УДК 622.7

Технологический анализ работы углеобогатительных фабрик Украины

Приведены результаты технологического анализа показателей работы углеобогатительных фабрик Украины, обогащающих уголь для энергетики, коксования и подотрасли в целом, а также ЦОФ «Дуванская», ЦОФ «Кураховская», ЦОФ «Свердловская», в сравнении с базовым 1990 г.

Ключевые слова: углеобогатительная фабрика, показатели работы, анализ, потери выхода концентрата.

Контактная информация: tehotdel.ukrnii@gmail.com

Виду непрерывного ухудшения качества добываемых углей обогащение – обязательная стадия в производстве топлива, удовлетворяющего по своему качеству требованиям потребителей.

Особое значение углеобогащение приобретает в связи с развитием рыночных отношений, когда непосредственное экономическое выражение получают не только потребительская ценность угольных концентратов, но и полнота извлечения полезных компонентов в товарные продукты при минимальных материальных издержках на их производство. Поэтому важнейшим показателем углеобогатительных фабрик является технологическая оценка их работы.

Технологическая оценка работы углеобогатительной фабрики осуществляется путем сравнения годовых показателей базового и отчетного периодов времени. Таким же образом технологическую оценку можно дать работе группы фабрик или всех фабрик в целом.

За базовый период принимается год, в котором фабрика достигла максимальных качественно-количественных показателей. Например, для Украины это 1990 г., когда углеобогатительные фабрики работали с максимальной нагрузкой, с жесткими требованиями к качеству отгружаемой товарной продукции, с удовлетворительным техническим состоянием основного и вспомогательного оборудования и без простоев из-за отсутствия железнодорожных вагонов или автотранспорта, а обеспечение материалами, реагентами и флокулянтами соответствовало нормам.

Основной критерий технологической оценки работы углеобогатительной фабрики – увеличение или снижение выхода товарной угольной продукции в рассматриваемом году в сравнении с базовым.

А. Д. ПОЛУЛЯХ, доктор техн. наук (ОП «УкрНИИуглеобогащение» ГП «НТЦ «Углеинновация»)

д. А. ПОЛУЛЯХ, канд. техн. наук (Национальный горный университет)

Элиминирование независящих от обогатительной фабрики колебаний качественных характеристик сырья достигается приведением указанных характеристик сырья и концентрата, присущих базовому периоду, к показателям сырья и концентрата года, который рассматривается.

Пересчет качественных характеристик различен при получении двух и трех конечных продуктов обогащения и осуществляется в соответствии с работой [1].

Если изменение выхода в концентрате в новом варианте получается со знаком плюс, то работа фабрики в рассматриваемом периоде была улучшена, если со знаком минус – ухудшена.

