

УДК 553.94 (571.17)

Перспективы использования каменных углей северных окраин Донбасса

Обобщены материалы по составу и качеству углей северных окраин Донбасса. Выявлены особенности петрографического состава и химико-технологических свойств углей Лозовского и Старобельского угленосных районов. Определена марочная принадлежность рабочих угольных пластов, обоснованы направления их комплексного использования с учетом петрографических и технологических особенностей.

Ключевые слова: метаморфизм, петрографический состав, восстановленность, химико-технологические свойства, марка, рациональное использование.

Контактная информация: damian-87@i.ua

о исторически сложившемуся размещению угольной промыш-■ленности районы Донецкого бассейна подразделяются на Старый, Восточный, Северный, Западный и Южный Донбасс. Основная группа геолого-промышленных угленосных районов принадлежит Старому Донбассу. Интенсивная добыча угля в этом районе сопровождалась изучением состава и качества углей, обоснованием направлений их рационального использования в промышленности. Наименее изучены Северный и частично Западный Донбасс. Угли нижнего карбона Западного Донбасса, которые в настоящее время интенсивно отрабатываются, детально исследованы. На север от угленосных отложений нижнего карбона в конце 60-х годов в районе были установлены продуктивные отложения среднего карбона. Последующие геологоразведочные работы выделили новый угленосный район -Лозовской (рис. 1). Здесь на относительно небольшой глубине (140-775 м) сосредоточены значительные запасы (7,8 млрд т) каменных углей низкой стадии углефикации.

В результате проведения в конце 50-х годов прошлого столетия поисково-разведочных работ на территории, расположенной на севере Луганской области, была выявлена угленосная площадь, получившая в дальнейшем название Старобельской [1]. По геологическим особенностям были выделены Сватовская и Старобельская перспективные площади, Богдановское и Петровское месторождения (рис. 2). Общие запасы и прогнозные ресурсы по Старобельской площади составляют около 15 млрд т; промышленные запасы, утвержденные ГКЗ, – 2,6 млрд т; общие запасы и прогнозные ресурсы по Старобельскому угленосному району – 17 % запасов каменного угля Украины.

Истощение промышленных запасов углей в Старом Донбассе требует более широкого использования углей других районов. Наиболее перспективные из разведанных запасов – Старобельский и Лозовской угленосные районы, где сосредоточены значительные запасы углей Донбасса. Весьма актуален вопрос их рационального использования в промышленности. С переходом от сжигания углей в топках к технологиям глубокой комплексной переработки требуются более деталь-

в. ф. ПРИХОДЧЕНКО, доктор геол. наук (Национальный горный университет)

В. С. САВЧУК, доктор геол. наук (Национальный горный университет)

д. В. ПРИХОДЧЕНКО, аспирант (Национальный горный университет)

ные углепетрографические исследования углей, выяснение их генетических особенностей, которые учитываются при формировании сырьевой базы для химической и технологической переработки. Такие исследования имеют не только теоретическое, но и практическое значение.

Для повышения эффективности использования данных, по-

лученных в результате исследования углей северных окраин Донбасса, разработана и применена автоматизированная информационная система по обобщению состава и качества углей [2]. На ее основе создана база данных, содержащая результаты технического анализа и состава углей по 6200 разведочным скважинам. С помощью этой системы и таких методов математического моделирования, как статистика, тренд-анализ и построение карт изолиний, проведено обобщение исходных данных. Это позволило дать всестороннюю характеристику химико-технологическим свойствам углей, выявить особенности состава и качества промышленных угольных пластов, определить латеральные и стратиграфические закономерности их изменения.

Особое внимание было уделено изучению петрографического состава, степени восстановленности и степени метаморфизма, которые контролируют свойства углей и определяют их технологическую ценность и направление использования.

В **Старобельском угленосном районе** промышленная угленосность приурочена к свитам C_2^3 – среднего карбона. В толще свит залегают около 59 угольных пластов и прослоев, 14 из которых достигают мощности более 0,8 м. Коэффициент угленосности по району в целом невысок, однако по свитам C_2^5 – C_2^7 составляет 0,9–1,9. Большая часть угольных пластов характеризуется мощностью 0,6–1,2 м и простым (реже сложным) строением. Основные запасы углей приурочены к московскому ярусу.

