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Introduction

Remote sensing (RS) from airborne and spaceborne

carriers has found numerous applications [24]. Radar

RS is applied alongside with other types of imaging sys�

tems and it provides certain benefits compared to oth�

er RS systems as ability to work during day and night

and possibility to operate in bad weather conditions

[15]. However, acquired radar images formed by mod�

ern synthetic aperture radars (SARs) suffer from a noise�

like phenomenon called speckle that appears due to

coherent imaging mode and is the most intensive for

single�look SAR images [15, 26]. There are several ways

to cope with speckle [15, 26]. One way is to form multi�

look images that, unfortunately, leads to worse spatial

resolution of registered images. Besides, for a limited

number of looks (e.g., two or three) speckle can be still

intensive and annoying. Another way is to perform

despeckling (filtering, denoising) where numerous

methods exist (see [8, 9, 26] and references therein).

However, such despeckling, alongside with efficient

noise removal in image homogeneous regions, might

smear edges/details and destroy texture features which

is undesirable. These undesirable effects appear them�

selves for complex structure images containing a lot of

fine details and textures. Then sometimes it becomes

undesirable to carry out denoising or, at least, one has

to perform filtering more carefully than usually. Thus,

it is desirable to predict efficiency of despeckling be�

fore starting this operation of SAR image processing [3].

One problem is that despeckling efficiency depends

upon many factors [8, 9, 26]. They are properties

(complexity) of an image to be processed, noise

statistical and spatial correlation characteristics,
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Approaches to prediction of speckle removal efficiency for DCT�
based filter

availability and correctness of a priori information on

noise characteristics, type of a used filter and its

parameters as scanning window or block size, preset

thresholds, etc. Thus, it is possible to characterize

filtering efficiency in different ways. One way is to

determine potential efficiency of filtering.

Currently there are several approaches to determin�

ing lower bounds of filtering efficiency [4, 5, 14, 17]. For

the approach of Chatterjee and Milanfar [4], noise�free

images are needed and potential (minimal) output

mean square error (MSE) is determined for non�local

filtering techniques under assumption that noise is ad�

ditive, zero mean, white and its distribution is known a

priori. Thus, despite of important results obtained in [4]

(that will be briefly discussed below), this approach is

impractical since noise�free image is not available for

the considered task. The paper [5] puts forward a more

practical approach where noise�free image is not any�

more needed whilst determined lower bound agrees

well with theory. However, the drawbacks of this ap�

proach are that it requires huge computations and de�

termines not practical but potential output MSE.

The approach in [17] works for additive white

Gaussian noise filtering based on local orthogonal

transforms and the determined potential output MSE

can differ from results in [4, 5] by up to 4 dB. Finally, the

approach [14] proposed recently works well enough for

white and spatially correlated additive noise with

known variance. It produces a good estimate of output

MSE provided by the best known filters for images that

can be modeled by fractal Brownian motion (fBm).

However, the calculations should be rather intensive.

The results presented in the papers [4, 5, 14, 17] al�

low concluding the following. For a given variance of

additive noise, output MSE values (both lower bound

and practically reachable) are the largest for highly tex�* e�mail: edu.rubel@gmail.com
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tural images. For such images, the existing state�of�the�

art filters provide output MSE values that are very close

to lower bound ones, especially if noise is intensive [14,

12, 21]. However, for simpler structure images, poten�

tial output MSE is usually considerably smaller than

practical. Thus, potential output MSE, if derived some�

how, is useless for practice since it does not describe

attainable filtering efficiency.

Other problems [12] are the following. First, the re�

sults in [4, 5, 14, 17] have been obtained for additive

Gaussian noise and our interest here is in suppressing

multiplicative non�Gaussian noise (speckle). Second,

it is desirable to predict not only standard metrics

(quantitative criteria) but also metrics that character�

ize visual quality of filtered images [12]. Third, to be use�

ful in practice, prediction of despeckling (filtering) ef�

ficiency should be simple and fast enough (faster than

filtering itself).

Of course, it is desirable to have a general prediction

procedure applicable for different types of filters. But

we understand that this desire cannot be satisfied now

and concentrate below on filtering based on discrete

cosine transform (DCT).

There are several reasons behind this. First, the DCT

based denoising provides noise removal efficiency close

to the best known filters (see simulation results in [12]

for additive noise and in [7, 8] for speckle noise). Thus,

if prediction for the DCT�based filter is accurate

enough, this means that it can also serve as a rough pre�

diction for other state�of�the�art filters. Second, sever�

al interesting steps towards predicting filtering efficien�

cy have been done recently just for the DCT�based fil�

ter, namely, the standard DCT and the known BM3D

filter [10] where the latter one is considered to be the

state�of�the�art in removing additive white Gaussian

noise.

