

М. Н. МАТРОФАЙЛО, канд. геол.-минер. наук (ИГГГИ НАН Украины)

В. Ф. ШУЛЬГА, доктор геол.-минер. наук (ИГН НАН Украины)

Н. Д. КОРОЛЬ, инж. (ОП ГРЭ ГП «Львовуголь»)

И. Е. КОСТИК,инж.(Львовская ГРЭ ДП«Западукргеология»)

УДК 553.94:551.735(477.83)

К угленосности визейских отложений Ковельской перспективной площади Львовско-Волынского каменноугольного бассейна

Изложены результаты изучения морфологии и генезиса визейского угольного пласта v_0^3 глубоких горизонтов на территории Ковельской перспективной площади Львовско-Волынского каменноугольного бассейна. Впервые составлена карта морфологии этого пласта, а также охарактеризовано его промышленное значение. Важное научное и практическое значение проведенных исследований состоит в познании общих процессов формирования морфологии угольных пластов и их изменчивости.

Ключевые слова: угольный пласт v_0^3 , Ковельская площадь, морфология, расщепление, градиент расщепления, прогнозные ресурсы.

Контактная информация: mmatrofaylo@gmail.com

Решение проблемы изучения угольных пластов для дальнейшего освоения Львовско-Волынского бассейна (ЛВБ), как в работе [1], возможно путем разработки промышленных глубоких горизонтов в пределах действующих шахт для продления их эксплуатации, а также освоения новых перспективных участков. Исследования показали, что к ним относится Ковельская перспективная площадь, располагающаяся на крайнем северо-западе бассейна, где пласт v_0^3 имеет промышленное значение. Помимо угольного пласта v_6 , он является вторым по промышленной значимости и самым нижним кондиционным пластом угленосной формации ЛВБ [2].

Ковельская угленосная площадь размещается в пределах Ковельского тектонического выступа – части Ковельско-Хрубешувского поперечного поднятия, отделяющего Львовский палеозойский прогиб от Люблинского [3]. Для выступа характерны горсто-взбросовые дислокации, обусловившие волнообразный характер границы распространения карбона, а также субгоризонтальное залегание угленосных отложений на эродированную поверхность сильно нарушенных пород нижнего палеозоя.

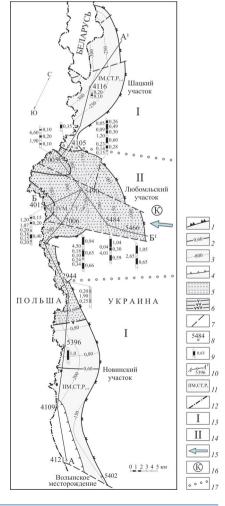
Пласт v_0^3 распространен на всей территории Ковельской угленосной площади, в частности на Шацком, Любомльском и Новинском участках (рис. 1), и располагается в нижней части владимирской свиты, залегающей с перерывом на нижнепалеозойских образованиях (рис. 2). Он расщепляется и состоит из двух пластов угля рабочей мощностью $v_0^{3\mathrm{H}}$ и $v_0^{3\mathrm{B}}$ (рис. 3). Нижний пласт $v_0^{3\mathrm{H}}$ залегает на глубинах 319,6-551,2 м. Его мощность из-

Нижний пласт v_0^{3H} залегает на глубинах 319,6 – 551,2 м. Его мощность изменяется от 0,10 до 2,17 м. На Новинском и Любомльском участках она кондиционная и колеблется от 0,59 до 2,17 м на площади 261,2 км². Севернее на Шацком участке пласт весьма тонкий нерабочей мощностью 0,3–0,35 м. Изменчивость мощности слабая и только на западе Любомльского участка сильная и весьма сильная. Его строение изменяется от простого до сложного. Пласт относительно выдержанный. Без породных прослоев он распространен на Новинском, Шацком и востоке Любомльского участках. В западной, наиболее

ГЕОЛОГИЯ И МАРКШЕЙДЕРИЯ

погруженной части Любомльского участка, он содержит один или два породных прослоя мощностью 0,1-0,38 м. Углистый аргиллит мощностью 0,15-0,38 м развит в основании, средней части и в кровле пласта и полностью замещает уголь (скважина 2944). Угольный пласт v_0^3 расщепляется. Это локальное расщепление (скважина 7005)—следствие бифуркации. Мощность породного прослоя, представленного аргиллитом, достигает 1,9 м.