43

Уголь Украины, ноябрь, 2015

	Изменение выхода $\Delta\gamma$, %, и выпуска ΔP , тыс. т, концентрата на углеобогатительных фабриках											
Год	для энергетики		для коксования		для энергетики и коксования		«Дуванская»		«Кураховская»		«Свердловская»	
	Δγ	ΔΡ	Δγ	ΔΡ	Δγ	ΔΡ	Δγ	ΔΡ	Δγ	ΔΡ	Δγ	ΔΡ
1990	-	-	-	-	-	-	-	-	-	-	-	_
1991	-3,3	-2162,3	-2,9	-1276,7	-3,0	-3286,5	+0,7	+11,8	-1,8	-26,6	-1,7	-64,2
1992	-3,3	-2012,2	-4,2	-1806,0	-3,6	-3743,1	+0,8	+13,5	-1,4	-22,4	-2,2	-69,0
1993	-3,2	-1718,9	-2,6	-839,0	-2,8	-2407,5	+0,4	+4,2	-0,6	-8,5	-2,9	-85,8
1994	-3,5	-1476,4	-2,4	-527,0	-4,7	-3014,6	-5,9	-26,9	-0,9	-8,5	-2,5	-51,2
1995	-4,4	-1532,4	-1,5	-289,0	-4,9	-2650,7	-3,7	-14,4	-0,7	-5,1	-1,7	-28,3
1996	-4,2	-1134,6	-1,9	-352,5	-3,9	-1777,1	-5,5	-10,0	+2,1	+11,1	-1,9	-14,8
1997	-3,0	-799,7	+0,4	+106,9	+0,2	+106,7	-3,1	-11,5	+8,0	+65,1	-2,5	-21,0
1998	-3,0	-800,3	+1,6	+415,1	+0,2	+105,2	-0,6	-1,5	+4,9	+32,6	-2,0	-27,4
1999	-3,1	-856,0	+0,6	+129,4	-1,5	-737,7	-4,8	-18,8	+3,2	+23,5	-2,2	-35,7
2000	-3,1	-867,4	+0,7	+174,3	+0,1	+47,9	-2,9	-14,5	+4,3	+29,0	-2,5	-39,8
2001	-2,5	-662,1	+0,4	+103,7	-0,6	-314,3	-3,3	-16,6	+2,5	+35,8	-3,1	-75,4
2002	-2,2	-556,0	+0,3	+52,6	-1,6	-685,0	-7,3	-20,6	+4,0	+62,5	-2,5	-63,8
2003	-2,4	-579,0	+2,3	+388,4	-0,7	-287,1	+0,1	+0,6	+5,4	+91,5	-3,0	-83,7
2004	-1,4	-550,0	+2,9	+1201,0	+1,4	+1129,7	+1,6	+15,8	+6,4	+114,9	-2,1	-69,2
2005	-1,1	-431,2	+2,3	+804,7	+0,8	+593,5	-1,9	-19,9	+5,9	+65,6	-2,8	-91,3
2006	-1,5	-645,1	+1,9	+597,1	+0,3	+223,9	-1,2	-13,5	+6,5	+99,3	-2,7	-94,1
2007	-1,9	-775,6	+2,7	+788,4	-0,2	-140,0	+3,9	+40,1	+6,7	+121,1	-3,5	-118,0
2008	-2,4	-992,5	+2,5	+755,1	0	0	+3,7	+42,8	+7,4	+163,3	-6,1	-193,7
2009	-2,2	-847,9	+2,7	+704,8	+0,2	+129,3	+4,5	+48,0	+7,6	+147,9	-5,2	-197,9
2010	-2,0	-801,3	+3,0	+871,3	+1,1	+760,2	+3,9	+46,2	+10,1	+223,9	-4,4	-198,1
2011	-1,3	-577,8	+3,2	+952,7	+0,8	+593,7	+3,6	+43,5	+11,5	+278,6	-6,3	-235,8
2012	-1,2	-533,8	+4,1	+1167,8	+1,4	+1021,5	+4,3	+54,4	+7,0	+162,6	-6,0	-225,4
2013	-1,2	-551,2	+3,8	+1149,3	+1,8	+1371,2	+6,4	+70,7	+12,3	+276,6	-7,3	-285,1
Итого		-21863,7		+5272,4		-12961,4		+215,0		+1933,8		-2369,3

В настоящем исследовании рассмотрены два вопроса: работа углеобогащения как подотрасли и работа конкретных углеобогатительных фабрик. По первому вопросу проанализировано обогащение коксующихся, энергетических углей и углеобогащения в целом; по второму фабрики, обогащающие угли: ЦОФ «Дуванская», ЦОФ «Кураховская» и ЦОФ «Свердловская». Исходные данные взяты из справочников, которые ежегодно выпускаются ОП «УкрНИИуглеобогащение» [2].

Результаты анализа технологических схем углеобогатительных фабрик Украины за 1990-

2013 гг. приведены в таблице и на рис. 1 и 2, из которых следует, что энергетический комплекс углеобогатительных фабрик Украины за последние 23 года постоянно (в сравнении с 1990 г.) работает с потерей выхода концентрата. Максимальные потери концентрата – в 1995 г. (4,4 %).

В последние годы просматривается тенденция к снижению потерь. Так, средние потери выхода концентрата составили –3,4 % в 1991–2000 гг., –2 % в 2001–2010 гг. и –1,2 % в 2011–2013 гг. Общие потери товарного энергетического концентрата достигли 21,8 млн т,

в том числе за последние три года – более 1,5 млн т, или 0,5 млн т ежегодно. Эти данные свидетельствуют о возможности получения дополнительного количества товарного энергетического концентрата путем сокращения потерь горючей массы с отходами углеобогащения.

Рассматривая итоги анализа работы фабрик, обогащающих угли для коксования, можно сделать вывод, что их работа более эффективна. Потери выхода концентрата наблюдались с 1991 по 1996 г., а с 1997 г. фабрики работают с положительным сальдо. Средний выход концентрата составил –1,2 % в 1991–2000 гг., +2,1 % – в 2001–2010 гг., +3,7 % – в 2011–2013 гг. Эти данные свидетельствуют о том,

данные свидетельствуют о том, что модернизация фабрик, обогащающих угли для коксования, позволяет усовершенствовать технологию обогащения углей, а это способствует увеличению выхода коксового концентрата за счет сокращения его потерь с отходами углеобогащения. Дополнительный выпуск

коксового концентрата составил более 5 млн т, в том числе за последние три года – более 3,2 млн т, или по 1 млн т ежегодно.