These steps are the following. Based on simulation

results in [17], it has been supposed in [19] that filtering

efficiency characterized by the ratio of output MSE to

variance of input AWGN can be predicted based on one

out of two simple statistics of DCT coefficients in 8 × 8

pixel blocks, in particular, mean probability (P
2σ) that

absolute values of DCT coefficients do not exceed dou�

bled standard deviation of AWGN (2σ). It has been

shown [20] that it is possible to predict other parame�

ters characterizing filtering efficiency as, improvement

of peak signal�to�noise ratio (IPSNR) and improvement

of the visual quality metric PSNR�HVS�M [16] (IPHVS),

both expressed in dB. Moreover, this can be done not

only for AWGN but also for spatially correlated noise

under condition that its spatial spectrum is a priori

known or accurately pre�estimated.

Later, it has been shown [18] that prediction of IP�

SNR and IPHVS is possible for the case of DCT�based

removal of signal�dependent noise (that has additive

and quasi�poissonian components [1]) under condition

that parameters of these components are known in

advance or accurately estimated in advance (then, an

algorithm of probability estimation is modified accord�

ingly). It has been also determined that it is enough to

estimate P
2σ in non�overlapping blocks and/or to use,

at least, 300…500 blocks placed randomly in probabili�

ty estimation. This makes prediction by about two or�

ders faster than even the standard DCT based filtering

that employs two DCTs (direct and inverse) in fully

overlapping blocks [11].

 Here, it is worth recalling a general principle on how

prediction is performed. A sufficient part of work is

done off�line and in advance. The main goal of this

work is to obtain an analytically described dependence

of a parameter that characterizes filtering efficiency

(e.g., IPSNR) on a statistical parameter that simulta�

neously characterizes image complexity and noise in�

tensity (e.g., P
2σ ). Having the corresponding depen�

dence, one calculates an input parameter (e.g., P
2σ ), sub�

stitutes it into the obtained dependence as argument,

and gets an estimate of a parameter that characterizes

filtering efficiency (e.g., IPSNR).

Such dependences are obtained in advance by form�

ing a scatter�plot for pairs of the considered parame�

ters for a wide set of test images and noise parameters

and fitting a curve into this scatter�plot [18, 19, 20].

Quality of such a fitting (and quality of prediction) is

characterized by several statistical criteria [2]. To make

prediction quite general and accurate, several actions

have to be performed. First, it is possible to optimize

(or to properly select) the parameter (probability) [22]

employed as input parameter in prediction. In this

sense, the probability P
0.5σ (that absolute values of DCT

coefficients do not exceed 0.5σ) has occurred [22] to

be slightly better than P
2σ and earlier used P

2.7σ. Second,

selection of the test image set and a set of noise param�

eters influences fitting (argument values have to cover

all possible interval and they have to be “equally sparse�

ly” located). Third, a function chosen for fitting (poly�

nomial, exponent, etc) also has an impact on fitting

results. Thus, special attention has to be paid to this as�

pect with several trials and choosing a best version.

Fourth, prediction using only one input parameter can

be not accurate enough [22, 23]. Without essential loos�

ing of computational efficiency and simplicity of pre�

diction, it is possible to use two or more input parame�

ters combined in some manner, in particular, using a

trained neural network [23].

Therefore, here we deal with considering several

tasks. The main of them is to analyze applicability of

the prediction approaches to the case of despeckling

SAR images where speckle is treated as a specific type

of signal�dependent noise, which has been earlier dis�

cussed very briefly in [3]. Besides, we also aim to ana�

lyze possibilities of improving prediction accuracy.

The paper structure is the following. The second sec�

tion describes the denoising mechanism of the DCT�

based filter. The third section “Standard Methodology

of Prediction” introduces used statistical parameters

and a method for prediction. Section “Advanced Meth�
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odologies of prediction” deals with improved methods

of predicting by multi�parameter fitting and neural net�

work learning. The last section analyses the obtained

results of prediction for real aerial images and different

methods.

DCT�based filtering and its modifications
different noise types

DCT�based filter has high denoising efficiency and

low computational complexity [17]. Moreover, it has

been shown [17] that the DCT�based filter demon�

strates efficiency close to the best�known filters (such

as BM3D) [10] and to potential denoising bounds [4]

particularly for AWGN model:

 ,,, Gaussiant
add
an NjiIjiI   (1)

where I
t
 is true image add

anI , is noisy image, i and j are

indices of pixels in image.  GaussianN denotes zero mean

additive white Gaussian noise (i.e., a 2D realization of

Gaussian random process) with standard deviation of

the noise σ.

Here, a basic block�wise denoising mechanism of the

DCT filter is given for the AWGN case. After direct 2D

DCT in a block, the following operation is carried out:
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add
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where β is a denoising thresholding parameter that, in

general, can vary in the range 2…4 (the recommended

value is 2.7), n and m are spatial frequency indices in an

image 8 ×  8 pixels block,   add
inB denotes DCT coeffi�

cients of input noisy image block,   add
outB denotes DCT

coefficients after thresholding. Then, inverse 2D DCT

is carried out for add
outB . The standard DCT�based filter

[17] performs full�overlapping block�wise denoising

and, at the final stage, it collects data from overlapping

blocks together with averaging the filtered values for a

given pixel.

