УДК 622.822.22

Критические параметры самовозгорания угля

Приведено теоретическое обоснование размеров скопления угля, подверженного самовозгоранию, и его инкубационного периода. Определены значения критической толщины скопления угля с учетом теплообмена с окружающей средой. Проведен сравнительный анализ значений инкубационного периода самовозгорания угля, полученных по известному и предлагаемому методам.

Ключевые слова: самовозгорание, критическая температура, критическая толщина скопления, инкубационный период.

Контактная информация: orlikova.69@yandex.ru

Известно, что эндогенные пожары происходят не постоянно, а эпизодически либо не возникают совсем. Это может быть связано с низкой химической активностью углей или благоприятными условиями для отвода теплоты, образуемой при их окислении. Отсюда необходимость разработки методов определения условий, в которых скопления угля не повышают эндогенную пожароопасность.

Самовозгорание угля – процесс, связанный с условиями накопления и рассеивания теплоты в скоплении угля. Генерация теплоты вследствие поглощения кислорода углем происходит во всем объеме скопления, а отвод теплоты – через поверхность. Следовательно, возможность самовозгорания угля зависит от соотношения между объемом скопления угля и площадью его поверхности.

Практически это подтверждает самовозгорание только относительно большого скопления угля. Анализ мест и причин эндогенных пожаров, выполненный в работе [1], показывает, что наибольшее количество самовозгораний связано со слоевым скоплением, образующимся в результате обрушения угольных пачек и пропластков. Поэтому при определении пожароопасности угольного скопления прежде всего нужно определить его критическую (наименьшую) толщину, при которой самовозгорание еще возможно.

Самовозгорание скоплений угля, толщина которых выше критической, происходит только в том случае, когда генерация теплоты превышает ее потери. Граница безопасной в пожарном отношении ситуации создается при условии, что температура в скоплении угля стабилизируется в пределах критического значения и выше не поднимается. Это соответствует стационарному процессу, когда генерация теплоты равна ее теплоотводу. Определив экспериментальную критическую температуру самовозгорания угля и константу скорости его окисления при критической температуре, можно вычислить критическую толщину

п. с. пашковский, доктор техн. наук

С. П. ГРЕКОВ, доктор техн. наук

В. П. ОРЛИКОВА, инж.

слоевого скопления, опасного по самовозгоранию.

В работе [1] сделано предположение, что отвод теплоты от скопления угля происходит путем теплопроводности, с учетом чего уравнение теплового баланса для стационарного процесса сформулировано в виде

$$\frac{d^2 T/dy^2}{dy} = qk \ \overline{C}/\lambda;$$

$$\frac{dT}{dy}\Big|_{y=0} = \alpha \ (T-T_0)/\lambda,$$
(1)

где *T*₀ и *T* – начальная и текущая температура в скоплении угля, К;

- у пространственная координата, м;
- *q* теплота реакции окисления угля, Дж/м³;
- k константа скорости окисления угля, с⁻¹;

C – среднее значение объемной доли кислорода в угольном скоплении, %;

α – коэффициент теплоотдачи, Вт/(м²·К);

 λ – коэффициент теплопроводности угля, Bt/(м·K).

Предположив, что значение λ/α при скоростях воздуха, соответствующих фильтрационным утечкам через выработанное пространство, весьма незначительно, выражение для критической толщины скопления угля получено в виде

$$m_{\rm kp} = \sqrt{2\lambda (T_{\rm kp} - T_0)/(qk\,\overline{C}\rho)},\tag{2}$$

где ρ – средняя плотность угля, кг/м³.

Использование данной модели с оговоренными ограничениями позволило установить критические толщины скоплений угля по 46 шахтопластам за 10-летний период, где произошло около 50 пожаров, и подтвердить правильность модели. Вместе с тем, как видно из выражения (2), это решение не учитывает теплоотдачу, которая присутствует в постановке задачи (вторая из формул (1)), что сужает использование модели.

