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Abstract. Passive, broadband targeted energy transfer refers to the one-way directed transfer of
energy from a primary subsystem to a nonlinear attachment; this phenomenon is realized in damped,
coupled, essentially nonlinear impact or particle dynamic vibration absorber (DVA). An impact damper
isapassive control device which takes the form of afredy moving mass, constrained by stops attached to
the structure under control, i.e the primary structure The damping results from the exchange of
momentum during impacts between the mass and the stops as the structure vibrates. A particle-based
damping system can overcome some limitations of ordinary DVA by using particles as the damping
medium and inter- particle interaction as the damping mechanism. Large damping at such family
congtructions of DVA'’s does not bring to destruction an elastic DVA eement over in critical cases, when
working frequency approaches own frequency of DVA, or when the trangitional process of acceleration
of rotating machinesis sow enough and DVA's has time to collect large amplitudes of vibrations.

The primary structure is moddled as a spring-mass sysem. In this paper, an eficient numerical
approach basad on the theoretical-experimental method is proposed to maximize the minimal damping of
maodes in a prescribed frequency range for general viscous tuned-mass sysems. Methods of decompasition
and numerica synthesis are considered on the basis of the adaptive schemes. The influence of dynamic
vibration absorbers and basic design dastic and damping properties is under discussion. A technique is
developed to give the optimal DV A’ s for the dimination of excessive vibration in sinusoidal forced rotating
system. It is found that the buffered impact damper not only significantly reduces the accd erations, contact
force and the associated noise generated by a callision but also enhances the leve of vibration contral.

Theinteraction of DVA’s and basic design elastic and damping properties is under discussion.
One task of this work is to analyze parameters identification of the dynamic vibration absorber and
the basic structure. The discrete-continue models of machines dynamics of such rotating machines as
water pump with the attachment of particle DVA’s and elongated element with multi mass impact
DVA's are offered. A technique is developed to give the optimal DVA's for the dimination of
excessive vibration in harmonic stochastic and impact loaded systems.

Introduction

The impact damping method has two limitations. First, damping does not occur at low frequencies
where the acceleration of the container is lower than that of gravity because the particles lack sufficient
energy to begin colliding with each other and instead they move as one lumped mass. Second, the damping
capabilities are dependent on the quantity and mass of free particles available for collisions. The tendency
of particles to self-assemble into a packed configuration under vibration can reduce the availability of free
particles and theref ore decrease damping eff ectiveness.

A tuned mass damper (TMD), or dynamic vibration absorber (DVA), is found to be an efficient,
reliable and low-cost suppression device for vibrations caused by harmonic or narrow-band excitations. In
DVA design the stiffness and the damping ratio can be determined by balancing the two fixed points in the
frequency response [1], in the case of harmonic excitation, or by minimizing the mean-square response
under the random excitation, or by balancing the poles of system. Most leading text books on mechanical
vibrations discuss the basic equations of DVA’s to some extend, eg. [1-3]. Among the pioneering
publications providing an in-depth theoretical treatment are those by Ormondroyd and Den Hartog [4] and
Den Hartog [5]. For linear DVA’s a closed theory is available, but due to the large number of system
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parameters and varying technical applications with different requirements no unique solution exists.
Generally, asignificant influence of damping on the vibration reduction performance is observed.

The problem of attaching DVA to a discrete multi-degree-of-freedom or continuous structure has
been outlined in many papers and monographs by Bishop and Welbourn [6], Warburton [7], Hunt [8],
Snowdon [9], Korenev and Rabinovic [10] and Aida et al. [11] to name but a few. Nonlinear DVA have
been investigated by Kolovsky [12], Kauderer [13], Pipes [14], Roberson [15]. The article [16] of Ibrahim
presents a comprehensive assessment of honlinear DVA'’s in the absence of active control means.

In [17] an improved scheme is proposed for identifying the time of contact and calculation of the
state variables after impact. This scheme avoids false detection of collisions and embodies collisions or
contacts with infinitesimally small differences in velocities. Detailed experiments with a horizontal impact
damper explain in [17] the general performance and the resonance vibration of the integrated system,
which occurs at a frequency, which is different from the original resonance frequency.