However, for SAR remote sensing imagery, speckle

which is a multiplicative nature noise�like phenomeno�

n is more inherent. For one�look or single�look remote

sensing images [24], the following model of multipli�

cative Rayleigh distributed speckle is considered ade�

quate (for amplitude images) [15]:

,,,1 kNjiIjiI ijRt
look

sdn  (3)

where kN ijR  denotes Rayleigh distributed random

value, k is distribution parameter that provides unity

mean,   look
sdnI1 is an (one�look noisy) image distorted by

specific signal�dependent noise. Multi�look SAR imag�

es, i.e. averaged (by pixels) sets of images of the same

sensed surface region, have slightly different kind of

noise. Such noisy images can be modelled as averaged

value of L Rayleigh noise realizations:
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,,
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l
t
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where L means the number of image looks, 
L look
sdnI  is the

distorted multi�look image,  kN l
Rij is l�th realization of

unity mean Rayleigh random variable.

It is seen from (2) that denoising mechanism of the

DCT filter deals with hard thresholding. For different

noise types and models, denoising threshold is set dif�

ferently. For multiplicative spatially uncorrelated noise

case such as speckle, the denoising threshold is modi�

fied as:

,,0

,,,
,B mult

in
mult
in

mult
in

mult
in

mult
inmult

out SmnB
SmnBmnB

mn (5)

where mult
inS  is mean intensity of a given image block

(that can be also measured in spatial domain),  
2

denotes (relative) variance of multiplicative noise,

other introduced notations as mult
inB  and mult

outB  are

similar to the ones earlier used in (2). Note that 
2

 for

the model (3) equals to 0.273 and it becomes  L2
for

multi�look amplitude images [15].

Standard Methodology of Prediction

Due to simplicity, high performance and easy adap�

tivity of the DCT�based filter to different types of the

noise, this denoising technique is attractive for practi�

cal use. Being equipped by an efficiency prediction op�

eration, it becomes even more attractive. However, pre�

diction should be a simple and fast procedure. It is

worth stressing here that remote sensing systems are

demanding to computational complexity of data pro�

cessing like denoising. Quite many recently proposed

filters have high complexity [10] and, meanwhile, they

can introduce essential distortions into processed im�

ages in some case, which is undesirable.

One of the purposes of denoising efficiency pre�

diction is “catching” practical situations when filtering

efficiency is not appropriate and the filtering procedure

could be cancelled or avoided. The second goal is pre�

diction of metric improvement (these can be metrics

PSNR or PSNR�HVS�M [16]) without a corresponding

reference image.

The principal idea of getting a predicted value con�

sists in using some operation with some input statistics

of a noisy image and further obtaining of the output

(predicted) value. Thus, two tasks arise: what statistical

parameter(s) to use and how to predict, i.e. to link two

values – a statistical parameter(s) and a metric of de�

noising efficiency.

The abovementioned goals of prediction require low

complexity of prediction operation and appropriate

accuracy. This restricts a set of techniques and parame�

ters that can be applied. It is preferable if only simple

arithmetic operations are used for the purpose of pre�

diction. Moreover, amount of statistics obtained from
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an image for predicting the efficiency of its filtering can

be also limited. This means that we need some infor�

mative local estimates that produce reasonably small

volume of data.

The first task is strictly connected with the denois�

ing mechanism of the DCT�based filter. This mecha�

nism removes coefficients that are smaller than the pre�

set threshold(s). It is a reasonable idea that the number

of removed (zeroed) DCT coefficients strictly influenc�

es final denoising efficiency. In [19], the first steps of

predicting the DCT�based filter efficiency were done.

The proposed method uses hard thresholding ope�

ration and requires adequate threshold value setting.

As statistical parameter, probability that DCT coef�

ficients potentially are removed or not by the filter is

used.

The proposed method collects local estimates for all

considered image blocks using the procedure described

above for subsequent prediction. Local statistical esti�

mates for additive noise (AWGN) and multiplicative

noise (speckle) models could be the following:

,,,0
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qmnE add
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inadd

out (6)
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,63,,
,mn

out qmnEqP (8)

where q is an index of an analyzed block, α is the thresh�

olding parameter used for prediction (it is similar to β),

qP  is a set of local probability estimates calculated

for the q�th block in a processed image.

Note that  qP  is calculated for 63 coefficients (in

8 × 8 pixel block) excluding DCT coefficient that cor�

responds to mean intensity and has indices (0. 0 – left

up corner) in block (this coefficient is also not used in

denoising). It is seen that the values of the local esti�

mates of  qP  lie in the range 0...1. It is not a problem

to remember and store the set of local estimates for a

given image at intermediate stage of prediction.