Целесообразно также в постановке задачи учесть время самовозгорания угля, чтобы одновременно определить инкубационный период самовозгорания. Поэтому предлагаем модель, позволяющую более точно вычислить критическую толщину скопления угля $m_{\rm kp}$ и установить время достижения углем критической температуры самовозгорания, т. е. инкубационный период.

Цель исследования – теоретическое обоснование минимальной толщины скопления угля, подверженного самовозгоранию, и его инкубационного периода.

Используем предложенную в работе [2] на основании теоретических исследований [3] математическую модель самовозгорания материалов за счет химических реакций окисления в виде

$$T = T_0 \{ 1 + \Gamma_{\rm T} \sum_{k=1}^{\infty} B_k [1 - \exp(-(\mu_k^2 - \Gamma_{\rm T}) \, {\rm Fo}) / / (\mu_k^2 - \Gamma_{\rm T})] \},$$
(3)

где Г_т – комплексный критерий генерации теплоты, определяемый зависимостью

$$T_{\rm T} = [\xi a_{\rm C}^* a_{\rm O_2} \, qk / (\rho c_V T_0)](m^2/a); \tag{4}$$

 ξ – доля реакционной поверхности угля, принимающей участие в окислении;

 $a_{\rm C}^*$ и a_{0_2} - концентрации углерода и кислорода в угле, моль/м³;

k – константа скорости окисления угля, м³/(моль·с); c_V – теплоемкость угля при постоянном объеме, Дж/(кг·К);

т – толщина скопления угля, м;

а – коэффициент температуропроводности, м²/с;
 Fo – критерий Фурье, определяемый по формуле

$$Fo = at/m^2; (5)$$

t – время, с;

 B_k – коэффициенты, определяемые из уравнения [4]

$$B_k = 6 \text{Bi}^2 / [\mu_k^2 (\mu_k^2 + \text{Bi}^2 - \text{Bi})];$$

Ві – критерий теплообмена,

Bi =
$$\alpha m / \lambda$$
; (6)

 μ_k – корни уравнения tg μ = –[μ /(Bi – 1)] [4].

Из анализа выражений (3) – (5) следует, что существенное влияние на изменение температуры угля оказывают, кроме времени, константа скорости окисления, значение критерия Ві и концентрация кислорода. Концентрацию кислорода в угле определяют его природные характеристики – коэффициент внутренней диффузии, пористость, дробимость, фракционный состав, степень метаморфизма, а также концентрация кислорода на границе уголь-воздух.

Влияние химической активности угля *k* на процесс его самонагревания подробно изучен [5]. Значения *k* изменяются для различных углей не более чем на один порядок.

Как показали исследования [2], с достаточной для практических целей точностью можно ограничиться одним членом суммы в уравнении (3) и одним корнем µ. Значения Ві, как правило, менее единицы, что позволяет использовать зависимость µ² = 3Bi [4].

Для случая Bi = 0 выражение (3) примет вид

$$\ln \left(T/T_0 \right) = \Gamma_{\rm T} \text{Fo.} \tag{7}$$

Подставляя в уравнение (7) выражения (4) и (5), получим

БЕЗОПАСНОСТЬ ТРУДА

откуда, принимая *t* = *t*_{инк}, время инкубационного периода

$$t_{\rm MHK} = \ln \left(T/T_0 \right) \left[\rho c_V T_0 / (\xi a_C^* a_{0,2} qk) \right]. \tag{9}$$

Поскольку величины m^2 и a (в числителе и знаменателе формулы (8)), сокращаются, то изменение температуры во времени при Bi = 0 не зависит от размеров скопления самоокисляющегося органического материала и является функцией только комплексного параметра A.

Для случая наличия теплообмена между скоплением самовозгорающегося материала и окружающей средой сделаем некоторые математические преобразования в уравнении (3), приняв µ² = 3Bi:

$$T/T_0 = 1 + \{ [1 - \exp((\Gamma_{\rm T} {\rm Fo})^{-b})]/b \},$$
 (10)

где $b = 3Bi/\Gamma_{T} - 1$.