представленного аргиллитом, достигает 1,9 м. Верхний пласт $v_0^{\, 3\mathrm{B}}$ залегает на глубинах 319,6 – 546,7 м под известняком V₁. Мощность пласта изменяется от 0,1 до 1,38 м. С кондиционной мощностью, которая колеблется от 0,94 до 1,38 м, он распространен на площади 129,9 км² Любомльского и Новинского участков, на Шацком - пласт нерабочий (0,1 -0,15 м). Изменчивость мощности слабая. Пласт относительно выдержанный. Его строение меняется от простого до средней сложности и сложного. Породные прослои представлены углистым аргиллитом и аргиллитом мощностью 0,04 - 0,09 м. На юге Любомльского участка углистый аргиллит мощностью 0,2 м полностью замещает уголь (скважина 2944). Угольный пласт $v_0^{3_{\rm B}}$ расщепляется аналогично нижнему. Выделенное расщепление относится к бифуркации и имеет локальное распространение. Мощность породного прослоя достигает 1,2 м. Локальные расщепления пластов v_0^{3H} и v_0^{3B} расположены в наиболее активном в тектоническом плане центральном Любомльском участке Ковельской площади.


В целом угольный пласт v_0^3 имеет сложное строение и, как отмечалось, расщепляется на два кондиционных угольных пласта, образуя сложную поэтапную (трехразовую) бифуркацию и достигая общей максимальной мощности на Любомльском участке (см. рис. 1, 3). Расщепляющий породный прослой сложен песчаниками, алевролитами и аргиллитами. Его наибольшая мощность 6,60 м (скважина 7005). Такая особенность характерна и для изменения мощности всей угленосной толщи, которая достигает максимума в центре изучаемой площади и уменьшается в северном и южном направлениях. Градиент расщепления на разных отрезках изменяется от 0,16 до 0,45 м на

1 км и в среднем составляет 0,28 м. Контуры расщепления имеют субширотное простирание и на востоке площади прерываются вместе со всей каменноугольной толщей вследствие эпигенетического размыва угленосной формации. Это следствие сложного взаимодействия как первичных, так и вторичных факторов формирования каменноугольных отложений.

К началу образования карбона изученная площадь представляла собой заболоченную приморскую низменность с тектонически расчлененной и размытой водными потоками поверхностью с разностью отметок докарбонового палеорельефа более 20 м. В центральной части территории существовало долинообразное понижение шириной более 20 км, переходящее к северу и югу в междолинные пространства. В долине накапливался русловый и пойменный аллювий (рис. 4). Верховья палеореки располагались на востоке – в области Украинского щита [4].

Проведенные авторами статьи палеогеоморфологические реконструкции показали, что в период формирования угольного пласта v_0^3 , а также известняка

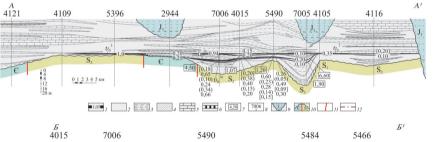
V₁ долинообразное понижение испытывало более интенсивное унаследованное опускание по сравнению с соседними, более приподнятыми площадями. Материнское вещество угольного пласта накапливалось в торфяниках, сапропелевых озерах, располагавшихся как в палеодолине, так и на

Рис. 1. Карта морфологии угольного пласта v_0^3 Ковельской угленосной площади Львовско-Волынского бассейна: 1 – граница эпигенетического размыва угленосной формации; 2 – изопахиты угольного пласта, м; 3 – изогипсы подошвы угольного пласта, м; 4 – контур преимущественно эпиторфяных размывов угольного пласта; 5 – угольный пласт сложного строения (две и более угольных пачки); 6 – контур расщепления угольного пласта на разных стратиграфических уровнях; 7 – разрывные тектонические нарушения; 8 – скважина и ее номер; 9 – структура пласта, мощность угольных пачек и породных прослоев; 10 – расположение детализационных разрезов; 11 – буквенно-цифровой индекс угольного пласта; 12 – государственная граница; 13 – заболоченная приморская низменность; 14 – дельта; 15 – направление палеоводотоков; 16 – Ковельськая карбоновая гидрографическая система; 17 – граница палегеографических зон.