An impact damping system can overcome some limitations by impact as the damping medium and
impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA or any
number of such absorbers. Such originally designed absorbers reduce vibration sdectively in maximum
vibration mode without introducing vibration in other modes. For example, the final result is achieved by
DVA at far less expense compared to the cost needed to replace the machine foundation with a new,
sufficiently massive one. In [18-20] the particle DVA’s are presented.

In order to determine the optimal parameters of an absorber the need for complete modeling is
obvious. Present research has developed a modern prediction and control methodology, based on a
complex continuum theory and the application of special frequency characteristics of structures. The
numerical schemes (NS) row for the complex vibroexcitated construction and methods of decomposition
and the NS synthesis are considered in our paper on the basis of new methods of modal synthesis [21-24].
The DVA designed in accordance with our proposals also has the advantage that it can be constructed such
that it has a wide-range vibration absorption property. Such originally designed absorbers reduce vibration
selectively in maximum mode of vibration without introducing vibration in other modes.

Similar in a mathematical plan tasks are examined in [25]. Here basic task: maximally effectively to
pass energy to the container with details which are processed.

Dynamic egquations
Let us consider condensed model of DVA - main system. In Fig. 1 the impact mass type DVA is
presented: an additional impact mass in container with elastic barrier elements.
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Fig. 1. Pendulum type DVA with the additional elements

The system of equations in the condensed rangy is obtained:

q2
my dtzl +kq (U - ug)+Kkalug - up)- mx%:?m (Uxy - up)+kxqFp(up - uxy)

- - mXN RXN (UXN - UA)+ kXN FN (Ul- UXN): F(t),
d?u .
mX1T2Xl+ mx%xl(ux1 i UA)' leFl(Ul - Ux1)=0, «y
dPuxy

MxN +mX%XN (Uxn - ua)- kxn Fn(ug - uxy )=0-

dt 2
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Here an arbitrary number N of DVA’s is considered. Parameters my, k; of the prime system may be
found by means of FEM or experimentally. The nonlinear functions are;
F=-Kils- A) [x/>A. F=0 [x|<p ;F({t)=asnwt), )
where A areclearansand K,; isboundary elementsrigidity.

Numerical results, optimization

DVA'’s are appropriately optimized by genetic algorithms near the beam first eigen-frequency fr.
The evaluation function is:
CiL =Max(uy(f)), afg <f <bfg. 3)
The process and results of optimization for the DVA (Fig. 1) is presented in Fig. 2 for different
DVA’S masses.

A, m
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Fig. 2. The process (a) and results (b) of optimization for the two DVA's

Here 4 parameters of optimization are used: f,, f, are DVA’s eigenfrequencies, Dy, Dy, are
proportional viscous damping (added to all equations terms ki D i du/dt)_ Inthe all numerical examples

the prime system mass is my = 10 kg, the prime system eigenfrequency fr = 1 Hz = 6.28 Rad/s, the
proportional damping — D, = 0.03. For system with two dangerous frequency intervals the grate number of
DVA’s may beused (Fig. 3). For N 5 =4 the better result may be seen.

Let’s consider now the DVA with 3 different impact masses in one container (Fig. 4). The system of
equations is now:

mlddZTl;l+kl(ul- Up) +Ka(Uy - Up)- ™2 RXl(qu- Ua) + Ky Py (Uy - Uy -
S Ry (Usn - Up) Ky P (W - uxw ) = F (1),
mx1% + mx%le (uxa - ua)- kxaFulug - uxg)+ Fiauxs,ux2) + Fia(uxg,uxs) =0, 4)
mxz%ﬂnx%x (s - ua)- kx P (U - ux2)- Fro(uxa,uxz) + Faslux2,uxs) =0,
mx3d::—;3+mx%x (usn - ua)- Frs(uxa,uxs)- Fas(uxz,uxs)=0.



