УДК 622.23.05

Методика расчета количества запасных частей

Изложен метод расчета количества запасных частей для горношахтного оборудования, взрывозащищенного и рудничного электрооборудования, обеспечивающий достаточно высокую достоверность результатов.

Ключевые слова: предприятие, энергомеханическая служба, горношахтное оборудование, электрооборудование, запасные части.

Контактная информация: ukrniive@ukrniive.com.ua

о время технического обслу-Вживания и текущего ремонта тех видов и типов горношахтного оборудования, взрывозащищенного и рудничного электрооборудования, которые согласно ДСТУ 2860-94 относятся к ремонтируемым объектам, на угольном предприятии нередко возникает ситуация, при которой на центральном складе и в кладовых ремонтных мастерских создается дефицит запасных частей одного вида, марки, типоразмера и избыток других. При этом возникает, во-первых, длительный (сверхнормативный) простой оборудования в обслуживании и ремонте, а во-вторых, нежелательный перерасход оборотных средств предприятия. Поэтому правильный расчет необходимого количества запасных частей для предприятия - постоянная проблема.

Исходя из этого, в разных отраслях промышленности неоднократно предпринимались попытки представить методику расчета количества запасных частей в отраслевых стандартах, например ОСТ16 0.801.196-84 [1], РД12.002-92 [2], ГСТУ3-29-150-96 [3]. Однако использование такого нормирования на практике нередко приводило к противоречивым результатам вследствие

того, что исходные данные, как правило, оказывались весьма неопределенными. Поэтому, признавая достаточно высокую математическую обоснованность предлагаемой методики расчета количества запасных частей, основанной на нормативах [1, 2, 3], следует учесть, что достоверность получаемых результатов во многом зависит от опыта ее практического использования специалистами энергомеханической службы предприятия.

В соответствии с ДСТУ 2860–94 все запасные части классифицируются на невосстанавливаемые, подлежащие только однократному использованию, и восстанавливаемые, которые после определенного срока их применения можно отремонтировать и использовать повторно.

Для **невосстанавливаемых** запасных частей (сборочные единицы, детали, элементы) расчет включает определение:

а) среднего количества отказов *i*-й невосстанавливаемой запасной части в течение расчетного срока службы:

$$n_{\rm cpi} = N_i t_3 k_{\rm cvr} / T_i, \tag{1}$$

где N_i – количество однотипных запасных частей i-го вида в изделии;

Б. Н. ВАНЕЕВ, канд. техн. наук (ГП «УкрНИИВЭ»)

 $t_{_{
m 9}}$ – расчетный срок эксплуатации (равный, например, одному году или сроку гарантии);

 $k_{\text{сут}}$ – суточный коэффициент (доля) машинного времени работы изделия в течение суток эксплуатации;

 T_i – средняя наработка на отказ запасной части i-го вида;

б) количества невосстанавливаемых запасных частей, обеспечивающего заданную вероятность α_i отсутствия простоев изделия из-за нехватки запасных частей i-го вида

$$n_{\alpha_i} = \rho_{\alpha_i} n_{\text{cp}_i}, \tag{2}$$

где ρ_{α_i} – коэффициент, определяемый по табл. 1;

в) вероятности простоев изделия из-за отсутствия всех видов его запасных частей:

$$Q = 1 - \prod_{i=1}^{k} \left[1 - (1 - \alpha_i) \right], \tag{3}$$

где k – количество видов запасных частей в изделии.