Угли по петрографическому составу гумусовые. При среднем содержании мацералов группы витринита Vt по Старобельскому угленосному району, равному 78,4 % (табл. 1), по отдельным участкам его количество изменяется от 75,9 до 78,8 %. Содержание группы семивитринита Sv незначительное и колеблется в пределах 0,2–0,9 %, составляя в среднем по региону 0,6 %.

Группа инертинита I занимает второе место по распространению и составляет в среднем по региону 11,1 %. По площади распространения рабочих пластов его содержание колеблется в пределах от 8,1 до 12,9 %. Среднее содержание мацерацов группы липтинита L по региону не намного меньше содержания группы инертинита и составляет 9,9 %. Для рабочих пластов его количество изменяется в пределах от 8,7 до 11,3 %.

По методике И. В. Еремина уголь свиты C_2^3 относится к средневосстановленной группе, свиты C_2^5 – к средне- и маловосстановленной группе, а уголь свит C_2^6 и C_2^7 – к маловосстановленной группе; по цвету гелифицированного вещества уголь всех пластов – к мало- и средневосстановленной группам.

В соответствии с петрографической классификацией уголь Старобельского угленосного района представлен классом гелитолитов, в котором подкласс гелитов (80,2 %) значительно превышает подкласс гелититов (19,8 %). Среди петрографических типов преобладают липоидо-фюзинито-гелиты (64,9 %), липоидо-фюзинито-гелититы (15,3 %), фюзинито-гелиты (12,6 %). Остальные пе-

трографические типы углей содержатся в количестве, не превышающем 3 %.

Согласно петрографической классификации Ю. А. Жемчужникова угли сложены тонко переслаивающимися слоями кларенового, дюрено-кларенового и изредка кларено-дюренового угля.

В отличие от пластов среднего карбона Старого Донбасса, которые по петрографической классификации И. Б. Волковой относятся к гелитолитовому типу, пласты Старобельской угленосной площади представлены гелитолитовым типом с повышенным содержанием инертинита.

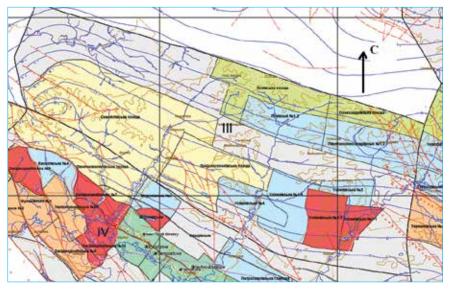


Рис. 1. Схема районирования Лозовского угленосного района.

Стадии и классы метаморфизма определены по значениям показателей отражения витринита в соответствии с ГОСТ 21489–76. Показатель отражения витринита R_0 , % углей промышленных пластов изменяется в интервале 0,42–0,50 % при средневзвешенном значении этого показателя по Старобельскому угленосному району, равном 0,47 %. Угли башкирского яруса относятся к 10-му классу метаморфизма и находятся на стадии метаморфизма. Угли московского яруса, как и угли угленосного района в целом относятся к 03 классу 0_3 стадии метаморфизма. Общей закономерности изменения значений этого показателя по площади распространения пластов не установлено.

Основные технологические показатели, которые изучены в процессе исследования: влагоемкость максимальная (W_{\max} , %) и влага аналитическая (W^a , %), зольность (A^d , %) и ее химический состав, содержание серы (S^d_t , %), выход летучих веществ (V^{daf} , %), высшая удельная (Q^{daf}_s , МДж/кг) и низшая рабочего топлива (Q^r_i , МДж/кг) теплота сгорания угля (табл. 2).

Содержание максимальной влагоемкости углей в стратиграфическом разрезе изменяется от 12,8 до 17,5 %, составляя в среднем по Старобельскому угленосному району 14,8 %. Высокие значения этого показателя отрицательно сказываются на теплотехнических свойствах угля, так как снижают теплоту его сгорания. В целом максимальная влагоемкость угленосного района соответствует углям марки Д.

Влага аналитическая в среднем по региону составляет 7,9 %, а по пластам отдельных свит ее значения в интервале 6,9–8,9 %. В соответствии с эталонной шкалой метаморфизма клареновых углей Донбасса (1989 г.) такие значения этого показателя характерны для углей марки Б.

