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Several approaches to prediction of despeckling efficiency for DCT-based filter are presented and compared. The approaches

allow predicting standard quantitative criteria as improvement of PSNR (IPSNR) as well as criteria of visual quality for filtered

images. We propose and analyze rather accurate automatic procedures of prediction that exploit moments of a statistical

parameter calculated in 8x8 pixel blocks of a given noisy image under condition that speckle parameters (or number of looks)

are a priori known or pre-estimated with a proper accuracy. It is also shown that the prediction approaches are applicable to

images with different intensity of speckle. Prediction based on neural network specially trained for multiplicative noise is

demonstrated to be the most accurate.
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Introduction

Remote sensing (RS) from airborne and spaceborne
carriers has found numerous applications [24]. Radar
RSis applied alongside with other types of imaging sys-
tems and it provides certain benefits compared to oth-
er RS systems as ability to work during day and night
and possibility to operate in bad weather conditions
[15]. However, acquired radar images formed by mod-
ern synthetic aperture radars (SARs) suffer from a noise-
like phenomenon called speckle that appears due to
coherent imaging mode and is the most intensive for
single-look SAR images [15, 26]. There are several ways
to cope with speckle [15, 26]. One way is to form multi-
look images that, unfortunately, leads to worse spatial
resolution of registered images. Besides, for a limited
number of looks (e.g., two or three) speckle can be still
intensive and annoying. Another way is to perform
despeckling (filtering, denoising) where numerous
methods exist (see [8, 9, 26] and references therein).
However, such despeckling, alongside with efficient
noise removal in image homogeneous regions, might
smear edges/details and destroy texture features which
is undesirable. These undesirable effects appear them-
selves for complex structure images containing a lot of
fine details and textures. Then sometimes it becomes
undesirable to carry out denoising or, at least, one has
to perform filtering more carefully than usually. Thus,
it is desirable to predict efficiency of despeckling be-
fore starting this operation of SAR image processing [3].

One problem is that despeckling efficiency depends
upon many factors [8, 9, 26]. They are properties
(complexity) of an image to be processed, noise
statistical and spatial correlation characteristics,
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availability and correctness of a priori information on
noise characteristics, type of a used filter and its
parameters as scanning window or block size, preset
thresholds, etc. Thus, it is possible to characterize
filtering efficiency in different ways. One way is to
determine potential efficiency of filtering.

Currently there are several approaches to determin-
inglower bounds of filtering efficiency [4, 5, 14, 17]. For
the approach of Chatterjee and Milanfar [4], noise-free
images are needed and potential (minimal) output
mean square error (MSE) is determined for non-local
filtering techniques under assumption that noise is ad-
ditive, zero mean, white and its distribution is known a
priori. Thus, despite of important results obtained in [4]
(that will be briefly discussed below), this approach is
impractical since noise-free image is not available for
the considered task. The paper [5] puts forward a more
practical approach where noise-free image is not any-
more needed whilst determined lower bound agrees
well with theory. However, the drawbacks of this ap-
proach are that it requires huge computations and de-
termines not practical but potential output MSE.

The approach in [17] works for additive white
Gaussian noise filtering based on local orthogonal
transforms and the determined potential output MSE
can differ from results in [4, 5] by up to 4 dB. Finally, the
approach [14] proposed recently works well enough for
white and spatially correlated additive noise with
known variance. It produces a good estimate of output
MSE provided by the best known filters for images that
can be modeled by fractal Brownian motion (fBm).
However, the calculations should be rather intensive.

The results presented in the papers [4, 5, 14, 17] al-
low concluding the following. For a given variance of
additive noise, output MSE values (both lower bound
and practically reachable) are the largest for highly tex-
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tural images. For such images, the existing state-of-the-
art filters provide output MSE values that are very close
to lower bound ones, especially if noise is intensive [14,
12, 21]. However, for simpler structure images, poten-
tial output MSE is usually considerably smaller than
practical. Thus, potential output MSE, if derived some-
how, is useless for practice since it does not describe
attainable filtering efficiency.