38 Bohdan Diveyev

0.03 1

0.02

0.01 4

0.00

Fig. 3. Theresults of optimization for systemwith two frequency intervals by number of DVA's N =2.4
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Fig. 4. DVA with 3 different impact masses

Heretwo DVA’s are considered. Parametersmy , kq of the prime system may be found by means of
FEM or experimentally. The nonlinear functions are:
Fi=-Kili-A) |%|>A, F=0|x|<A; F(t)=asin(wt). (5)
Coordinates Xq, Xy, X3 of theimpact masses and the differences between this coordinates x;, X3 and
X9, X3 arepresented in Fig. 5.
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Fig. 5. Coordinates Xq, X5, X3 of the impact masses (a);
the differences between this coordinates Xq, X3 and Xo, X3 (b)
Here A — clearans and K,;— boundary elements rigidity. The nonlinear functions Fy3(uxs,uxs),
Fas(ux2,Ux3) of DVA’s massesinteraction may be defined analogously:

Fi3 =Fa( - X3) [x1- x| <Ri+Rs,  Fi3=0 |x- x5 >R +Ry,
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F23 :F13(X2' X3) |X2- X3|<R2+R3, F23:O |X2' X3|>R2 +R3.
In Fig. 6 theresults of DVA'’s application is shown.
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064 —o—M, = M,, = M, 3=1kg; masses influence
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Fig. 6. Results of DVA's application
The 3 mass impact DV A seems to be better than independent 3 DVA’s with the same masses.
Here the optimization in the real time is done. Let us consider the optimization of this DVA's by
criterion:
CiL = Max(x(t)), t > tp. (6)
The process of geometrical DVA’s parameters evolution for different stage of impulse loading and
different base system damping is shown in Fig. 7.
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Fig. 7. Process of geometrical DVA's parameters evolution for different stage
of impulse loading: (a) — D;= 0.03; (b) — D;= 0.003

In Fig. 8 results of one-mass DVA and 3 mass DV A optimization. The one-mass DVA is worse than
3-mass. The upper results are achieved with the Boltzman contact forces approximation (Fig. 9)
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Fig. 8. Results of one-mass DVA (dash line) and 3 mass Fig. 9. Boltzman contact forces approximation
DVA optimization

Here Ai=1, Ac=2, Xo=4. Xx=2Xg - D. D- distance between centers of rolling masses, X, — width of

contact zone.
Let us consider an another impact DV A with all impact masses | one container (Fig. 10).
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Fig. 10. DVA with 3 different impact masses

The system of equations is now:
d2
mlTl;l"'kl(ul' Up) +Ka (U - Up)- le/QXl(Uxf Un) +KxaFy (U - Uxq) -

e L (U = )+ R P (- ) = F (1),

2
d7uxa | my,

My 1 dtz RXl(UX1 - UA)' kx1F1(U1 - UX1)+ I:12(UX1vuX2)+ I:13(UX17UX3)=0’ (7
dz
mxz%J’mx%x (usny - Uua)- kP (g - ux2)- Fro(uxg,uxa)+ Fos(uxa,uxs)=0,
d?u
mXST;SerX%X (uxn - UA)- Fag(uxa,uxa)- Fasluxz uxs)=0.

Here 3 DVA's are considered. Parameters my, k; of the prime system may be found by means of
FEM or experimentally. The nonlinear functions are:
Fi=-Kilxi-A) [[>A.  F=0 [x|<A; F(t)=asin(w). (8)
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Here A — clearans and K,;— boundary elements rigidity. The nonlinear functions Fy3(uxs,uxs),
Fo3(ux2,ux3)of DVA’s masses interaction may be defined analogously.
Fiz=0 [x - Xg| >R + Ry,
F3=0 |- Xg| >R, +Rs.
InFig. 11 coordinates xq, X2, X3 of theimpact masses are shown.
In Fig. 12 the results of DVA’s application are shown.

Fiz = F13(X1 - Xs) |X1 - X3| <R +Rs,

Fos :F13(X2 - Xs) |X2 - X3| <R, +Rs,
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Fig. 11. Coordinates Xq, X5, X3 of the impact masses
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The 3 mass impact DVA seems to be better than independent 3 DVA’s with the same masses.
Let us consider new 3-mass DVA with the impact masses on the plates of different radius of

curvature (Fig. 13).