Из выражения (10) следует, что динамика температуры скопления материала, подверженного самонагреванию, зависит от двух безразмерных параметров: $\Gamma_{\rm T}$ Fo = ln ($T_{\rm Kp}/T_0$), характеризующего температуру угля при Bi = 0, и *b* – определяющего приток $\Gamma_{\rm T}$ и отток Bi теплоты. Здесь $T_{\rm Kp}$ – критическая температура самовозгорания угля.

Используя выражение для Г_тFo и решая уравнение (10) относительно *t*, получим

$$t_{\text{инк}}|_{\text{Bi}\neq0} = -\{\ln[-b((T_{\text{kp}}/T_0 - 1 - 1/b)]/b\}(\rho c_V T_0)/(\xi a_C^* a_{02} qk). (11)$$

Сравнивая уравнения (9) и (11), видим, что при b = 1 (Bi = 0) выражение (11) приобретает вид уравнения (9). Таким образом, параметр bопределяет значение $t_{инк}$ (с точностью до множителя B) при теплообмене скопления угля с окружающей средой.

Выражение (11) при Bi = const определяется значением $t = f(T_{\kappa p}/T_0, b)$. Функция \bar{t} имеет четыре характерные точки:

$$\overline{t} = \ln(T_{\text{кр}}/T_0)$$
 при $b = -1$; $\overline{t} = T_{\text{кр}}/T_0 - 1$ при $b = 0$;
 $\overline{t} = -\ln(2 - T_{\text{кр}}/T_0)$ при $b = 1$; $\overline{t} \to \infty$ при $b = 1/(T_{\text{кр}}/T_0 - 1)$,

T. e.
$$3Bi/Γ_T - 1 = 1/(T_{KD}/T_0 - 1).$$
 (12)

Графическое использование зависимости \bar{t} при различных $T_{\rm kp}/T_0$ и *b* для определения инкубационного периода самовозгорания угля показано на рис. 1.

Используя формулы (6) и (8) для Ві и Г_т, из формулы (12) найдем уравнение для толщины скопления материала:

$$\begin{split} m &= 3(a/\lambda) aB / \{1 + 1/[(T_{\kappa p}/T_0) - 1]\} = \\ &= [(T_{\kappa p} - T_0)/T_{\kappa p}] \cdot 3(a/\lambda) a \rho c_V T_0 / (\xi a_C^* a_{0_2} qk). \end{split}$$
(13)

Полученная зависимость позволяет по данным о теплофизических свойствах самовозгорающегося материала (в частности, угля) и коэффициентам теплоотдачи определить минимальную толщину его скопления, подверженного самовозгоранию.

Используем установленные в работе [5] согласно Методике [6] значения параметра a = 0,072 Вт/(м²·К) для некоторых углей и константы скорости окисления в диапазоне $5 \cdot 10^{-9} \dots 25 \cdot 10^{-9} \text{ м}^3$ /(моль·с) [1]. Примем наибольшие и наименьшие значения отношений критических температур самовозгорания угля к начальным равными 1,17...1,35; $\lambda = 0,3$ Вт/(м·К); $a = 1,7 \cdot 10^{-7} \text{ м}^2$ /с. Произведя вычисления по формуле (13), получим значение основных параметров углей (табл. 1), из анализа данных которой

Рис. 1. Зависимость \overline{t} от b при различных $T_{\rm kp}/T_0$: $1 - T_{\rm kp}/T_0 = 1,45$; $2 - T_{\rm kp}/T_0 = 1,4$; $3 - T_{\rm kp}/T_0 = 1,35$; $4 - T_{\rm kp}/T_0 = 1,3$; $5 - T_{\rm kp}/T_0 = 1,25$; $6 - T_{\rm kp}/T_0 = 1,1$.