Other problems [12] are the following. First, the re-
sults in [4, 5, 14, 17] have been obtained for additive
Gaussian noise and our interest here is in suppressing
multiplicative non-Gaussian noise (speckle). Second,
it is desirable to predict not only standard metrics
(quantitative criteria) but also metrics that character-
ize visual quality of filtered images [12]. Third, to be use-
ful in practice, prediction of despeckling (filtering) ef-
ficiency should be simple and fast enough (faster than
filtering itself).

Of course, it is desirable to have a general prediction
procedure applicable for different types of filters. But
we understand that this desire cannot be satisfied now
and concentrate below on filtering based on discrete
cosine transform (DCT).

There are several reasons behind this. First, the DCT
based denoising provides noise removal efficiency close
to the best known filters (see simulation results in [12]
for additive noise and in [7, 8] for speckle noise). Thus,
if prediction for the DCT-based filter is accurate
enough, this means that it can also serve as a rough pre-
diction for other state-of-the-art filters. Second, sever-
alinteresting steps towards predicting filtering efficien-
cy have been done recently just for the DCT-based fil-
ter, namely, the standard DCT and the known BM3D
filter [10] where the latter one is considered to be the
state-of-the-art in removing additive white Gaussian
noise.

These steps are the following. Based on simulation
resultsin [17],it has been supposed in [19] that filtering
efficiency characterized by the ratio of output MSE to
variance of input AWGN can be predicted based on one
out of two simple statistics of DCT coefficients in 8 x 8
pixel blocks, in particular, mean probability (P, ) that
absolute values of DCT coefficients do not exceed dou-
bled standard deviation of AWGN (20). It has been
shown [20] that it is possible to predict other parame-
ters characterizing filtering efficiency as, improvement
of peak signal-to-noise ratio (IPSNR) and improvement
of the visual quality metric PSNR-HVS-M [16] (IPHVS),
both expressed in dB. Moreover, this can be done not
only for AWGN but also for spatially correlated noise
under condition that its spatial spectrum is a priori
known or accurately pre-estimated.

Later, it has been shown [18] that prediction of IP-
SNR and IPHVS is possible for the case of DCT-based
removal of signal-dependent noise (that has additive
and quasi-poissonian components [1]) under condition
that parameters of these components are known in
advance or accurately estimated in advance (then, an

algorithm of probability estimation is modified accord-
ingly). It has been also determined that it is enough to
estimate P, in non-overlapping blocks and/or to use,
atleast, 300..500 blocks placed randomly in probabili-
ty estimation. This makes prediction by about two or-
ders faster than even the standard DCT based filtering
that employs two DCTs (direct and inverse) in fully
overlapping blocks [11].

Here, itis worth recalling a general principle on how
prediction is performed. A sufficient part of work is
done off-line and in advance. The main goal of this
work is to obtain an analytically described dependence
of a parameter that characterizes filtering efficiency
(e.g,, IPSNR) on a statistical parameter that simulta-
neously characterizes image complexity and noise in-
tensity (e.g., P, ). Having the corresponding depen-
dence, one calculates an input parameter (e.g., P, ), sub-
stitutes it into the obtained dependence as argument,
and gets an estimate of a parameter that characterizes
filtering efficiency (e.g., IPSNR).

Such dependences are obtained in advance by form-
ing a scatter-plot for pairs of the considered parame-
ters for a wide set of test images and noise parameters
and fitting a curve into this scatter-plot [18, 19, 20].
Quality of such a fitting (and quality of prediction) is
characterized by several statistical criteria [2]. To make
prediction quite general and accurate, several actions
have to be performed. First, it is possible to optimize
(or to properly select) the parameter (probability) [22]
employed as input parameter in prediction. In this
sense, the probability P . (that absolute values of DCT
coefficients do not exceed 0.56) has occurred [22] to
be slightly better than P, and earlier used P, . . Second,
selection of the test image set and a set of noise param-
eters influences fitting (argument values have to cover
all possible interval and they have to be “equally sparse-
ly” located). Third, a function chosen for fitting (poly-
nomial, exponent, etc) also has an impact on fitting
results. Thus, special attention has to be paid to this as-
pect with several trials and choosing a best version.
Fourth, prediction using only one input parameter can
be not accurate enough [22, 23]. Without essential loos-
ing of computational efficiency and simplicity of pre-
diction, it is possible to use two or more input parame-
ters combined in some manner, in particular, using a
trained neural network [23].