Суточный коэффициент машинного времени $k_{\rm сут}$ для электродвигателей и их пусковой, защитной и регулирующей аппаратуры

$$k_{\text{CVT}} = t_{\text{Г.ДВ}} / 8760,$$

где $t_{\rm r.дв}$ – средняя по отрасли годовая наработка двигателя данной горной машины, ч;

Уголь Украины, июнь, 2014 **25**

Вероятность отсут-	Значения коэффициента $ ho_{lpha_i}=n_{lpha_i}/n_{ ext{cp}_i}$ при общем количестве образцов N_i										
ствия простоев α_i	25	50	75	100	150	200	300	400	600	800	1000
0,900	1,24	1,18	1,15	1,12	1,10	1,09	1,07	1,06	1,06	1,05	1,04
0,920	1,27	1,20	1,16	1,14	1,11	1,10	1,08	1,07	1,06	1,05	1,04
0,940	1,30	1,22	1,17	1,15	1,13	1,11	1,09	1,08	1,06	1,05	1,05
0,960	1,35	1,25	1,20	1,17	1,14	1,12	1,10	1,09	1,07	1,06	1,05
0,980	1,41	1,30	1,24	1,21	1,17	1,14	1,12	1,10	1,08	1,07	1,06
0,990	1,47	1,34	1,27	1,22	1,19	1,16	1,13	1,12	1,09	1,08	1,07
0,992	1,50	1,35	1,28	1,24	1,20	1,17	1,14	1,12	1,10	1,08	1,08
0,994	1,52	1,36	1,29	1,25	1,21	1,18	1,14	1,13	1,10	1,09	1,08
0,996	1,55	1,38	1,31	1,27	1,22	1,19	1,15	1,13	1,11	1,09	1,08
0,998	1,60	1,42	1,34	1,29	1,24	1,21	1,17	1,14	1,12	1,10	1,09
0,999	1,66	1,46	1,37	1,32	1,26	1,22	1,18	1,15	1,13	1,11	1,10

8760 – продолжительность одного календарного года, ч.

Значения $t_{\rm г,дв}$ для разных видов горных машин на основании технической и нормативной литературы (например, [4, 5]), приведены в табл. 2. Для электродвигателей машин и механизмов, не указанных в табл. 2 и эксплуатируемых как в подземных условиях, так и в поверхностных технологических комплексах, среднее значение $t_{\rm г,дв}$ в зависимости от их мощности составляет: от 0,25 до 55 кВт – 3000 ч; от 75 до 110 кВт – 3800 ч; от 132 до 315 кВт – 4500 ч.

Для общесетевых электрических аппаратов и машин (комплектных распределительных устройств, трансформаторов и комплектных трансформаторных подстанций, фидерных автоматических выключателей, аппаратов защиты от токов утечки) средняя по отрасли годовая наработка принята $t_{\rm r}=8570$ ч, отсюда суточный коэффициент машинного времени

$$k_{\text{CVT}} = 8570 : 8760 = 0,978.$$

Для **восстанавливаемых** запасных частей формула (1) приобретает вид

$$n_{\rm cpi} = N_i t_9 k_{\rm cyr} K_6 / T_i; \tag{4}$$

$$K_{6} = 1 - K_{\text{II},\text{II}} - K_{\text{B}}, \tag{5}$$

где K_{6} – коэффициент выбраковки запасных частей после их однократного использования;

 $K_{\text{п.и}}$ – коэффициент повторного использования запасных частей без их ремонта;

 $K_{_{\rm B}}$ – коэффициент восстановления запасных частей в условиях ремонтной мастерской предприятия.

Значения коэффициентов $K_{\text{п.и}}$ и $K_{\text{в}}$ принимаются на основании статистических данных эксплуатирующего предприятия по результатам наблюдения за надежностью, повторным использованием и ремонтом запасных частей каждого вида.

При расчетах по формулам (1) - (5) известную трудность представляет определение средней наработки на отказ i-й запасной части T_i , так как этот показатель в нормативной документации на запасные части (технические условия на поставку изделия, руководство по эксплуатации, паспорт изделия) указывается редко. Поэтому в данном случае специалистам энергомеханической службы предприятия приходится в основном ориентироваться на результаты собственных наблюдений за надежностью запасных частей разного вида и типа. Необходимо уточнить, что вопрос о сроке службы для отдельных запасных частей не прост: для наиболее долговечных из них проведение наблюдений затруднительно, поскольку надо дождаться пока выйдет из строя достаточно много запасных частей данного вида, типа. Наилучшее разрешение этой проблемы - проведение наблюдений предприятиями - изготовителями оборудования и запасных частей, результаты которых из-за их массовости более достоверны.