БЕЗОПАСНОСТЬ ТРУДА

Таблица 1

Параметр		T _{кр} /T ₀ = при k·10 ⁹ , м	350/300 м ³ /(моль·с)		<i>T</i> _{кр} / <i>T</i> ₀ = 400/300 при <i>k</i> ·10 ⁹ , м ³ /(моль·с)					
	5	,2	2	0	5	,2	20			
ξ	0,009 0,003		0,009	0,003	0,009	0,003	0,009	0,003		
$A \cdot 10^7$, c ⁻¹	0,38	0,12	1,45	0,48	0,38	0,12	1,45	0,48		
<i>B</i> •10 ^{−6} , c	26,5	79,5	6,9	20,7	26,5	79,5	6,9	20,7		
<i>т,</i> м	0,43	1,3	0,11	0,34	0,86	2,5	0,23	0,67		
$\Gamma_{_{ m T}}$	0,05	0,14	0,01	0,04	0,2	0,54	0,05	0,15		
Bi	0,1	0,3	0,02	0,08	0,2	0,58	0,07	0,16		
b	5,0	5,4	5,2	5,0	2,0	2,2	3,2	2,2		
\overline{t}	0,43	0,42	0,39	0,43	0,54	0,60	0,69	0,6		
t _{инк} _{Ві=0} , сут	47	141	12	36	88	264	22	69		
t _{инк} _{Ві≠0} , сут	109	392	30	102	168	552	55	143		

следует, что для различных углей критическая толщина их скоплений *m*, подверженных самовозгоранию, составляет 0,1–2,5 м, а инкубационный период самовозгорания – от нескольких суток (при малых *m*) до года и более (при больших *m*).

Для каждого вида углей с конкретными параметрами окисления и размерами скопления инкубационный период может быть рассчитан по формуле (11). Для удобства расчетов значение tможно определить из рис. 1 по значениям $\Gamma_{\rm T}$ и Ві.

Чтобы сравнить полученные по предлагаемой методике результаты с данными работы [1], рассчитаем критическую толщину скопления самовозгорающегося угля для некоторых шахт по данным табл. 2.

Долю реакционной поверхности угля, вступающей в реакции окисления ξ, находим

														10.00	
Шахта; символ пласта	V ^г , ^{k·10⁹, ^{M³/(мольс)}}									Толщина слоевых скоплений угля, м			<i>t_{инк,}</i> сут		
		<i>k</i> •10 ⁹ , м ³ /(моль•с)	$T_{\rm \kappa p}/T_0$	ξ	A·10 ⁷ , c ⁻¹	B·10 ^{−6} , c	Γ_{T}	Bi	b	ī	фак- тиче- ская	критическая			
												по работе [1]	по настоя- щему расчету	Bi = 0	Bi ≠ 0
«Северная»; <i>l</i> ₃	25	22,8	358/300	0,007	1,73	5,78	0,43	0,16	0,09	0,20	0,65	0,29	0,12	12	13
«Северная»; m_3	21	15,1	388/297	0,007	2,32	4,31	0,05	0,05	1,64	0,42	0,2	0,44	0,12	13	21
«Комсомолец»; <i>l</i> ₃	33	24,8	366/298	0,006	2,12	4,72	1,12	0,23	-0,40	0,22	0,95	0,29	0,11	11	12
Им. А. Ф. Засядько; <i>т</i> ₃	35	6,95	385/307	0,005	1,53	6,55	0,08	0,07	1,67	0,33	0,30	0,31	0,16	17	25
Им. Г. Г. Капустина; т ₃	27	18,0	327/298	0,007	1,02	9,79	0,07	0,08	2,42	0,11	0,35	0,21	0,11	10	13
«Александровская»; l_1	9	16,0	380/300	0,006	1,99	5,03	0,19	0,10	0,54	0,29	0,40	0,33	0,13	14	17
«Булавинская»; l_1	9	15,2	366/298	0,006	1,58	6,32	0,06	0,06	2,09	0,31	0,25	0,23	0,14	15	23

Таблица 2

согласно зависимости, приведенной в работе [7]:

 $\xi = -7,24 \cdot 10^{-6} (V^{\,\rm r})^2 + 2,99 \cdot 10^{-4} V^{\,\rm r} + 3,76 \cdot 10^{-3},$

где V^г– массовая доля летучих веществ в угле, %.