Therefore, here we deal with considering several
tasks. The main of them is to analyze applicability of
the prediction approaches to the case of despeckling
SAR images where speckle is treated as a specific type
of signal-dependent noise, which has been earlier dis-
cussed very briefly in [3]. Besides, we also aim to ana-
lyze possibilities of improving prediction accuracy.

The paper structure is the following. The second sec-
tion describes the denoising mechanism of the DCT-
based filter. The third section “Standard Methodology
of Prediction” introduces used statistical parameters
and a method for prediction. Section “Advanced Meth-
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odologies of prediction” deals with improved methods
of predicting by multi-parameter fitting and neural net-
work learning. The last section analyses the obtained
results of prediction for real aerial images and different
methods.

DCT-based filtering and its modifications
different noise types

DCT-based filter has high denoising efficiency and
low computational complexity [17]. Moreover, it has
been shown [17] that the DCT-based filter demon-
strates efficiency close to the best-known filters (such
as BM3D) [10] and to potential denoising bounds [4]
particularly for AWGN model:

5t @ )= 1, 1)+ Nssan(0 ) (1
where 7 is true image /5, is noisy image, 7 and j are
indices of pixels in image. N, dENOtES ZEro mean
additive white Gaussian noise (i.e., a 2D realization of
Gaussian random process) with standard deviation of
the noise .

Here, a basic block-wise denoising mechanism of the
DCT filter is given for the AWGN case. After direct 2D
DCT in a block, the following operation is carried out:

B () B(n,m)> o
add _ in ) in ? ’
B(ml (n’m)_ {O <« B.ﬂdd (7’l,77l)S ﬂO‘, (2)

in

where Bis a denoising thresholding parameter that, in
general, can vary in the range 2..4 (the recommended
value is 2.7), n and m are spatial frequency indices in an
image 8 x 8 pixels block, B denotes DCT coeffi-
cients of input noisy image block, B denotes DCT
coefficients after thresholding. Then, inverse 2D DCT
is carried out for B The standard DCT-based filter
[17] performs full-overlapping block-wise denoising
and, at the final stage, it collects data from overlapping
blocks together with averaging the filtered values for a
given pixel.

However, for SAR remote sensing imagery, speckle
which is a multiplicative nature noise-like phenomeno-
nis more inherent. For one-look or single-look remote
sensing images [24], the following model of multipli-
cative Rayleigh distributed speckle is considered ade-

quate (for amplitude images) [15]:
L™ @ 7)= 1,6, 7N iy (R), )

where N R,.].(Ie) denotes Rayleigh distributed random
value, k is distribution parameter that provides unity
mean, /5" isan (one-look noisy) image distorted by
specific signal-dependent noise. Multi-look SAR imag-
es, i.e. averaged (by pixels) sets of images of the same
sensed surface region, have slightly different kind of
noise. Such noisy images can be modelled as averaged

value of L Rayleigh noise realizations:

L™ 0, j)= 21, )N (k) /L =
1
= It(zlL]')NRz'j
where L means the number of image looks, 15, is the
distorted multi-look image, Ny, (k)is/-th realization of
unity mean Rayleigh random variable.

It is seen from (2) that denoising mechanism of the
DCT filter deals with hard thresholding. For different
noise types and models, denoising threshold is set dif-
ferently. For multiplicative spatially uncorrelated noise
case such as speckle, the denoising threshold is modi-
fied as:

€]

Bmulz (n m) — B;’Z“ll (n7m) <~ Birr:m” (n7zn) > ﬁa;zsi::m” )
out ) O « Bmulz (n7m) < ﬂal S-m“” , (5)
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where S’ is mean intensity of a given image block
(that can be also measured in spatial domain), o
denotes (relative) variance of multiplicative noise,
other introduced notations as B/ and B™" are
similar to the ones earlier used in (2). Note that o, for
the model (3) equals to 0.273 and it becomes o /L for

multi-look amplitude images [15].
Standard Methodology of Prediction

Due to simplicity, high performance and easy adap-
tivity of the DCT-based filter to different types of the
noise, this denoising technique is attractive for practi-
cal use. Being equipped by an efficiency prediction op-
eration, it becomes even more attractive. However, pre-
diction should be a simple and fast procedure. It is
worth stressing here that remote sensing systems are
demanding to computational complexity of data pro-
cessing like denoising. Quite many recently proposed
filters have high complexity [10] and, meanwhile, they
can introduce essential distortions into processed im-
ages in some case, which is undesirable.

