  C
X

 in  oxides  of  the  X/SiO
2
 type  (X  =  Al

2
O

3
, 

TiO
2
,  Al

2
O

3
/TiO

2
)  on  the  structural  and  energetic  

characteristics of their surface.

Using the BET theory, the specific surface areas of 

the  oxides,  S
BET

,  were  calculated.  The  relationship  

between C
X
 and S

BET
 for mixed oxides does not exist. 

Since  the  synthesis  of  oxides  is  carried  out  by  hyd-

rolysis of metal chlorides MCl
n
 (M = Si, Ti, and Al) 

in an oxygen/hydrogen flame at T > 1300 K, variations 

in T and the concentrations of O
2
, H

2
, and MCl

n
, as 

well as the degree of crystallinity, probably significantly 

affect  structural  characteristics  of  primary  par  ticles  

and aggregates formed from them.

Using the regularization method, the surface dis-

tri butions of the oxides on the N
2
 adsorption energies 

were  computed.  It  was  found  that  their  surface  is  

cha  racterized  by  a  high  degree  of  heterogeneity,  

manifested  in  the  presence  of  several  peaks  in  the  

distribution curves and their significant width. Since 

the  upper  limits  of  the  distributions  significantly  

exceed  the  heat  of  vaporization  of  N
2
,  this  may  be  

due to the significant contribution of the electrostatic 

interaction between the quadrupole molecule N
2
 and 

dipoles of surface OH groups and ions in the overall 

adsorption energy.

Since the BET isotherm describes adsorption only 

in a limited narrow pressure range, the Zeta Adsorp-

tion Isotherm (ZAI) derived in the approximation of 

adsorbed vapor as a set of molecular clusters was used 

for  its  full  range.  ZAI describes  isotherms well,  and 

the specific surface areas of oxides, A
s
, the maxi mum 

number of molecules in adsorbed clusters, the thick-

ness of an adsorbed liquid film, and the free surface 

energies of  oxides in the absence of adsorption, γS0, 

are calculated using the ZAI equations.

The A
s
 correlates  well  with  S

BET
 and  account  for  

77.5% of one, which may be due to the contribution 
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of  the  orthogonal  orientation  of  N
2 

molecules  in  

clusters (ZAI), in contrast to their parallel orientation 

in the BET theory.

It was shown that γS0 increase with rise of average 

adsorption  energies  of  N
2
.  There  is  no  dependence  

between γS0 and C
X
 (taking into account γS0 for X) for 

mixed oxides, which may be due to a higher content 

of SiO
2 
in the shell of their particles, while Al

2
O

3
 and 

TiO
2
 form mainly their core.

The γS0 value of individual oxides increases with rise 

of their permittivity and refractive index. The γS0 is in 

the range of dispersive components of the free surface 

energy  determined  by  other  experimental  methods  

and calculated according to the Lifshitz theory.

These  parameters  for  oxides  make  it  possible  to  

estimate  the  adsorption  activity  of  their  surface  in  

relation  to  other  trace  gases  in  the  Antarctic  atmo-

sphere, which is necessary to evaluate their partition 

coefficients  between  particles  and  the  atmosphere  

and their removal kinetics.
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АДСОРБЦІЙНІ ВЛАСТИВОСТІ ПІРОГЕННИХ ІНДИВІДУАЛЬНИХ І ЗМІШАНИХ ОКСИДІВ

SI, TI ТА AL ЯК МОДЕЛЕЙ МІНЕРАЛЬНИХ АЕРОЗОЛІВ В АТМОСФЕРІ АНТАРКТИКИ

РЕФЕРАТ. Метою роботи було визначення впливу природи та вмісту X, C
X
 в оксидах X/SiO

2
 (X = Al

2
O

3
, TiO

2
, Al

2
O

3
/

TiO
2
) на характеристики їх поверхні. Методом волюметрії виміряні низькотемпературні ізотерми адсорбції азоту на 

поверхні 12 індивідуальних і змішаних пірогених оксидів Si, Ti та Al, як компонентів мінеральних аерозолів в атмосфері 

Антарктики. Згідно теорії БЕТ розраховано питомі площі поверхні оксидів, S
BET

. Залежності між C
X
 і S

BET
 для змішаних 

оксидів не виявлено, що пов’язано з впливом температури реакції гідролізу MCl
n
 (M = Si, Ti та Al) у кисень/водневому 

полум’ї  та  відношень  концентрацій  O
2
,  H

2
 і  MCl

n
 на  структурні  характеристики  первинних  частинок  та  агрегатів.  

Методом регуляризації  розраховано  розподіли  поверхні  оксидів  за  енергіями  адсорбції  N
2

 та  показано,  що  вона  

характеризується  високою  мірою  енергетичної  неоднорідності.  Для  опису  адсорбції  N
2
 у  повному  діапазоні  його  

тисків  застосовано  Зета  –  ізотерму  адсорбції  (ZAI),  яку  отримано  в  наближенні  адсорбованого  пару,  як  набору  

кластерів молекул. За рівняннями ZAI розраховано питомі площі поверхні оксидів, A
s
, максимальні кількості молекул 

в  адсорбованих  кластерах,  товщини  адсорбованої  рідкої  плівки  та  вільні  поверхневі  енергії  оксидів  за  відсутності  

адсорбції, γS0. A
s
 гарно корелює з S

BET
 та складає 77,5% від неї. Величина γS0 зростає при збільшенні середньої енергії 

адсорбції N
2
. Залежності між γS0 та C

X
 (з урахуванням γS0 для X) для змішаних оксидів не виявлено. Для SiO

2
, Al

2
O

3
 і TiO

2
 

γS0 зростає при збільшенні діелектричної проникності оксидів та показника заломлення і знаходяться в діапазоні їх 

дисперсійних  компонент  вільної  поверхневої  енергії,  які  визначено  іншими  експериментальними  методами  та  

розраховано згідно теорії Ліфшиця. Знайдені параметри для оксидів дозволяють оцінити активність їх поверхонь по 

відношенню  до  домішок  в  атмосфері  Антарктики,  що  необхідно  для  розрахунку  їх  коефіцієнтів  розподілу  між  

частинками та атмосферою і кінетики їх видалення.

Ключові  слова:  мінеральні  аерозолі,  атмосфера Антарктики,  пірогенні  індивідуальні  та  змішані  оксиди Si,  Ti  та  Al,  

адсорбція азоту.