Fig. 13. DVA with 3 different impact masses
on the plates of different radius
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/ i e
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Here the curvatures of DVA's plates are different. That prevents them to move synchronous. Consider 3
cases of optimization: 1) the simultaneous optimization by impact and harmonic loading; 2) optimization by
harmonic loading; 3) optimization by impact loading. Results of optimization are presented in Fig. 14.
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Fig. 14. Results of 3-mass DVA's on the plates of different radius application:
(a) —the main massin time vibration; (b) — process of DVA's evaluation function evolution



42 Bohdan Diveyev

Process of geometrical DVA’s parameters evolution by complex optimization is presented in Fig. 15.
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Fig. 15. Process of geometrical DVA's parameters evol ution by complex optimization:
(a) —radiuses of curvature; (b) — damping

Simultaneous optimization

Let's consider now simultaneous optimization by impulse and harmonic loading (the sum of
evaluation functions (3) and (6)). In Fig. 16, 17 results of optimization for variousinitial time are presented.
The process of optimization is:

N= 1
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The process of optimization is:
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Parameters of basic part are the same, the clearansis Ax = 0.15m.
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Fig. 16. Results of optimization for initial time 5s Fig. 17. Results of optimization for initial time 3s
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Equationsfor the pump with the particle DVA’'s

In Fig. 18 the scheme of pump structure P with 2 particle absorbers attachment is presented.

[} 'e

T
N
8¢ / S L~ s raTaTaT |

a) b)
Fig. 18. Pump — DVA scheme (a); DVA filled container (b ); container model (c)
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o

Here (1) is pump base; (1,2,3,4,5) — DVA's; (6,7) — pump and pump base; (8) is pump foundation.

In this paper the condensed numerical model is proposed. The problem is solved on the basis of
modified method of modal synthesis. The basis of these methodsis in deriving solving set of equationsin a
normal form at minimum application of matrix operations [21-24]. The system of equations in the
condensed rangy is obtained:

d 2w, dw dw
m 20 +(kiDk +kaDa +kpoDp2)— 2 +(ky +Kka +kpoWo - KaDp—2
dt dt dt
dw
- KapDpp —22 - KaWp - kpoWpp =F
2 (7)
dw,
Ma ddtV\ZIA +kADA%+kAWA - kADAd—tO- kAWO =O,
d?w dw vy
Ma2 dtzAZ +kpoDpp —2% +KpoWag - kAZDAZTtO' Kao2Wo =0.

Here: m, mp, mpy aremasses of base and DVA's; k;, k., k,, —appropriaterigidities; D, , D, .
D,, — viscodastic damping coefficients; w,, w,, W,, — appropriate displacement, F — harmonic

excitation. For the particle dynamic modeling the condensed impact mass damper was applied (Fig. 1).
The equations for the impact mass are:

2 .

I e Mk () - )+ Co (. Mo 0y - | >|h- R:

dt dt e dt dt g ®
d 2w dw:

m dtz| +Cid_tlzo’ |Wi-W0|£|h- RI

Here: m — particle mass, C; — damping viscoelastic coefficient, modeling particle traction in
container, Kg —rigid coefficient and C; — viscoelastic coefficient for particle elastic impact modeling,
W, —impact mass displacement.

Experimental setup. Dynamic model par ametersidentification

There were applied two experimental schemes. First — DVA kinematic excitation (Fig. 19, &), second —
base impact (Fig. 19, b). Here 1 — sensor, 2 — beam dement, 3 — base, 4 — impact hammer. In Fig. 20
experimental setting for determination of dynamic properties of the DVA engine-pump system is presented.

Although some parameters of DVA and pump can be determined by experiments, but some, such as

basic system mass m remains unknown in equation 7. For a more precise definition of the model
parameters was conducted several additional experiments (for the definition of parameters m , k; - mass
and stiffness of the primary system). At the same time DVA parametersm, , K, . require refinement
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Although they can be calculated more accurately than the basic parameters of the system, yet it takes alot
of effort both in determining of the elastic properties of DVA and DV A clamping plate . Although you can
conduct a detailed theoretical analysis [26; 27], but based on a series of simple experiments can be quite
accurately determine these parameters as integrated value included in the system of equations (4). As the
device is designed to test we are using our DVA. Peform for this series of experiments: kinematic

perturbation DVA for its different masses To determine all the parameters k,, m , m, , K, we should

apply a genetic method to minimize the objective function F.=3 |fT(Mi )- fe(M )|, where
i

fr(Mj )="fr( Mj k; .mp,Kkp) theoretically obtained values of natural frequencies (first eigen-

frequencies), fo(M; )—experimental values. Detailed identification schemes are presented below.