One of the purposes of denoising efficiency pre-
diction is “catching” practical situations when filtering
efficiency is not appropriate and the filtering procedure
could be cancelled or avoided. The second goal is pre-
diction of metric improvement (these can be metrics
PSNR or PSNR-HVS-M [16]) without a corresponding
reference image.

The principal idea of getting a predicted value con-
sists in using some operation with some input statistics
of a noisy image and further obtaining of the output
(predicted) value. Thus, two tasks arise: what statistical
parameter(s) to use and how to predict, i.e. to link two
values — a statistical parameter(s) and a metric of de-
noising efficiency.

The abovementioned goals of prediction require low
complexity of prediction operation and appropriate
accuracy. This restricts a set of techniques and parame-
ters that can be applied. It is preferable if only simple
arithmetic operations are used for the purpose of pre-
diction. Moreover, amount of statistics obtained from
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an image for predicting the efficiency of its filtering can
be also limited. This means that we need some infor-
mative local estimates that produce reasonably small
volume of data.

The first task is strictly connected with the denois-
ing mechanism of the DCT-based filter. This mecha-
nism removes coefficients that are smaller than the pre-
set threshold(s). It is a reasonable idea that the number
of removed (zeroed) DCT coefficients strictly influenc-
es final denoising efficiency. In [19], the first steps of
predicting the DCT-based filter efficiency were done.
The proposed method uses hard thresholding ope-
ration and requires adequate threshold value setting.
As statistical parameter, probability that DCT coef-
ficients potentially are removed or not by the filter is
used.

The proposed method collects local estimates for all
considered image blocks using the procedure described
above for subsequent prediction. Local statistical esti-
mates for additive noise (AWGN) and multiplicative
noise (speckle) models could be the following:

out Oqudd(n,m,Q)Zao', (6)

in

Eadd(n’m’q): {1 <« ledd(nvqu)< aO',

Emul[

mu I« B;Zu” n,m,q)> in >
Eoull[ (n’ m, q) = {O « Bmul[((n mqq)) Sczloo-il E.mull (7)

in uSin

Pmr (q): ZEout(n’ m’q)/63’ (8)

nm

where gis an index of an analyzed block, a.is the thresh-
olding parameter used for prediction (it is similar to B),
PM(Q) is a set of local probability estimates calculated
for the g-th block in a processed image.

Note that Rm(q) is calculated for 63 coefficients (in
8 x 8 pixel block) excluding DCT coefficient that cor-
responds to mean intensity and has indices (0. O — left
up corner) in block (this coefficient is also not used in
denoising). It is seen that the values of the local esti-
mates of Pa,j(q) lie in the range 0O...1. It is not a problem
to remember and store the set of local estimates for a
given image at intermediate stage of prediction.

Then, this set can be represented as some distri-
bution. In [19], only mean value (ISM: z Pa(,(q)) was
used for predicting the ratio MSE/c? Thresholds for
probabilities obtaining were 2¢ and 2.7c. The first
threshold is used for estimation of probability that DCT
coefficients do not exceed threshold. The second
threshold was estimated in [19] the opposite way
P, ;= z (1'Pz,7v (q)) :

Motivations for using those thresholds were empiri-
cal and they followed from our previous experience.
The threshold 2¢ is usually exploited in the well known
sigma-filter [13] for defining a neighbourhood whilst
the threshold 2.7c has been intensively used in DCT-
based filtering [17].

For linking MSE/c* and mean probability value for

both thresholds, polynomial and exponential fitting
functions were used. The prediction method was ex-
ploited both for DCT-based filter and BM3D. Function
coefficients were calculated by maximizing goodness
of fit (R?) as fitting criteria:

R*=1-5S,,/SS,,, ©

where SS, denotes the sum of squares of residuals, also
called the residual sum of squares, SS, , is the total sum
of squares which is proportional to the sample variance.
Traditionally, the goodness of fit is the main quantita-
tive parameter that describes effectiveness (quality) of
fitting.