Then, this set can be represented as some distri�

bution. In [19], only mean value qPP  was

used for predicting the ratio MSE/σ2. Thresholds for

probabilities obtaining were 2σ and 2.7σ. The first

threshold is used for estimation of probability that DCT

coefficients do not exceed threshold. The second

threshold was estimated in [19] the opposite way

q�PP ,, 7272 1  .

Motivations for using those thresholds were empiri�

cal and they followed from our previous experience.

The threshold 2σ is usually exploited in the well known

sigma�filter [13] for defining a neighbourhood whilst

the threshold 2.7σ has been intensively used in DCT�

based filtering [17].

For linking MSE/σ2 and mean probability value for

both thresholds, polynomial and exponential fitting

functions were used. The prediction method was ex�

ploited both for DCT�based filter and BM3D. Function

coefficients were calculated by maximizing goodness

of fit (R2) as fitting criteria:

,12

totres SSSSR (9)

where SSres denotes the sum of squares of residuals, also

called the residual sum of squares, SStot is the total sum

of squares which is proportional to the sample variance.

Traditionally, the goodness of fit is the main quantita�

tive parameter that describes effectiveness (quality) of

fitting.

Due to the fact that the studies in [19] were at initial

stage, they have several drawbacks. First, a small num�

ber of test images was exploited. Thus, an insufficient

number of scatter�plot points has been used in curve

fitting. In particular,  7.2P and .2P  that correspond to

texture images were not presented at scatter�plots. This

means that, in general, a large set of points (different

values of statistical parameter distributed along full

range of possible parameter and metric values) must

be used for accurate prediction.

In [20], as prediction model, exponent fitting func�

tion was used as the most suitable:

,exppred PbaMetric (10)

where Metricpred 
is a predicted value of a metric of de�

noising efficiency, a and b are coefficients of fitting

function. As it has been mentioned before in [19], the

cases of a equal to 2 or to 2,7 have been considered.

In [19], a larger (sufficient) number of points (34)

was used and another noise model was considered –

additive spatially correlated noise. Alongside with MSE/

σ2, fitting functions for improvement of the metrics

PSNR and PSNR�HVS�M (the latter metric is based on

human vision system and adequately assesses visual

quality) were obtained for three noise models. The ob�

tained approximations for spatially correlated noise

turned out to be close to the approximations for the

AWGN case. Partially this observation indicates univer�

sality of the proposed method that can be applied to

other noise models. Due to it, we assume that predic�

tion model based on AWGN can be applied to predic�

tion of speckle removal efficiency and compared with

those based on speckle�noised data.

New results of as  threshold setting for prediction

procedure were obtained in [22]. In addition, it has been

shown that using the mean probability P0,5a
 (i.e. α = 0.5)

is more suitable than 2P  for prediction, i. e. providing

higher goodness of fit value.

In Fig. 1, scatterplots of AWGN data for IPSNR and

IPSNR�HVS�M metrics vs probabilities 2P  and 5,0P  are

presented (blue points). For prediction performing, a

large set of test images has been used: 128 different

images and 10 noise levels (variances of AWGN were 4,
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Fig. 1. 1D scatterplots of improvement of PSNR (a, b) and PSNR�HVS�M (c, d) for the DCT�based denoising vs mean of local estimates of P
2σ

 (a, c) and P
0,5σ (b, d) and the fitted 1D prediction functions (approximations)

9, 25, 64, 100, 144, 225, 289, 400, and 625). All used

images have different content and are taken from dif�

ferent databases (TID2013 [6], USC�SIPI [25] and some

other).

In addition, fitted curves of the exploited exponen�

tial fitting function (10) are shown as red lines. Coeffi�

cients of fitting functions and goodness of fit parame�

ters are presented in Tables 1 and 2. It is well seen from

the plots that IPSNR data points are less scattered than

IPSNR�HVS�M data points. As a result, goodness of fit

values for IPSNR functions are higher than for IPSNR�

HVS�M. This means easier prediction for the IPSNR

metric compared to the metric IPSNR�HVS�M. Also it

should be stressed that the use of 5,0P  is more prefera�

ble than the use of 2P  since this reduces data scatter�

ing (R2 occurs to be larger).

Besides, the scatterplots for IPSNR�HVS�M show that

the proposed one�parameter (mean of Pασ) fitting mod�

el and, respectively, prediction can be not sufficiently

accurate. Thus, it is desirable to apply some more ad�

vanced technique, primarily to IPSNR�HVS�M predic�

tion. This can be done using more informative statis�

tics as statistical parameter (�s) and appropriate pre�

dicting models.