ГЕОЛОГИЯ И МАРКШЕЙДЕРИЯ

Система	Ярус	Свита	Литологический	Мощность отложений,	Синонимика	
Сис	Яр	CBI	разрез	угольного пласта, м	угля	извест- няка
	кий	иваничская С, іу	5	0-0,30		V_6
угольная	Серпуховся			0-0,30 0-0,15	$v_{_{4}}^{_{3}}v_{_{4}}^{_{2}}$	V ₅
		а я Сірг		0-0,08 0-0,28	v_3^3	V_4
		ицка		0-0,28	v_3^1	**
о н н		пор		0-0,84 0-0,60	v_{2}^{5}	V_3
а м е				0-0,10 0-0,36 0-0,20	$v_{2}^{3}v_{2}^{4}$ v_{2}^{2} v_{2}^{2}	
K a	зейский	устилуж- ская С, из		0,10-0,30		V_2
		$C_1 \nu l$		0-0,16		V_1^2
		владимирская С, и		0-0,30	$v_{\scriptscriptstyle 0}^{\scriptscriptstyle 3_{\scriptscriptstyle \mathrm{B}}}$	V_1^2 V_1
	Ви	влади		$0-1,38 \\ 0-0,10 \\ 0,10-2,17$	$v_0^{3_{ m H}}$	V 1
€.	/ S	C, kl	€ / S	До 3		
1 2 3 4 5 6 6						

Рис. 2. Литолого-стратиграфический разрез угленосных отложений Ковельской перспективной площади: 1 – песчаник; 2 – алевролит; 3 – аргиллит; 4 – известняк; 5 – пласты угля рабочей (a) и нерабочей (b) мощности (общая мощность каменноугольных отложений до 224 м); 6 – стратиграфические несогласия.


междолинных пространствах. Однако наиболее благоприятные условия для формирования мощных торфяников существовали на склонах долинообразного понижения и, в меньшей степени, в ее центральной части, характеризующейся высоким уровнем стояния вод, повышенной гидродинамикой, при-

долине определили своеобразный петрографический состав углей пласта v_0^3 . Они преимущественно слагаются матовыми, полуматовыми кларено-дюреновыми углями с широким развитием мацералов группы инертинита: семифюзинит, фюзинит, микринит и др. В углях широко представлена группа липтинита, в основном - споринитом. Исходя из научных представлений, исходный органический материал подобного петрографического состава накапливался в сильно проточных торфяных болотах в условиях постоянного доступа кислорода, деятельности микробов и выноса большей части гуминовых кислот [5]. В такой обстановке происходило интенсивное разложение лигнито-целлюлозного вещества, а в результате вымывания его проточной массой - обогащение органической массы наиболее стойкими от разрушения микрокомпонентами группы липтинита (спорами, кутикулой и др.). Из-за слабой обводненности, низкого уровня стояния болотных вод, подсыхания и окисления торфяной массы междолинные пространства характеризовались менее благоприятными условиями торфонакопления. При сочленении двух угольных пластов в один, в пределах указанных палеогеоморфологических форм, последний замещается углистым аргиллитом и впоследствии выклинивается.

Специфические условия торфонакопления в палео-

вносом в торфяники значительного количества терригенного материала, что привело к сложному строению угольных пластов и их повышенной зольности.

Вместе с тем уголь пластов v_0^{3H} и v_0^{3B} средневысокозольный, средневысокосернистый и в соответствии с ДСТУ 3472-96 относится к марке Д. Прогнозные ресурсы со-

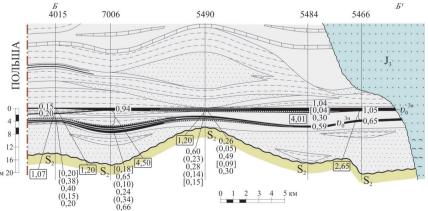


Рис. 3. Морфологические разрезы угольного пласта v_0^3 по линиям $A-A^1$ и $B-B^1$ (расположение линий разрезов см. рис. 1): 1 – угольный пласт и его мощность, м; 2 – аргиллит; 3 – алевролит; 4 – песчаник; 5 – известняк; 6 – углистый аргиллит; 7 – мощность расщепляющего породного прослоя; 8 – буровая скважина и ее номер; 9 – юрский размыв угленосной формации; 10 – размытая поверхность кембрийских и силурийских отложений, подстилающих угленосные отложения; 11 – разрывные тектонические нарушения; 12 – государственная граница.

ГЕОЛОГИЯ И МАРКШЕЙДЕРИЯ

ставляют 282 млн т. Исходя из качественных показателей, уголь может использоваться как топливо в энергетической промышленности, а также рассматривается в качестве потенциального сырья для получения высококачественного синтетического жидкого топлива [6]. Горно-геологические и гидрогеологические условия, по аналогии с действующими шахтами прилегающего Нововолынского углепромышленного района, благоприятны для разработки угольных пластов.