Due to the fact that the studies in [19] were at initial
stage, they have several drawbacks. First, a small num-
ber of test images was exploited. Thus, an insufficient
number of scatter-plot points has been used in curve
fitting. In particular, P,., and p,, that correspond to
texture images were not presented at scatter-plots. This
means that, in general, a large set of points (different
values of statistical parameter distributed along full
range of possible parameter and metric values) must
be used for accurate prediction.

In [20], as prediction model, exponent fitting func-
tion was used as the most suitable:

Metric,,,, =a exp(bf_’,m ), (10)

where Metric,,,is a predicted value of a metric of de-
noising efficiency, @ and b are coefficients of fitting
function. As it has been mentioned before in [19], the
cases of a equal to 2 or to 2,7 have been considered.

In [19], a larger (sufficient) number of points (34)
was used and another noise model was considered —
additive spatially correlated noise. Alongside with MSE/
o?, fitting functions for improvement of the metrics
PSNR and PSNR-HVS-M (the latter metric is based on
human vision system and adequately assesses visual
quality) were obtained for three noise models. The ob-
tained approximations for spatially correlated noise
turned out to be close to the approximations for the
AWGN case. Partially this observation indicates univer-
sality of the proposed method that can be applied to
other noise models. Due to it, we assume that predic-
tion model based on AWGN can be applied to predic-
tion of speckle removal efficiency and compared with
those based on speckle-noised data.

New results of as threshold setting for prediction
procedure were obtained in [22]. In addition, it has been
shown that using the mean probability 7, (ie.a=0.5)
is more suitable than P, for prediction, i. e. providing
higher goodness of fit value.

In Fig. 1, scatterplots of AWGN data for IPSNR and
IPSNR-HVS-M metrics vs probabilities P,, and P, are
presented (blue points). For prediction performing, a
large set of test images has been used: 128 different
images and 10 noise levels (variances of AWGN were 4,
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Fig. 1. 1D scatterplots of improvement of PSNR (a, b) and PSNR-HVS-M (¢, d) for the DCT-based denoising vs mean of local estimates of P,

(a,0)and P,
9, 25, 64, 100, 144, 225, 289, 400, and 625). All used
images have different content and are taken from dif-
ferent databases (TID2013 [6], USC-SIPI [25] and some
other).

In addition, fitted curves of the exploited exponen-
tial fitting function (10) are shown as red lines. Coeffi-
cients of fitting functions and goodness of fit parame-
ters are presented in Tables 1 and 2. It is well seen from
the plots that IPSNR data points are less scattered than
IPSNR-HVS-M data points. As a result, goodness of fit
values for IPSNR functions are higher than for IPSNR-
HVS-M. This means easier prediction for the IPSNR
metric compared to the metric IPSNR-HVS-M. Also it
should be stressed that the use of F, is more prefera-
ble than the use of P, since this reduces data scatter-
ing (R*occurs to be larger).

Besides, the scatterplots for IPSNR-HVS-M show that

Table 1
Coefficients of 1D fitting functions using statistical parameters
obtained from AWGN-distorted data and goodness of fit results

(b, d) and the fitted 1D prediction functions (approximations)

the proposed one-parameter (mean of P, ) fitting mod-
el and, respectively, prediction can be not sufficiently
accurate. Thus, it is desirable to apply some more ad-
vanced technique, primarily to IPSNR-HVS-M predic-
tion. This can be done using more informative statis-
tics as statistical parameter (-s) and appropriate pre-
dicting models.

Advanced Methodologies of Prediction

As it has been shown in the previous section, after
procedure of local estimation of P_, a set of estimates
having a certain distribution is obtained. Four exam-
ples of such distributions for two noisy images and two
probabilities P, and P, are presented in Fig. 2. The
used images are remote sensing single-look images dis-
torted by speckle with relative variance o, equal to

Table 2
Coefficients of the 2D fitted functions for the parameters obtained
for AWGN case and goodness of fit results

P,,
Metric a b R®
IPSNR 7.97°10° 762 0.94
IPSNR-HVS-M 099°10° 931 0.72
Py so
Metric a b R’
IPSNR 011 1253 0.98
IPSNR-HVS-M 26*10° 1499 0.78

Py

Metric a b, b, R’
IPSNR 25°107 884 13.37 098
IPSNR- 429'10° 15.06 559 091
HVS-M

Pose
Metric a b, b, R
IPSNR 8495°10” 129 17.71 094
IPSNR- 14107 2066 201.6 086

HVS-M
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Fig. 2. Histograms of local estimates of P2_(a, b) and P

0,56

0.273 produced by Rayleigh noise with . P.(q)
are obtained using expressions (7) and (8).