Five stages are considered: adaptation of theory to various conditions of fixing and deformation;
research of sensitiveness in relation to the DVA’s and base design parameters, numerical experiments on
identification of undefined parameters, practical parameters identification by exploring different schemes
of experimental setup and, finally, posterior analysis of identification quality.

\jQ; 3: _O 7 1[/;=I
=0 5=
a) b)

Fig. 19. Experimental schemes: (a) — DVA kinematic exitation; (b) — base impact

Fig. 20. Experimental setting for determination
of dynamic properties of the DVA engine-pump system

Optimization for non-resonance DVA
Optimization for non-resonance DV A has some not widely known specific. Let’s consider DVA for
therigid basic system f), > f, (basic mass eigen-frequency is greater than DVA’s eigen-frequency).
Frequency response functions (FRF's) for the base structure are presented in Fig. 21 for various fy; .
Parameters are: my = 20 kg, ma = 2.3 kg, ky = 2000-8000 kN/m , k, = 2000-8000 KN/m, D;= Dp =
=0.00001. Only one DVA is considered. The parameters k,, , D, of DVA are optimized in frequency
band 49Hz < f <51Hz (see below).
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Now let us consider DVA for the soft basic system fy, < fa.FRFsare presented in Fig. 22 for
various f), . Thelarge DVA’s shift may be seen from the DVA’s action zones.

0.104
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0,000 ! 0.00 L D B B S | "I‘ =
44 4 45 46 47 48 49 50 51
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a) b)
Fig. 21. FRF for basic system (dot line); FRF for DVA (solid line): (a) - fyy =140Hz; (b)- fy, = 70 Hz
0.03
< : fyg = 35 Hz
0.024 fi = 25 Hz .
N ’
f f:\15 Hz
0.014 )
0.00 +—=7— _|‘L L T T T |-_'-|——'_|
48 50 52 54 56 58 6C
f, Hz

Fig. 22. FRF for basic sysem (dot line); FRF for DVA's (solid lines)
Particle DVA optimization

The complexity and high dimensionality of some models lead to the use of a heuristic search
method. In this matter, Genetic Algorithms (GA) has proven to be a suitable optimization tool for a wide
selection of problems. The optimization function is:

o) 0
Feil = max ¢ <y < 1, ¢ 0 b (F)P(F)ef 2, ©
§ f 2
where u; —vibration level of base, fi, f, — boundaries of observed frequency domain, P— weight function,
o4 . — first @gen-frequency. Parameters of optimization are ma, May , Kag,Kao, Da, Day . Sum of
DVA’s massesis constant mp + mpo = 3.8kg . In Fig. 23 results of optimization are presented.

On the basis of theoretical and experimental studies optimum parameters of DVA’s was found. In
Fig. 24 the acceleration of main structure at the operating frequency are presented. The measured deviation
from the operating frequency were within 0.1-0.15 %. The following algorithm was applied: DVA mass
was moved on a beam with somefixed pitch (1 cm). Based on the kinematic perturbation scheme (Fig. 17, a),
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DVA natural frequency was measured. Then, based on measurements carried out with the included pump,
optimization was carried out. DVA mass — 1.881 kg. As you can seein Fig. 24, at a frequency close to the
theoretical optimum, the amplitude of oscillation of the main structure is reduced by an order.
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Fig. 23. Result of optimization: (a) — DVA's damping coefficients evolution; (b) — Fg; evolution; (c) — optimal FRF of
base (for different frequency band), solid line — systemwithout DVA

0 20000 40000 60000 80000 50

500
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Fig. 24. Main structure acceleration at different DVA frequencies: (a) — fo = 46Hz; (b)— fo = 47Hz

Identification scheme verification

Although some parameters of DVA and pump can be determined by experiments, but some, such as
basic system mass my remains unknown in equation (1.1). For a more precise definition of the model
parameters several additional experiments were conducted (for the definition of parameters my , k; - mass
and stiffness of the primary system). At the same time DVA parameters myp , Kp . require refinement.
Although they can be calculated more accurately than the basic parameters of the system, yet it takes alot
of effort both in determining of the elastic properties of DVA and DV A clamping plate. Although you can
conduct a detailed theoretical analysis [23-31], a series of simple experiments can quite accurately
determine these parameters as integrated value included in the system of equations (1). Originally let us
show the correctness of these schemes. Fig. 25 shows the frequency deviation map centered on values,
depending on the changes of parameters my , kq :

my = myo(i - N/2),i=1,..N,
Kej = kqoli - N/2),i=1,..N.