Зольность угольных пачек в стратиграфическом разрезе и по площади участка изменяется от 13,8 до 15,8 %, составляя в среднем по угленосной площади 14,4 % (см. табл. 2). По значениям этого показателя все угольные пласты относятся к группе среднезольных. Зольность с учетом засорения в среднем по региону 15,9 %.

Химический состав золы углей Старобельского угленосного района имеет своеобразное сочетание золообразующих компонентов и отличается от химического состава золы среднего карбона Донбасса. Их особенность – повышенное содержание Fe₂O₃, CaO, MgO, SO₃, Na₂O и пониженное SiO₂, Al₂O₃, K₂O (табл. 3). Согласно действующей классификации зола угольных пластов Старобельского угленосного района относится к железистому типу (см. табл. 3). Предельные температуры плавления золы угольных пластов приблизительно одинаковы и изменяются в пределах 1205–1260 °C, что позволяет отнести их к среднеплавким (1200–1350 °C).

Сернистость в среднем по региону повышена и составляет 3,8 %. По пластам отдельных свит ее средние значения изменяются в широких интервалах – от 1,6 до 5 %. Более 80 % углей района относится к группе высокосернистого угля. Видовой состав серы по основным пластам одинаков. Установлено, что снизить сернистость гравитационным методом возможно только на 20–30 %.

Выход летучих веществ по региону в среднем составляет 43,7 %, по пластоучасткам – 41,6–45,2 %. Стратиграфических закономерностей в изменении этого показателя не выявлено, что объясняется влиянием на выход летучих веществ петрогенетических особенностей углей.

Высшая удельная теплота сгорания угля в среднем составляет 30,4 МДж/кг, а по отдельным пластам варьирует от 29,3 до 30,8 МДж/кг. Низшая удельная теплота сгорания рабочего топлива колеблет-

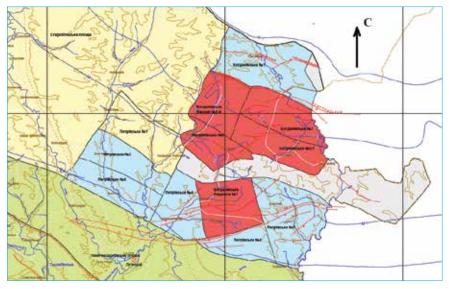


Рис. 2. Схема районирования Старобельского угленосного района.

Таблица 1

Угленосный район	Петрографический состав, %				D	Стадия мета-	Класс мета-
	Vt	Sv	I	L	$R_{\rm o}$	морфизма	морфизма
Старобельский	<u>75,9–78,8</u> 78,4	0,2-0,9 0,6	8,1-12,9 11,1	<u>8,7–11,3</u> 9,9	0,42-0,50 0,47	$\frac{0_3-I}{0_3}$	03-10 03
Лозовской	<u>73,8–88,3</u> 83,8	<u>0,2-2,2</u> 1,5	<u>5,8-15,5</u> 8,7	<u>4,3-9,7</u> 6,1	0,46-0,54 0,49	$\frac{0_3-I}{0_3}$	03-10 03
Старый Донбасс	88	1	8	3	_	_	_

Примечание. В числителе – диапазон значений, в знаменателе – среднее содержание.

ся от 16,2 до 25,7 МДж/кг при среднем значении 22,1 МДж/кг.

В соответствии с ДСТУ 3472–96 уголь пластов Старобельского угленосного района – каменный и классифицируется как уголь марки Д. По классификации, которая действует в странах СНГ (ГОСТ 25543–88), уголь всех пластов относится к каменному, марке Д, подгруппе длиннопламенного витринитового (ДВ). Согласно Международной системе кодификации ISO 11760 уголь пластов относится к среднему рангу (каменному углю). В этой классификации углей в пластах главный критерий, с помощью которого прежде всего разграничивается уголь, – показатель отражения витринита (R_0 , %). В соответствии с его значениями угли свит C_2^6 и C_2^7 (пласты m_3 и l_7) относятся к суббитуминозным углям низкого разряда, подкатегории А