Таким образом, впервые выявлена зависимость угленосности от особенностей предкарбонового палеорельефа на территории Ковельской угленосной площади ЛВБ, которая проявляется в повышенной мощности угленосных отложений, бифуркации угольного пласта и усложнении его строения в направлении долинообразного понижения. Такой тип угленакопления характерен для угленосных формаций древних платформ, залегающих непосредственно на эрозионной поверхности подстилающих их образований [7 – 9], и определяет необходимость иного подхода к ведению поисково-разведочных работ.

Выводы. Значительная изменчивость морфологии угольного пласта v_0^3 в пределах Ковельской перспективной площади определяется специфическими палеотектоническими условиями углеобразования, зависящими от формирования каменноугольных отложений на основании с тектонически расчлененным и размытым водными потоками палеорельефом, представленным разновозрастными отложениями раннего палеозоя. Установлено сложное строение и расщепление угольного пласта v_0^3 на два кондиционных пласта $v_0^{3\mathrm{H}}$ и $v_0^{3\mathrm{B}}$, которое образует поэтапную бифуркацию.

Изложенные в статье материалы уточняют и расширяют представления об угленосности и формировании морфологии угольных пластов глубоких горизонтов северо-западной части ЛВБ. Они свидетельствуют о перспективности территории для поиска новых угольных месторождений с неглубоким (в среднем 350 – 450 м) залеганием рабочих угольных пластов. Прерванные здесь в настоящее время поисковые работы необходимо возобновить.

ЛИТЕРАТУРА

- 1. *Костик І. О.* Перспективи промислової вугленосності нижньої частини кам'яновугільної формації Львівсько-Волинського басейну / І. О. Костик, М. М. Матрофайло, С. С. Сокоренко // Геологія і геохімія горючих копалин. 2007. № 1. С. 27 44.
- 2. *Костик И. Е.* Об угленосности глубоких горизонтов Львовско-Волынского бассейна / И. Е. Костик, М. Н. Матрофайло, В. Ф. Шульга, Н. Д. Король // Уголь Украины. 2012. Nº 8. C. 41 45.

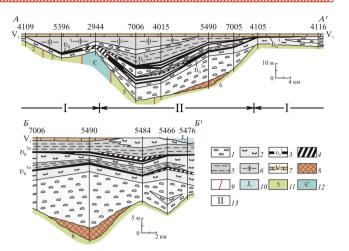


Рис. 4. Фациальные профили нижней части визейских отложений Ковельской площади ЛВБ (расположение профилей см. рис. 1): фации: 1 - песчаных и алевритовых осадков устьев и низовьев рек; 2 – алевритовых и глинистых осадков заболоченных приморских низменностей и зарастающих водоемов; 3 - углистых осадков торфяных болот и сапропелевых озер (угольный пласт и его индекс); 4 - углисто-глинистых осадков заиливающихся торфяных болот и сапропелевых озер; 5 – глинистых и алевритовых осадков приморских озер, сильно опресненных лагун и заливов: 6 и 7 - глинистых и карбонатных осадков прибрежного и мелкого моря; 8 - кора выветривания; 9 – тектонические нарушения; отложения: 10 - юры; 11 - силура; 12 - кембрия; 13 - палеогеографические элементы: I – междолинное пространство, II – долинообразное понижение.

- 3. Знаменская Т. А. Блоковая тектоника Волыно-Подолии / Т. А. Знаменская, И. И. Чебаненко. К.: Наук. думка, 1985. 156 с.
- 4. *Шульга В. Ф.* Карбоновые реки Львовско-Волынского бассейна и их связь с тектоникой / В. Ф. Шульга, Т. А. Знаменская // Геол. журн. 1995. № 2. С. 36 40.
- 5. *Петрографические* типы углей СССР. М.: Недра, 1975. 248 с.
- 6. *Барна Т. В.* Опыт и перспективы переработки углей в жидкое топливо / Т. В. Барна, С. Д. Пожидаев // Наук. вісник НГА України. 2000. № 4. С. 5–7.
- 7. *Корженевская А. С.* Литологическая характеристика визейской угленосной толщи / А. С. Корженевская, В. Ф. Шульга, Б. Г. Виноградов и др. // Геология месторождений угля и горючих сланцев СССР. М.: Госгеолтехиздат, 1962. Т. 2. С. 77 114.
- 8. *Нагірний В. М.* Палеогеографічні умови утворення кайнозойських буровугільних покладів України. К.: Наук. думка, 1977. 108 с.
- 9. *Днепровский* буроугольный бассейн. К.: Наук. думка, 1987. 328 с.

Уголь Украины, март, 2014 **49**