As the device is designed to test, we are using our DVA. Performing for this series of experiments:
kinematical perturbation DVA for its different masses (see diagram of the numerical experiment in Fig. 25).

Values of first eigen-frequencies were obtained for different masses m, located at the edge of the
DVA plate. We seethat the basic system parameters are determined uniquely by combined map (a) and (b)
to (c). To determine all the parameters k; , my , mp , ka we should apply a genetic method to minimize
the objective function Fg = § |fr (M )- fo(M; )|, where- fr(M; )= fr( M; kg ,mp.kp) theoretically

|
obtained values of natural frequencies (first eigenfrequencies), fo(M; )- experimental values. The next
values of first eigenfrequencies were obtained for the masses, located on verge of DVA’s plate (Table 1).

(10)
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Fig. 25. The amount of frequenciesdeviation maps (3) of DVA centered values depending
on the change of parameters k; , my : (a) —for DVAweight my = 1.5kg; (b)— my = 3kg;
(c) — combined map (sum of maps (a) and (b))
Tablel
Eigen-frequencies for different DVA’s masses
M, kg 0 0,669 1,100 1,521 1,881 3,115
F, Hzu 69 48 36 32,3 29,2 24,4

We get the following values for the main components - pump in place joining DVA : fxm = 65.5Hz,
m = 34.4kg. If the effect of the massis difficult to track because of the complexity of the design of the
pump, the oscillation frequency can be seen for the shock disturbance. We see that it is in the vicinity of
65 Hz (as defined in theory). That is, the natural frequency of the main structure above the operating
frequency of 50 Hz. It gives information on what neighborhood eigen-frequencies DV A to seek optimum
vibroabsorption at the operating frequency.

In Fig. 26 the experimental and theoretical vibration decay is presented for particlefilled container.

0 50000 100000 150000 2'
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Fig. 26. Experimental (a) and theoretical (b) vibration decay

By means of such scheme the damping in filled container may be appreciated D 5 » 0.0001.
Optimization

Now we can optimize DVA’s system. DVA Optimization with particle filling container. The
complexity and high dimensionality of some models lead to the use of a heuristic search method. In this
matter, Genetic Algorithms (GA) has proven to be a suitable optimization tool for a wide selection of

problems. The optimization function is (3). Parameters of optimization are m,, m,,, K, ,K,, D,.
D,, . Sumof DVA’s masses is constant mp + ma, = 3.8kg
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InFig. 25 results of DVA’ swith particle filled container optimization are presented.

N= 1 0.007
fKm .788E+02 DempK .101E-04 0.006
Ma .230E+01 Ma2 .150E+01 LA -.321E+02La2 .215E+02  0.005
CiL .152E-02 0.004
Da .100E-04 Da2 .302E-05 fk .296E+02fk2 .596E+02 0.003.]
N = 5459 o 0.002—-
fKm .788E+02 DempK .991E-05 0.001
Ma .230E+01 Ma2 .150E+01 LA -.215E+02 La2 .258E+02 oo
CiL .360E-03
Da .993E-05 Da2 .298E-05 fk .507E+02fk2 .475E+02
a) b)

Fig. 27. The process (a) and results (b) of DVA’ swith particle filled container optimization
System modelling by program packages based on FEM

The most popular computational methods used in structurd dynamics are: the finite € ement method (FEM)
While investigating higher frequency ranges for acoustic applications and using finite dements, structures are
decomposed into smaller and smaller dements. The mesh size is chosen so thet its largest dimension does not
exceed the wavdength of the vibration. Going in this direction, when dealing with complex and large structures,
the number of eements often becomes prohibitive. The cdculation of eigenvalues in the range of medium
frequency becomes cumbersome and time consuming. For many cases the amplitude excitation maximum is low.
This may be used in main structure moddling, taken into account only it thirst eigenvalue.