Advanced Methodologies of Prediction

As it has been shown in the previous section, after

procedure of local estimation of Pασ, a set of estimates

having a certain distribution is obtained. Four exam�

ples of such distributions for two noisy images and two

probabilities P
2σ and P

0,5σ 
are presented in Fig. 2. The

used images are remote sensing single�look images dis�

torted by speckle with relative variance 
2

 equal to

 
P2  

Metri c a b
 

R 2 

IPSNR 7.97*10�3  7.62 0.94 

IPSNR�HVS� M 0.99*10�3  9.31 0.72 

P0,5  
Metri c a b R

2
 

IPSNR 0.11 12.53 0.98 

IPSNR�HVS� M 26*10�3 14.99 0.78 

Table 1
Coefficients of 1D fitting functions using statistical parameters
obtained from AWGN�distorted data and goodness of fit results

 
P2  

Metric a b
1  

b
2  

R2 

IPSNR 2.5*10
�3

 8.84 13.37 0.98 

IPSNR�

HVS�M 
4.29*10�6 15.06 55.9 0.91 

P0.5  
Metric a b1  b2  R

2
 

IPSNR 84.95*10
� 3

 12.9 17.71 0.94 

IPSNR�

HVS�M 
1.4*10

�3
 20.66 201.6 0.86 

 

Table 2
Coefficients of the 2D fitted functions for the parameters obtained
for AWGN case and goodness of fit results

a b

c d
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Fig. 2. Histograms of local estimates of P2σ (a, b) and P
0,5σ (c, d) for first test image (a, c) and for second (b, d)

a b

c d

0.273 produced by Rayleigh noise with . qP
are obtained using expressions (7) and (8).

Achieved improvements of metrics for denoising by

the DCT�based filter are the following: for the the test

image №16, IPSNR is 10.03 dB and IPSNR�HVS�M is 6.16

dB; for the image № 38, improvements are essentially

larger: IPSNR is 16.71 dB and IPSNR�HVS�M is 12.03 dB

(the mentioned test images are presented later in Fig. 4)

and a larger positive effect due to filtering should be

observed.

Meanwhile, the mean probabilities of P
2σ and P

0,5σ for

these two test images are close: 0.934 and 0.359 for first

test image; 0.953 and 0.381 for the second test image.

They lie in the range where the fitted curves are chang�

ing rapidly (see Fig. 1). Therefore, for such case, predic�

tion error can be large if a used input statistic parame�

ter would be estimated with inappropriate accuracy.

Thus, more input information for prediction procedure

can be needed.

Such information can be obtained (retrieved) from

the sample (set) of local estimates. In [20], instead of

considering only the mean value, six first order statis�

tic parameters were exploited for AWGN data: the mean

(M), median (Med), mode (Mod), variance (D), skew�

ness (S) and kurtosis (K). Extended exponential func�

tion that depends on these six parameters in exponent

was proposed due to its simplicity and convenience:

  ,exp
i

iipred PObaMetric (11)

where Metricpred is the predicted value of metric, a and

b i are coefficients of fitting functions, Oi is a statistical

operator for estimating parameters of the distribution

of local estimates of Pασ .
It has been shown that joint use of, at least, M and D

provides higher predicting performance than the stan�

dard procedure for the metric IPSNR�HVS�M. The use

of three or more statistics parameters for the exponen�

tial model (11) results in insignificant improvement of

prediction performance. Thus, the use of only M and D

in (12) can be considered sufficient and such a predic�

tion has low computational cost. Moreover, it has been

shown that the prediction procedure does not require

full�overlapping processing and 300…500 is the suffi�

cient number of blocks where local estimates have to

be obtained.

.exp 21pred PDbPMbaMetric (12)

In Fig. 3, the corresponding 2D scatterplots with the

fitted surfaces are presented for mean and variance of

local estimates of P
2σ and P

0,5σ. The obtained parame�

ters of the 2D fitting surfaces are presented in Tables 3

and 4.

Desire to further improve prediction (e.g., using more

than two statistical parameters) leads to more advanced

prediction procedure [23]. The fitting model is, in fact,

based on feed�forward neural network (NN) with three

layers (with empirically chosen number of neurons)

that was trained for approximating a dependence. The

NN has the number of inputs equal to the number of

used input statistical parameters, ten neurons in hid�

den layer and one output neuron for providing a pre�

dicted value. A network training function, which up�
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dates values, was used according to Levenberg�Mar�

quardt optimization algorithm that is based on least�

squares algorithm.

It has been shown in [23] that prediction is good if

one use, at least, four input parameters: M, D, S and K.

The standard deviation of actual practical prediction

error for IPSNR�HVS�M was about 0.5 dB where such

variation of the metric value is practically undistinguish�

able for a human eye. One reason why such a high accu�

racy is provided is that four aforementioned parameters

are informative and not essentially inter�connected (for

instance, Med and Mod are strongly connected with M

and their joint usage would be inefficient).

Here we would like to answer the following ques�

tion: is it possible to use a fitting function and NN

trained for AWGN data for predicting denoising effi�

ciency for speckle images or it is worth using speckled

images and data for them in NN training and/or in func�

tion fitting.