Таблица 2

		,					
Показатели состава	Угленосный район						
и качества	Старобельский	Лозовской					
Технологические показатели							
<i>W</i> ^{max} , %	<u>12,8-17,5</u>	8 <u>6,9-14,8</u>					
	14,8	11,7					
W ^a , %	<u>6,9-8,9</u>	<u>3,3-6,6</u>					
	7,9	4,4					
$A^d_{\rm BH}$,%	<u>13,8-15,8</u>	11,3-20,4					
2	14,4	16,4					
S_t^d , %	<u>1,6-5</u>	<u>2,8-4</u>					
	3,8	3,2					
V^{daf} , %	<u>41,6-45</u>	41,0-43,8					
	43,3	42,1					
Q_s^{daf} , МДж/кг	<u>29,3-30,8</u>	30,7-32,5					
	30,4	31,6					
<i>Y</i> , мм	0	0-7					
Элементный состав							
C ^{daf}	75,4	76,3					
H ^{daf}	5,2	5,4					
(N+0) ^{daf}	14,9	14,3					

Примечание. В числителе – диапазон значений, в знаменателе – среднее содержание.

(Low-rank A (subbituminous coal)). Частично уголь пластов свит C_2^6 и C_2^7 классифицируется как суббитуминозный уголь низкого разряда, подкатегории A (Low-rank A (subbituminous coal)) – 40 и 30 % соответственно, и битуминозные угли среднего разряда, подкатегории D (Medium rank D (bituminous D)) – 60 и 70 % соответственно. Согласно классификации по петрографическому составу уголь всех пластов относится к группе с умеренно высоким количеством витринита (Moderately high vitrinite), классификации по зольности углей пластов (по средним показателям) – к средней категории.

В соответствии с ГОСТ 25543–88 среди направлений использования углей марки Д, подгруппы ДВ, возможны энергетические, технологические направления, а также производство строительных материалов и углеводородных адсорбентов.

Оценка пригодности углей для энергетики выполнена по действующему в Украине стандарту. Установлено, что уголь Старобельского угленосного района по показателю низшей теплоты сгорания $(Q_{i\text{ cp}}^{r}=22,1\text{ МДж/кг})$ относится к первой категории качества [3].

Угли Старобельского угленосного района характеризуются значительным содержанием минеральных примесей и трудной обогатимостью по золе и сере, повышенным количеством солей натрия [4]. Они не рекомендованы для пылевидного сжигания в современных котлах мощностью более 200 МВт, без облагораживания.

Наиболее пригодны для сжигания уголь пласта m_3 (почти на всей площади его распространения), а на отдельных участках распространения (Сватовская площадь и Петровское месторождение) – уголь пласта $k_2^{\rm H}$ [5]. Угли данного месторождения – хорошее сырье для энерготехнологической переработки. С учетом петрогенетичных и химикотехнологических свойств одно из перспективных направлений использования угля северных районов – гидрогенизация, предусматривающая наиболее полное и комплексное его использование. Уста-

новлено, что как по значениям отдельных показа- *Таблица 3* телей, так и по результатам лабораторных иссле- Угленосный район / Тип золы

дований угли относятся ко второй группе и пригодны для получения жидкого топлива [6, 7]. Промышленная угленосность в **Лозовском угленосном районе** приурочена к среднекаменно-

Промышленная угленосность в **Лозовском угленосном районе** приурочена к среднекаменноугольным отложениям свит от C_1^2 до C_2^7 включительно, которые являются естественным северо-западным продолжением продуктивных толщ Старого Донбасса.

Максимальной промышленной угленосностью, приуроченной к свитам C_2^6 и C_2^7 , характеризуется московский ярус. В башкирском ярусе максимум общей и рабочей угленосности приурочен к свите C_2^2 . Промышленные угольные пласты московского яруса распространены преимущественно в северной части, а пласты башкирского – в южной части Лозовского угленосного района.

Наличие промышленной угленосности во всех свитах среднего карбона дает возможность отследить закономерности изменения их состава в стратиграфическом разрезе.

По исходному материалу угли башкирского яруса относятся к гумолитам, с редкими включениями маломощных прослоев сапропелита. Макроскопически уголь башкирского яруса полублестящий тонкополосчатый на штриховатой основе с включениями фюзенизированных тканей в виде штрихов и линз небольшой мощности. По петрографическому составу уголь относится к классу гелитолитов, подклассу гелитов и гелититов с преобладанием фюзинито-гелитового и фюзинито-гелититового типов. Для углей башкирского нижнего цикла ($F_1 - H_A$) характерен более стабильный петрографический состав. Угли башкирского верхнего цикла $(H_4 - K_1)$ характеризуются большей изменчивостью петрографического состава, повышенными значениями коэффициента дюреновости [8].