As example, let us consider the boom frame of the boom sprayer. The frequency characteristics of
boom are defined by program APM WinMachin. In Fig. 28 the boom deformable part model and its
eigenfrequencies are presented.

CobcrBe
l 1418
Haomep [Hactota YHacTtota 4
lpauyc] Tu]

E 34.0479 5.4179

3 627975 9.9345

4 761794 121244

= 83.0472 132174
[ BR.EETY 14.0952 d

Ok Foprma |

Fig. 28. Boom deformable part model and its eigenfrequencies

First eigenfrequency is 1.8 Hz. Let us define therigidity in the point marked by pointer (Fig. 18). By
this date we can define the parameters of boom frame and put its into it equation:
m®¥+k Dw+kw =F. (11)
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Hererigidity is:
k=F/L» 100%_295 » 4556N/m . (12)
The mass is now:
-k 4556,
m= » » 34.2kg .
sz 11.542 J (13)

DVA optimization for boom
Optimal DV A parameters are defined for the function (14):
CiL=Max(u1(f)),afR <f <bfr. (14)
It is maximum boom deflection in the frequency range. The optimization of boom in the frequency rangeis
shown below (Fig. 29). The optimization may be donefor various frequency range simultaneoudy (Fig. 29, b).

0.0006 Am
0006 - r M>,<:MX2:0 0.0005
Ny v
Amo VA 0.0004 -
0004 [} \
g My =My5=2kg . 0.0003 -
0002 0.0002
M=3kg, Myp=1Kg  \y Rag 0.0001 -
0000 T T T T T T T T T 1 Sy
11 12 13 14 15 0.0000 —m7+—+—FT—FT—TFT—— 77—
4 6 8 10 12 14 16
a) b)

Fig. 29. Optimization of boomin the frequency range: (a) — one frequency range; (b) — two frequency range

Substantial part is acted by the division of the masses between DVA (Fig. 20, b). It is possible to
find (Fig. 18, b) that only for two DVA’s substantial effect takes place in two ranges. Four DVA improve a
situation in a higher frequency range. Here total mass of all DVA’s is identical and 4 kg is evened.
Character of action of different DVA (different half-length of containers) is resulted, on Fig. 30. Loop of
hysteresisis shown in Fig. 31 for mass of DV A (the dotted line is a container without limitations).

0 15_- A,m Mx=3.8kg, Ax=0.1m 3000
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0.054 1000
0.00—_ 04
-0.05 1
] 1000
-0.104 ]
] 2000 -
-0.154 Ts 000

T T T T T T 1 T 17 — 777

0 2 4 6 8 10 12 14 16 15 -10 -5 0 5 10 15

Fig. 30. Character of action of different DVA Fig. 31. Loop of hysteresis for mass of DVA

(different half-length of containers)
Conclusions

In order to determine the optimal parameters of DVA the complete modding of dynamics of devices
should be made Paper dedls with the new methods for the explicit determination of the frequency
characteristics of dynamic vibration absorbers by narrow frequency and impulse excitation. Few parameters
numerical schemes of vibration analysis are under discussion. The influence of elagtic and damping properties
of the basic construction and dynamic vibration absorbers are considered. Optimization for non-resonance DVA
is done with its specific. The discrete-continue models of machines dynamics of or such machines as water



50 Bohdan Diveyev

pump with the attachment of dynamic vibration absorbers are offered. The algorithms for vibration decreasing
arereceived. The new vibroabsorbing € ements are proposed with more than one impact mass in container. The
first elgenfrequencies are calculated and obtained experimentally for different masses attached to dastic
eements of the dynamic vibration absorbers. The one-digit values are established not only for the dynamic
vibration absorber parameters, but also for mechanical parameter of base structure— pump in connection points
of the dynamic vibration absorbers. For the dongated base structures modeling in the low frequency range the
FEA was used. Findly, present research develops the genetic algorithms for optimal design searching by
discrete-continuum DV A’ s system — base system modeling.
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