Previously, 128 images distorted by 10 levels (noise

variances) of AWGN were used for the NN�predictor as

well as for one� and two�parameter fitting. To verify the

proposed methods for speckle case, all 128 images are

modelled as multi�look images (from 1 to 10 looks) to

provide different relative variances. Such a large num�

ber of images are used for providing full�range statis�

tics for effective prediction. Speckle�distorted data

(1280 points) are exploited by three previously de�

scribed methods: one�parameter fitting (using only M

parameter of Pασ), two�parameter fitting model (using

parameters M and D of P
as

) and NN�predictor (using

the parameters M, D, S and K of Pασ).

Here the analysis of the proposed method perfor�

mance, i.e. goodness of fit, is provided. Goodness of fit

results for function fitting models and NN�predictor

learned for AWGN and speckle cases are presented for

P
2σ and P

0.5σ in Tables 3.  It is well seen that fitting for

AWGN�distorted data gives higher goodness of fit than

for speckle�distorted data. That is observed for all meth�

ods and probabilities.

IPSNR fitting results are very good for all methods

using AWGN�distorted data. Satisfactory results for IP�

SNR�HVS�M can be achieved by using two�parameter

function and NN�predictor also using AWGN�distort�

ed data. For speckle�distorted data, IPSNR values can

be well predicted by two�parameter fitting and NN�pre�

dictor. However, IPSNR�HVS�M predicting using speck�

le data can be well only by using NN�predictor.

Note that satisfactory R2 values for P
0.5σ are higher for

all methods and exploited data than for P
2σ. It should

be stressed that R2 values increase by using more statis�

tical parameters and more complicated predicting

Fig. 3. 2D scatterplots of improvements of PSNR (a, b) and PSNR�HVS�M (c, d) of the DCT�based denoising on statistical parameters (mean and
variance) of local estimates of P

2σ (a, c) and P
0.5σ (b, d) and the fitted 2D prediction (approximation) functions

a b

c d
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models. As result, the NN�predictor using P
0,5s

 has the

highest R2 value for AWGN� and speckle�distorted data.

However, one of above mentioned requirements for

prediction methods is low computational cost. Statisti�

cal parameters that are used for prediction are simply

calculated. One� and two� parameter function fitting

are also very simple predicting models. These methods

require fitting operation, i.e. learning for certain data

(for some denoising technique or noise model). Input

parameters easily are inserted into the corresponding

fitting function with the known coefficients. Hence,

prediction procedure using fitting functions is very fast

procedure. It can be easily applied in remote sensing

systems due to their computational restrictions.

The NN�predictor is more complicated since it re�

quires some additional software and support. As well as

fitting models, NN�predictor also requires one training

procedure on corresponding data. It requires more sta�

tistics due to providing higher predicting performance

by using more advanced generalization ability than

function fitting models. Besides, such complexity in�

creases computational burden. That restricts this meth�

od applying in some image acquisition systems.

Analysis of the obtained results

Observing previous fitting results, AWGN�learned

prediction methods can be applied to multi�look re�

mote sensing images distorted by speckle. That can

prove universality of prediction approaches using

AWGN data for prediction denoising efficiency for oth�

er noise model. Two�parameter fitting method and NN�

predictor are used for prediction verification on real

remote sensing images.

For verification, 40 remote sensing images are used

as the test set, some test images are shown in Fig. 4.

Table 3
Goodness of fit R2 for different prediction methods using statistical
parameters

Fig. 4. Examples of the test aerial images: a – test image №1, b – №5, c – №7, d – №14, e – №16, f – №38

a b c

d e f
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Metric One�parameter 
fitting 

Two�
parameter 
fitting 

Multi�
parameter 
NN 

AWGN�distorted da ta 

IPSNR 0.94 0.94 0.97 

IPSNR�
HVS�M 

0.72 0.86 0.95 

Speckle�distorted data 

IPSNR 0.54 0.81 0.9 
IPSNR�

HVS�M 
0.42 0.65 0.87 

P0.5

Metric One�parameter  
fitting 

Two�
parameter 
fitting 

Multi�
parameter 
NN 

AWGN�distorted da ta 

IPSNR 0.98 0.98 0.99 
IPSNR�

HVS�M 

0.78 0.91 0.96 

Speckle�distorted data 

IPSNR 0.69 0.88 0.92 

IPSNR�
HVS�M 

0.54 0.74 0.90 

parameters
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There are some widely used test images among them:

fr01�04 (№1�4), San Diego (№5), Frisco (№7). Images

have different sizes: from 512*512 to 1024*1024 pixels

and are grayscale with 256 intensity levels. It is well seen

that images have various content, e.g. textures, fine de�

tails, homogenous regions), and pixels size.