Из анализа представленных в табл. 2 данных следует, что параметры теплообмена угля с окружающей средой влияют на его инкубационный период самовозгорания и критические значения толщины скопления угля, которые во всех анализируемых случаях несколько ниже, чем полученные в работе [1].

Выводы. Дано теоретическое обоснование критической толщины скопления угля, подверженного самонагреванию, и его инкубационного периода, основанное на реакции окисления поверхности угля и процессах теплообмена. На конкретных примерах показано, что использование предложенного метода позволяет более точно определить пожаробезопасные размеры скоплений угля и рассчитать инкубационный период самовозгорания за счет соотношения параметров генерации теплоты и его отдачи в окружающую среду.

<u>ЛИТЕРАТУРА</u>

1. *Пашковский П. С.* Эндогенные пожары в угольных шахтах / П. С. Пашковский. – Донецк: Ноулидж, 2013. – 791 с.

2. Пашковский П. С. Определение склонности углей к самовозгоранию / П. С. Пашковский, С. П. Греков, Я. Я. Цыганкевич, И. А. Шайтан // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». – Донецк, 2000. – С. 10–16.

3. *Греков С. П.* Неизотермическая адсорбция вещества сферическим микропористым зерном, сопровождаемая химическими реакциями второго порядка / С. П. Греков, А. Е. Калюсский, В. В. Баклан, Б. И. Кошовский // Теоретические основы химической технологии. – 1998. – Т. 32, № 2. – С. 122–125.

4. *Лыков А. В.* Теория теплопроводности. – М.: Высш. шк., 1997. – 599 с.

5. *Греков С. П.* Влияние динамики хемосорбции кислорода углями на их склонности к самовозгоранию / С. П. Греков, А. Е. Калюсский, Б. И. Кошовский // Горноспасательное дело: сб. науч. тр. / НИИГД «Респиратор». – Донецк, 1995. – С. 21–28.

6. *Методика* определения коэффициентов теплоотдачи. – Донецк: ИФГП НАНУ, 2013. – 12 с.

7. *Греков С. П.* Особенности низкотемпературного окисления углей и их пожароопасность / С. П. Греков, А. А. Всякий, В. П. Орликова // Уголь Украины. – 2015. – № 7–8. – С. 51–54.

ПО МАТЕРИАЛАМ ЖУРНАЛА «УГОЛЬ УКРАИНЫ» ПРОШЛЫХ ЛЕТ

Год 1974

В журнале № 12 в статье Я. П. Гущина, А. М. Костина, А. Н. Тузикова «Новый рекорд проходчиков на шахте «Должанская-Капитальная» описано, что в феврале 1974 г. бригада проходчиков была переведена на шахту «Должанская-Капитальная». Пятилетний план завершен бригадой 1 октября 1974 г. С начала пятилетки производительность труда возросла на 41 %. За три года и 9 месяцев девятой пятилетки бригадой пройдено 9579 м выработок при плане 6094 м; выполнен объем строительно-монтажных работ на сумму 5,1 млн руб. и благодаря сокращению срока строительства получена экономия 471,7 тыс. руб.; достигнута производительность труда одного проходчика 7,8 м в месяц.

За 9 мес. 1974 г. пройдено 9202 м³ околоствольных выработок. Уровень выполнения норм составил 137 %, производительность труда 2,04 м³ на выход, что в 2,2 раза превышает среднюю выработку по комбинату.

За высокие достижения в труде 23 члена бригады награждены орденами и медалями, 10 – знаками «Шахтерская слава».