Achieved improvements of metrics for denoising by
the DCT-based filter are the following: for the the test
image Ne16,IPSNRis 10.03 dB and IPSNR-HVS-M is 6.16
dB; for the image Ne 38, improvements are essentially
larger: IPSNR is 16.71 dB and IPSNR-HVS-M is 12.03 dB
(the mentioned test images are presented later in Fig. 4)
and a larger positive effect due to filtering should be
observed.

Meanwhile, the mean probabilities of P, and P, ,_for
these two test images are close: 0.934 and 0.359 for first
test image; 0.953 and 0.381 for the second test image.
They lie in the range where the fitted curves are chang-
ing rapidly (see Fig. 1). Therefore, for such case, predic-
tion error can be large if a used input statistic parame-
ter would be estimated with inappropriate accuracy.
Thus, more input information for prediction procedure
can be needed.

Such information can be obtained (retrieved) from
the sample (set) of local estimates. In [20], instead of
considering only the mean value, six first order statis-
tic parameters were exploited for AWGN data: the mean
(M), median (Med), mode (Mod), variance (D), skew-
ness (S) and kurtosis (K). Extended exponential func-
tion that depends on these six parameters in exponent
was proposed due to its simplicity and convenience:

Metm‘cpred =a CXP[Z bz'oz' (PM )] ’ (1 1)

where Metric,,,,is the predicted value of metric, @ and

b ,are coefficients of fitting functions, O, is a statistical

x10°

0 x =
0 0,2 0.4 0.6 0.8 1

2o

x10'

0 0,2 0.4 0.6 0.8

5
I 0,5¢

(¢, d) for first test image (a, ¢) and for second (b, d)

operator for estimating parameters of the distribution
of local estimates of P__.

It has been shown that joint use of, at least, M and D
provides higher predicting performance than the stan-
dard procedure for the metric IPSNR-HVS-M. The use
of three or more statistics parameters for the exponen-
tial model (11) results in insignificant improvement of
prediction performance. Thus, the use of only M and D
in (12) can be considered sufficient and such a predic-
tion has low computational cost. Moreover, it has been
shown that the prediction procedure does not require
full-overlapping processing and 300...500 is the suffi-
cient number of blocks where local estimates have to
be obtained.

Metric ,,,,, = aexp(b,M(P,)+b,D(P,,)) (12)

In Fig. 3, the corresponding 2D scatterplots with the
fitted surfaces are presented for mean and variance of
local estimates of P, and P, . The obtained parame-
ters of the 2D fitting surfaces are presented in Tables 3
and 4.

Desire to further improve prediction (e.g., using more
than two statistical parameters) leads to more advanced
prediction procedure [23]. The fitting model is, in fact,
based on feed-forward neural network (NN) with three
layers (with empirically chosen number of neurons)
that was trained for approximating a dependence. The
NN has the number of inputs equal to the number of
used input statistical parameters, ten neurons in hid-
den layer and one output neuron for providing a pre-
dicted value. A network training function, which up-
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Fig. 3. 2D scatterplots of improvements of PSNR (a, b) and PSNR-HVS-M (¢, d) of the DCT-based denoising on statistical parameters (mean and

variance) of local estimates of P, (a,c) and P

dates values, was used according to Levenberg-Mar-
quardt optimization algorithm that is based on least-
squares algorithm.

It has been shown in [23] that prediction is good if
one use, at least, four input parameters: M, D, S and K.
The standard deviation of actual practical prediction
error for IPSNR-HVS-M was about 0.5 dB where such
variation of the metric value is practically undistinguish-
able for a human eye. One reason why such a high accu-
racy is provided is that four aforementioned parameters
are informative and not essentially inter-connected (for
instance, Med and Mod are strongly connected with M
and their joint usage would be inefficient).