Угли пластов московского яруса гумусовые, представлены гелитами и гелитолитами. Макроструктура преимущественно полосчатая. По микроструктуре угли в основном клареновые или дюрено-клареновые, очень редко кларено-дюреновые. По соотношению форменных элементов угли чаще смешанные (спорово-фюзеновые), реже споровые. Содержание петрографических групп варьирует как по мощности пластов, так и по площади их распространения и в стратиграфическом разрезе. По площади распространения угольных пластов наибольшей изменчивостью в петрографическом составе микрокомпонентов группы витринита и лип-

	Угленосный район/ Тип золы					
Химический состав золы, %	Старобель- ский/ Желези- стый	Лозовской/ Железистый	Старый Дон- басс/ Кремни- стый- желе- зистый			
SiO ₂	28,1	36,5	40,0			
Al_2O_3	14,0	18,8	19,5			
Fe_2O_3	27,5	21,8	25,9			
TiO ₂	0,3	0,7	-			
Ca0	10,7	7,4	5,2			
MgO	1,7	2,2	1,4			
SO ₃	13,0	7,8	4,6			
K ₂ O	1,1	1,6	1,7			
Na ₂ O	3,4	2,6	1,3			
P ₂ O ₅	0,2	0,4	0,4			

тинита характеризуются угли свиты C_2^6 , а группы инертинита — свиты C_2^7 .

По типовому петрографическому составу угли Лозовского угленосного района близки к углям среднего карбона Старого Донбасса (см. табл.1). В соответствии с классификацией угли относятся к классу гелитолитов и представлены липоидо-фюзинито-гелитами. По степени восстановленности уголь пластов весьма разнообразный — от маловосстановленного до восстановленного. Вверх по стратиграфическому разрезу количество пластов, сложенных более восстановленными углями, увеличивается.

Пласты Лозовского угленосного района, как и угли пластов среднего карбона Старого Донбасса, по петрографической классификации И. Б. Волковой относятся к гелитолитовому типу.

Отражение витринита ($R_{\rm o}$, %) угольных пластов по свитам изменяется в интервале 0,46–0,54 % при средневзвешенном значении этого показателя, равном 0,49 %. Угли башкирского яруса относятся к 10-му классу метаморфизма и находятся на I стадии метаморфизма. Угли московского яруса, как и угли угленосного района, в целом относятся к 03 классу 0_3 стадии метаморфизма.

Максимальная влагоемкость в среднем по региону достигает 11,7 % (см. табл. 2). Ее значения для пластов отдельных свит изменяются в пределах 6,9–14,8 %, составляя для пластов московского яруса 14,1 %, а для пластов башкирского – 9,9 %.

Количество *аналитической влаги* незначительно и в среднем составляет 4,4 %, в стратиграфическом разрезе изменяется от 3,3 до 6,6 %.

1899 1899

НАЦИОНАЛЬНОМУ ГОРНОМУ УНИВЕРСИТЕТУ 115 ЛЕТ

По средним значениям содержания минеральных примесей (16,4 %) уголь относится к высокозольному. Зольность угольных пластов башкирского яруса несколько повышена (17,7 %) по сравнению с зольностью углей московского яруса (14,7%). Химический состав золы углей Лозовского угленосного района мало отличается от химического состава золы среднего карбона Старого Донбасса. В составе золы углей Лозовского района преобладают следующие оксиды, %: $SiO_2 - 36,5$, $Fe_2O_3 -$ 21,8, Al₂O₃ - 18,8, SO₃ - 7,8, CaO - 7,4. Отметим повышенное содержание в золе по сравнению с химическим составом золы углей Старого Донбасса, оксидов MgO и Na₂O (см. табл. 3). В составе золы углей башкирского яруса содержание Na₂O составляет 1,7 %, а московского - 3,7 %.

Содержание серы в стратиграфическом разрезе изменяется от 2,8 до 4 % и в среднем по региону составляет 3,2 %. По содержанию общей серы изучаемые угли относятся к группе сернистых.