Practical denoising data and the predicted values

for IPSNR and IPSNR�HVS�M are shown in Figs 5 and

7 for AWGN data. In Figs 6 and 8, the results for speck�

le data are presented. Different number of looks of

remote sensing images are considered as examples:

single, four and seven. Prediction methods learned by

large datasets are verified by applying on real gray�

scale remote�sensing images. It is well seen that one�

look images is the hardest case for prediction. Predic�

tion using AWGN�distorted data is more effective per�

formed by the NN�predictor than by two�parameter

fitting for all metrics and data.

Prediction using NN and speckle data seems to be

the most effective for one�look images. However, for

multi�look images case, both AWGN and speckle

learned methods are quite effective. This is an interest�

ing observation: once the obtained data, e.g., AWGN�

distorted, and the NN�predictor trained on it can be

applied to some another noise model or model with

unknown parameters.

    Note that threshold setting (2σ or 0,5σ), i.e. input

parameter choosing for prediction model, influences

prediction performance. For instance, statistics ob�

tained from test image №38 produce outliers for the

NN� predictor if one uses P
2σ whilst prediction using

P
0,5σ performs better.

Fig. 5. Improvement of practical PSNR values for 1�look images (a), 4 �look images (b), 7�look images (c) processed by the DCT�based filter and
the predicted results by fitting and NN based methods using statistical parameters of local estimates of P

2σ and P
0,5σ (for NN training and fitting,

AWGN�distorted data were used)

a

b

c
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Fig. 6. Improvement of practical PSNR values for 1�look images (a), 4�look images (b), 7�look images (c) processed by the DCT�based filter and
the predicted results by fitting and NN based methods using statistical parameters of local estimates of P

2σ and P
0,5σ (for NN training and fitting,

speckle�distorted data were used)

a

a

b

c
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Fig. 7. Improvement of practical PSNR�HVS�M values for 1�look images (a), 4�look images (b), 7�look images (c) processed by the DCT�based
filter and the predicted results by fitting and NN based methods using statistical parameters of local estimates of P

2σ and P
0,5σ (for NN training

and fitting, AWGN�distorted data were used)

c

b

a
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Fig. 8. Improvement of practical PSNR�HVS�M values for 1�look images (a), 4�look images (b), 7�look images (c) processed by the DCT�based
filter and the predicted results by fitting and NN based methods using statistical parameters of local estimates of P

2σ and P
0,5σ (for NN training

and fitting, speckle�distorted data were used

a

b

c
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 IPSNR IPSNR�HVS�M 

Prediction method P2  P0.5  P2  P0.5  

 single�look images 

AWGN�learned two�parameter fitting 2.187 1.176 2.115 1.514 

AWGN�learned multi�parameter NN 2.464 0.257 1.739 0.426 
speckle�learned two�parameter fitting 1.846 0.997 1.929 1.142 

speckle�learned multi�parameter NN 1.133 0.274 1.248 0.324 
 4�look images 

AWGN�learned two�parameter fitting 2.069 1.065 1.782 1.229 

AWGN�learned multi�parameter NN 3.926 0.331 1.293 0.293 
speckle�learned two�parameter fitting 1.662 0.849 1.588 0.901 

speckle�learned multi�parameter NN 1.934 0.238 1.839 0.189 
 7�look images 

AWGN�learned two�parameter fitting 1.772 0.888 1.467 1.009 

AWGN�learned multi�parameter NN 4.161 0.387 0.974 0.289 
speckle�learned two�parameter fitting 1.386 0.699 1.312 0.763 

speckle�learned multi�parameter NN 2.316 0.263 2.032 0.232 

 

Table 4
Variances of errors in dB for prediction by different methods for 40 test aerial images

From analysis of the presented plots, some observa�

tions can be done:

1. The DCT�based filter applied to speckled images

can provide significant improvement of visual quality

(see, e.g., the IPSNR and IPSNR�HVS�M values for the

test images №7, 11, 13, 17, 18, 21, 22, 24, 25, and 38 in

Figs 5�8).

2. However, in some cases (see the data for the test

images №5, 16, 20, 23 and 32 due to their complex con�

tent), the filter provides insignificant improvement of

metrics.

3. It is well seen that differences between practical

and predicted results reach about one dB for multi�look

images (see Figs 5�8b, c) in some cases. For single�look

images such differences are, on the average, larger (see

Figs 5�8a).

4. Multi�look images have lower relative variance

than single�look images due to (4). Therefore, en�

hanced multi�look images have higher visual quality.

In Table 7, MSE values of prediction errors for 40 test

images dataset and different number of looks are pre�

sented. Let us summarize these results:

1. It is well seen that prediction error MSEs are smaller

if P
0,5σ is used for prediction. That is true for all predic�

tion methods and metrics.

2. AWGN� and speckle�learned two�parameter fitting

for multi�look images have larger error MSEs than NN�

predictors.