Анализ работы всех углеобогатительных фабрик Украины свидетельствует, что в целом отрасль устойчиво снижает потери горючей массы. Если суммарные потери выхода концентрата с 1991 по 2000 г. составляли -2,4 %, то в период с 2001 по 2010 г. их почти не было ($\Delta \gamma_{\kappa}$ = +0,1 %), а в 2011-2013 гг. выход увеличился на +1,3 %. В целом за рассматриваемый период отрасль потеряла 12,9 млн т концентрата, однако в 2011-2013 гг. его прирост составил около 3 млн т. или около 1 млн т в год.

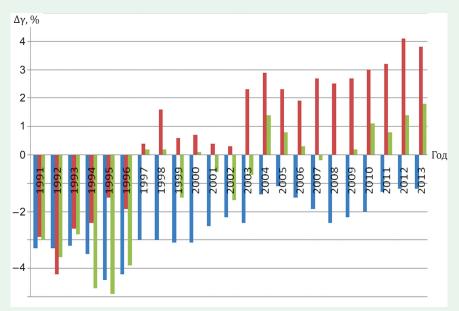


Рис. 1. Сальдо выхода концентрата углеобогатительных фабрик для энергетики, коксования и угольной отрасли в целом в сравнении с базовым 1990 г.:

■ – энергетика;
■ – коксование;
■ – энергетика и коксование.

Проанализировав качественно-количественные показатели работы ЦОФ «Дуванская», ЦОФ «Кураховская» и ЦОФ «Свердловская», которые приведены в таблице и на рис. З и 4, можно констатировать, что ЦОФ «Дуванская», обогащающая угли марок К и Ж, постоянно совершенствует технологическую схему. Если в 1991–2000 гг.

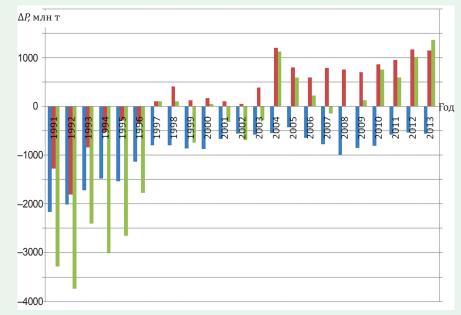


Рис. 2. Сальдо выпуска концентрата углеобогатительных фабрик для энергетики, коксования и угольной отрасли в целом в сравнении с базовым 1990 г.:

■ – энергетика;
■ – коксование;
■ – энергетика и коксование.

Уголь Украины, ноябрь, 2015

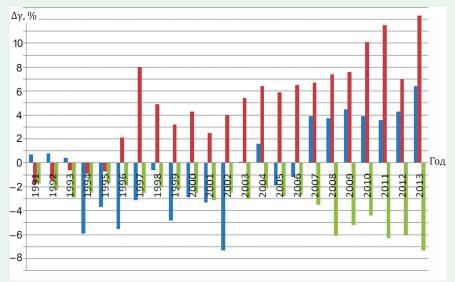


Рис. 3. Сальдо выхода концентрата центральных углеобогатительных фабрик «Дуванская», «Кураховская», «Свердловская» в сравнении с базовым 1990 г.:

— «Дуванская»; — - «Кураховская»; — - «Свердловская».

потери выхода концентрата в среднем составляли -2,5%, то в следующем десятилетии потерь уже не было ($\Delta\gamma_{\rm K}=+0,4$ %), а в 2011-2013 гг. прирост выхода концентрата достиг +4,8%. Прирост выпуска концентрата за 23 года составил 215 тыс. т, в том числе в 2011-2013 гг. 168,6 тыс. т, или 56,2 тыс. т в год.

ЦОФ «Кураховская», обогащающая угли марок ДГ и Γ , постоянно совершенствует свою технологическую схему и наращивает выход концентрата за счет снижения потерь горю-

чей массы с отходами производства. Средний прирост выхода концентрата составил +1,7 % в 1991–2000 гг., +6,3 % в 2001–2010 гг., достиг +10,3 % в 2011–2013 гг. За 23 года фабрика получила дополнительно около 2 млн т концентрата, в том числе только за последние три года – 717,8 тыс. т, или около 240 тыс. т в год.


ЦОФ «Свердловская», обогащающая угли марки А, постоянно увеличивает потери горючей массы с отходами углеобогащения, снижая при этом выход и выпуск концентрата. Так, если в 1991–2000 гг. средние потери выхода концентрата были -2,2 %, то в 2001–2010 гг. составили -3,5 %, а в

2011-2013 гг. – уже -6,5 %. Общие потери выпуска концентрата за 23 года достигли около 2,4 млн т, в том числе -746,3 тыс. т, в 2011-2013 гг., или около 250 тыс. т ежегодно.