Выход летучих веществ углей по региону в среднем составляет 42,1 %, по отдельным свитам изменяется от 41 до 43,8 %. Стратиграфических закономерностей в изменении этого показателя не выявлено. Угли башкирского яруса характеризуются большими значениями этого показателя (42,3 %) по сравнению с углями московского яруса (41,7 %).

Высшая удельная теплота сгорания угля в среднем составляет 31,6 МДж/кг, по отдельным свитам варьирует от 30,7 до 32,5 МДж/кг. Для углей башкирского яруса характерны более высокие средние (32,1 МДж/кг) значения этого показателя, чем для углей московского яруса (30,9 МДж/кг) [9].

В элементном составе углей Лозовского района по сравнению с углями Старобельского района содержится больше углерода и водорода и меньше кислорода и азота (см. табл. 2).

Следует отметить наличие спекаемости у углей башкирского яруса. Толщина пластического слоя составляет в среднем 5–6 мм. Индекс Рога для пластов свит C_2^1 и C_2^2 достигает 20–50 усл. ед.

В соответствии с ДСТУ 3472–96 уголь пластов каменный и классифицируется как уголь марки Д (московский ярус) и частично ДГ (башкирский ярус).

Основные направления использования углей Лозовского угленосного района: пылевидное сжигание в крупных котлоагрегатах большой мощности, полукоксование и энерготехнологическая переработка.

Выводы. Полученные результаты показывают, что значительные запасы каменных углей низкой стадии метаморфизма, расположенные на северных окраинах Донецкого бассейна, – ценное сырье для комплексной энерготехнологической переработки. В дальнейшем необходимы дополнительные исследования для оценки возможности их использования на новых экологически чистых энергоблоках.

ЛИТЕРАТУРА

- 1. *Белоконь В. Г.* Новые месторождения каменных углей Северного Донбасса / В. Г. Белоконь // Уголь Украины. 1974. № 2 С. 1–4.
- 2. *Савчук В. С.* Опыт применения ПЭВМ для выявления закономерностей изменения состава и качества углей / В. С. Савчук // Геотехническая механика. Днепропетровск: Полиграфист, 2000. Вып. 17. С. 297 300.
- 3. Савчук В. С. Новые данные по составу и качеству углей северных окраин восточной части Донбасса / В. С. Савчук, В. Ф. Приходченко, Е. А. Кузьменко // Литология и геология горючих ископаемых: межвузов. науч. тематич. сб. Екатеринбург, 2012. Вып. VI (20). С. 155–165.
- 4. *Савчук В. С.* Хімічний склад золи вугілля Північного вугленосного району Донбасу/ В. С. Савчук, В. Ф. Приходченко, О. О. Кузьменко// Вісник ДНУ. Сер. Геологія. Географія. 2011. Вип. 13. С. 13–18.
- 5. *Савчук В. С.* Склад і якість вугілля Богданівського родовища та основні напрями його раціонального використання / В. С. Савчук, О. О. Кузьменко // Вісник ДНУ. Сер. Геологія. Географія. 2010. Вип. 12. С. 30 36.
- 6. *Ocunos A. M.* Сернистые угли Северного Донбасса резерв для производства синтетического жидкого топлива / [А. М. Осипов, З. В. Бойко, С. В. Грищук и др.] // Уголь Украины. 2005. № 6. С. 42–44.
- 7. *Savchuk V.* Complex use of coal of Northern part of Donbsss / V. Savchyk, V. Prykhodchehko, V. Buzylo etc. // Mining of mineral deposits. 2013. P. 181–183.
- 8. Savchuk V. Petrographic Characteristic of Middle Carboniferous Coal of Bashkirian Formation in Lozovskoi Coal Area of Western Donbas / V. Savchuk, V. Prykhodchenko, D. Prykhodchenko, V. Tykhonenko // Mining of Mineral Deposits. 2014. P. 114–117.
- 9. *Приходченко Д. В.* Характеристика складу та якості вугілля Північної Самойлівської площі Західного Донбасу / Д. В. Приходченко // Наукові праці ДонНТУ. Сер. Гірничогеологічна. 2012. Вип. 2(17). С. 54–60.