3. For single� and multi�look images, AWGN� and

speckle�learned NN�predictor using P
0,5σ have appropri�

ate error MSEs where RMSE values do not exceed 0,5 dB.

4. Speckle�learned NN are even better than AWGN�

learned NN for multi�look images (see bold numbers).

For single�look images and IPSNR metric, however, the

situation is the opposite.

5. AWGN�learned NN can be applied to speckle�dis�

torted images instead of speckle�learned NN without

significant increasing of errors.

Besides, accuracy of denoising efficiency prediction

provided by prediction methods and exploited by other

automatic processing without human interaction have

to be more accurate. Thus, our further work will be de�

voted to providing more accurate prediction for other

noise models and denoising techniques.

Conclusions

 Methodology of denoising efficiency prediction of

the DCT�based filter is proposed. The proposed method

estimates local statistics from image 8x8 pixel blocks in

DCT domain. Transformed blocks are processed by hard

thresholding procedure to provide local estimates of the

considered probabilities. Local estimates are collected

and their distribution parameter(s) is calculated. These

can be sample mean or other simple statistics. These

parameters are inputs for prediction model with output

predicted metric (IPSNR and IPSNR�HVS�M) of denois�

ing efficiency.

Two prediction models are exploited: fitting function

model and feed�forward neural network (NN). It is

shown that two�parameter function fitting model is very

simple procedure with high prediction performance. In

turn, the NN�predictor demonstrates the highest predic�

tion performance using more statistics with more com�

plicated prediction mechanism.

For prediction providing by the model fitting or by

the NN training, a rather large data (image) set is needed.

Images in this set can be distorted by noise of two models:

AWGN or speckle. In general, it is possible to apply the

models obtained for AWGN case to predicting speckle

suppression efficiency in single and multi�look remote

sensing images. This proves a certain universality of the

proposed prediction approach. However, it is better to

use images with simulated speckle at initial stage (curve

fitting or NN training) and then to apply these results to

images corrupted by speckle. The largest benefit is

provided for one�look images.

Further works will be devoted to predicting denois�

ing efficiency for other noise models and other denois�

ing techniques.
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МЕТОДЫ ПРОГНОЗИРОВАНИЯ ЭФФЕКТИВНОСТИ ПОДАВЛЕНИЯ СПЕКЛ�ШУМА ДЛЯ ФИЛЬТРА НА ОСНОВЕ ДКП

В. В. Лукин, А. С. Рубель, А. В. Науменко, Б. Возель

Представлено и произведено сравнение нескольких методов прогнозирования эффективности подавления спекл�шума

для ДКП фильтра. Представленные методы позволяют выполнять прогнозирование значений некоторых стандарт�

ных количественных критериев, например, возрастания пикового соотношения сигнал/шум (IPSNR) благодаря филь�

трации так же успешно, как и значений некоторых критериев визуального качества отфильтрованных изображений.

Исследованы точные автоматические процедуры прогнозирования, использующие моменты статистических пара�

метров. Такие параметры рассчитываются в блоках размером 8*8 пикселей на изображениях, искаженных спекл�шу�

мом с некоторыми характеристиками (количество взглядов), которые считаются априорно известными или вычис�

ленными заранее с приемлемой точностью. Показана возможность применения методов для искаженных изображе�

ний при разном количестве взглядов. Прогнозирование на основе нейронной сети, обученной на предварительно

полученных данных со спекл�шумом, является наиболее эффективным.

Ключевые слова: спекл�шум, дистанционное зондирование, ДКП фильтр, эффективность прогнозирования

МЕТОДИ ПРОГНОЗУВАННЯ ЕФЕКТИВНОСТІ ПРИДУШЕННЯ СПЕКЛ�ШУМУ ДЛЯ ФІЛЬТРА НА ОСНОВІ ДКП

В. В. Лукін, О. С. Рубель, О. В. Науменко, Б. Возель

Представлено та проведено порівняння декількох методів прогнозування ефективності придушення спекл�шуму для

ДКП фільтра. Запропоновані методи дозволяють виконувати прогнозування значень деяких стандартних кількісних

критеріїв, наприклад збільшення пікового співвідношення сигнал/шум (IPSNR) так же успішно, як і значень деяких

критеріїв візуальної якості відфільтрованих зображень. Досліджені точні автоматичні процедури прогнозування, що

використовують моменти статистичних параметрів. Такі параметри розраховуються в блоках розміром 8*8 пікселів на

зображеннях, спотворених спекл�шумом з деякими характеристиками (кількість поглядів), які вважаються апріорно

відомими або обчисленими заздалегідь із прийнятною точністю. Показана можливість застосування методів для спот�

ворених зображень при різній кількості поглядів. Прогнозування на основі нейронної мережі, навченої на заздалегідь

отриманих даних зі спекл�шумом, є найбільш ефективним.

Ключові слова: спекл�шум, дистанційне зондування, ДКП фільтр, ефективність прогнозування
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