Изложенное обусловливает необходимость технического перевооружения действующих предприятий на основе научного обоснования, поиска и применения новых прогрессивных процессов, высокопроизводительного, эффективного и с минимальной энергоемкостью оборудования, позволяющих сократить потери го-

рючей массы с отходами производства.

Результаты анализа теории и практики углеобогащения в Украине и за рубежом, а также материалы последних международных конгрессов по обогащению углей свидетельствуют, что в настоящее время эффективность обогащения угля в основном повышается за счет совершенствования технологических схем и их аппаратурного оформления, и прежде всего за счет улучшения подготовительных и вспомогательных процессов, различных компоновочных решений технологических операций.

Рис. 4. Сальдо выпуска концентрата центральных углеобогатительных фабрик «Дуванская», «Кураховская», «Свердловская» в сравнении с базовым 1990 г.:

— «Дуванская»; — – «Кураховская»; — – «Свердловская».

К новым технологическим тенденциям в практике углеобогащения следует отнести:

- повсеместный переход на обогащение рядового угля с трех на пять и более машинных классов;
- применение тяжелосредных гидроциклонов вместо гидравлических отсадочных машин на операции обогащения мелкого машинного класса;
- расширение объема шламовых продуктов, направляемых на обогащение;
- повышение роли флотации при обогащении тонкозернистых шламов с использованием пневматической колонной флотации, т. е. снижением нижней границы крупности обогащаемого этим процессом материала. Осуществление флотации по узким классам крупности, причем каждый класс крупности обогащается в отдельной флотационной машине со своим реагентным и гидродинамическим режимом;
- ужесточение норм качества и нормативных потерь горючей массы с отходами производства;
- дробление не только крупного, но и мелкого промышленного продукта до крупности 13 и 6 мм, а если требуется, то до 3 и 1 мм с последующим его переобогащением;
- реализацию принципа «одна фабрика одна марка угля»;
- ограничение распространения павлоградских углей, что приводит к ухудшению показателей работы флотации на многих фабриках. Как показали исследования, при содержании в сырьевой базе фабрики до 10 % павлоградских углей следует менять реагентный режим, 10–30 % – менять реагенты, более 30 % –

изменять технологию флотации, прежде всего за счет введения дополнительной операции по обезыливанию питания флотации или выделения двух машинных классов флотационной крупности;

- восстановление качественно-количественных показателей работы фильтровальных отделений путем выделения соответствующей по гранулометрическому составу и зольности зернистой присадки к флотоконцентрату. Количество зернистой присадки должно быть на уровне 20–30 % количества флотоконцентрата и зольностью менее 20 %;
- увеличение срока службы илонакопителей за счет применения ленточных классификаторов, осадительных центрифуг и фильтрпрессов для улавливания твердой фазы из суспензий.

Выводы. Внедрение современных технологий в производство позволяет нейтрализовать негативные особенности переработки рядового угля, сложившиеся на углеобогатительных фабриках Украины, увеличив при этом выход товарной продукции и ее реализационную стоимость.

ЛИТЕРАТУРА

- 1. *Полулях А. Д.* Технологические регламенты углеобогатительных фабрик: справ.-информ. пособие / А. Д. Полулях. Днепропетровск: НГУ, 2002. 856 с.
- 2. Технико-экономический анализ работы углеобогатительных фабрик Украины за 1990–2013 гг. Луганск: УкрНИИ-углеобогащение. 1991. 192 с.; 1992. 133 с.; 1993. 140 с.; 1994. 143 с.; 1995. 166 с.; 1996. 173 с.; 1997. 152 с.; 1998. 138 с.; 1999. 122 с.; 2000. 109 с.; 2001. 105 с.; 2002. 116 с.; 2003. 115 с.; 2004. 95 с.; 2005. 95 с.; 2006. 104 с.; 2007. 125 с.; 2008. 119 с.; 2009. 114 с.; 2010. 122 с.; 2011. 124 с.; 2012. 118 с.; 2013. 114 с.; 2014. 119 с.

ПО МАТЕРИАЛАМ ЖУРНАЛА «УГОЛЬ УКРАИНЫ» ПРОШЛЫХ ЛЕТ

Год 1974

В журнале № 12 в статье В. В. Смирнякова, В. А. Ващилина, В. Л. Федулина, А. С. Татура, Ю. Г. Панина «Применение конвейерного транспорта при разработке крутых пластов» говорится о том, что опыт применения в выемочных штреках конвейерного транспорта вместо рельсового при разработке крутых пластов на шахте им. XXII съезда КПСС показал возможность обеспечения безремонтного поддержания подготовительных выработок. Использование конвейерного транспорта, особенно на шахтах с трудными условиями поддержания подготовительных выработок, позволяет значительно улучшить показатели работы шахт.

Уголь Украины, ноябрь, 2015 **47**