Исходя из указанных затруднений, расчет количества запасных частей следует проводить методом последовательных приближений (аналогичным математическому методу итерации). Чтобы добиться постепенного совпадения результатов расчета с фактическим состоянием дел на рассматриваемом предприятии в прошлом и в текущем году (учитывая дефицит одних видов запасных ча-

ГОРНОШАХТНОЕ ОБОРУДОВАНИЕ

Таблица 2

	Годовая наработка, ч			
Оборудование	Средняя по отрас- ли	Интервал изменения		
Широкозахватные очистные				
комбайны для пластов:				
тонких	1800	1150 – 3500		
средних и мощных	2300	1600 – 3800		
Узкозахватные очистные ком-				
байны с индивидуальной кре-				
пью для пластов:				
тонких	2000	950 – 3200		
средних и мощных	2200	1500 – 3800		
крутых	1600	700 – 2700		
То же, с механизированными				
комплексами для пластов:				
тонких	1900	1300 – 3500		
средних и мощных	2300	1300 - 4600		
Угольные струги и скреперо-				
струги для пластов:				
тонких	1100	900 – 1600		
средних	1400	600 – 2000		
Врубовые машины	1500	1000 - 2100		
Проходческие комбайны:				
избирательного действия	2400	1800 - 2500		
бурового действия	4500			
	1000			

Окончание табл. 2

	Годовая наработка, ч				
Оборудование	Средняя по отрас- ли	Интервал изменения			
Погрузочные машины действия:					
непрерывного	810	750 – 900			
циклического	920	800 – 1100			
Конвейеры скребковые забой-					
ные для пластов:					
тонких	2700	300 – 4000			
средних и мощных	3800	600 – 4400			
То же, ленточные магистраль-					
ные	4100	1900 – 5000			
Лебедки:					
грузовые и маневровые	1600	220 - 1800			
откаточные и подъемные	1300	700 – 5300			
Вентиляторы местного					
проветривания	8300	3700 – 8600			
Насосы:					
главного водоотлива	3900	2100 – 4900			
местного водоотлива	2800	1000 – 5700			
орошения и предварительно-					
го увлажнения	3200	700 – 6000			
шламовые, гидротранспорта	4400	2200 – 6000			
Компрессоры передвижные	6600	6000 - 6900			
Буровые станки	2300	300 – 2700			

стей и избыток других), вначале целесообразно привести несколько вариантов контрольных расчетов. И только после этого результаты самого достоверного варианта расчета можно использовать как основание для заказа запасных частей на последующий период.

Вывод. Методика расчета количества запасных частей обладает достаточно высокой математической обоснованностью и может быть использована специалистами энергомеханической службы предприятия для практического использования методом последовательных приближений.

ЛИТЕРАТУРА

- 1. Оборудование электротехническое взрывозащищенное и рудничное. Надежность. Методика сбора и статистической обработки информации по результатам эксплуатационных испытаний: ОСТ16 0.801.196–84. М.: Минэлектротехпром СССР, 1984. 159 с.
- 2. *Изделия* угольного машиностроения. Нормирование расхода запасных частей: РД12.002-92. К.: Госкомитет Украины по угольной промышленности, 1992. 29 с.
- 3. *Надійність* виробів Мінмашпрому. Розрахування комплектів запасних елементів: ГСТУЗ-29-150-96. К.: Мінмашпром України, 1996. 30 с.
- 4. Электрооборудование для угольных шахт: Каталог / [А. И. Пархоменко, И. Г. Ширнин, Б. Н. Ванеев и др.]. М.: ЦНИЭИуголь, 1992. 318 с.
- 5. Ванеев Б. Н. Обеспечение надежности асинхронных двигателей. IV. Внешние воздействующие факторы //Уголь Украины. 1997. № 10. С. 47–51.

Уголь Украины, июнь, 2014 **27**