Here we would like to answer the following ques-
tion: is it possible to use a fitting function and NN
trained for AWGN data for predicting denoising effi-
ciency for speckle images or it is worth using speckled
images and data for them in NN training and/or in func-
tion fitting.

Previously, 128 images distorted by 10 levels (noise
variances) of AWGN were used for the NN-predictor as
well as for one- and two-parameter fitting. To verify the
proposed methods for speckle case, all 128 images are
modelled as multi-look images (from 1 to 10 looks) to
provide different relative variances. Such a large num-
ber of images are used for providing full-range statis-

(b, d) and the fitted 2D prediction (approximation) functions

tics for effective prediction. Speckle-distorted data
(1280 points) are exploited by three previously de-
scribed methods: one-parameter fitting (using only M
parameter of P, ), two-parameter fitting model (using
parameters M and D of P,) and NN-predictor (using
the parameters M, D, S and KofP ).

Here the analysis of the proposed method perfor-
mance, i.e. goodness of fit, is provided. Goodness of fit
results for function fitting models and NN-predictor
learned for AWGN and speckle cases are presented for
P, and P, in Tables 3. It is well seen that fitting for
AWGN-distorted data gives higher goodness of fit than
for speckle-distorted data. That is observed for all meth-
ods and probabilities.

IPSNR fitting results are very good for all methods
using AWGN-distorted data. Satisfactory results for IP-
SNR-HVS-M can be achieved by using two-parameter
function and NN-predictor also using AWGN-distort-
ed data. For speckle-distorted data, IPSNR values can
be well predicted by two-parameter fitting and NN-pre-
dictor. However, IPSNR-HVS-M predicting using speck-
le data can be well only by using NN-predictor.

Note that satisfactory R* values for P, . are higher for
all methods and exploited data than for P, . It should
be stressed that R* values increase by using more statis-
tical parameters and more complicated predicting
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Table 3
Goodness of fit R2 for different prediction methods using statistical
parameters

PZc
Metric One-parameter Two- Multi-
fitting parameter parameter
fitting NN

AW GN-distorteddata
IPSNR 094 094 097
IPSNR- 072 0.86 095
HVS-M

Speckle-distorted data
IPSNR 054 081 09
IPSNR- 042 0065 087
HVS-M

Poso
Metric One-parameter  Two- Multi-
fitting parameter parameter
fitting NN

AWGN-distorteddata
IPSNR 098 098 099
IPSNR- 0.78 091 096
HVS-M

Speckle-distorted data
IPSNR 0.69 0.88 092
IPSNR- 0.54 0.74 090
HVS-M

models. As result, the NN-predictor using P . has the
highest R? value for AWGN- and speckle-distorted data.

However, one of above mentioned requirements for
prediction methods is low computational cost. Statisti-
cal parameters that are used for prediction are simply
calculated. One- and two- parameter function fitting
are also very simple predicting models. These methods

require fitting operation, i.e. learning for certain data
(for some denoising technique or noise model). Input
parameters easily are inserted into the corresponding
fitting function with the known coefficients. Hence,
prediction procedure using fitting functions is very fast
procedure. It can be easily applied in remote sensing
systems due to their computational restrictions.

The NN-predictor is more complicated since it re-
quires some additional software and support. As well as
fitting models, NN-predictor also requires one training
procedure on corresponding data. It requires more sta-
tistics due to providing higher predicting performance
by using more advanced generalization ability than
function fitting models. Besides, such complexity in-
creases computational burden. That restricts this meth-
od applying in some image acquisition systems.

Analysis of the obtained results

Observing previous fitting results, AWGN-learned
prediction methods can be applied to multi-look re-
mote sensing images distorted by speckle. That can
prove universality of prediction approaches using
AWGN data for prediction denoising efficiency for oth-
er noise model. Two-parameter fitting method and NN-
predictor are used for prediction verification on real
remote sensing images.

For verification, 40 remote sensing images are used
as the test set, some test images are shown in Fig. 4.

Fig. 4. Examples of the test aerial images: a — test image Nel, b — Ne5, ¢ — Ne7,d — Ne14, e — Ne16, f — Ne38
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There are some widely used test images among them:
fr01-04 (Ne1-4), San Diego (Ne5), Frisco (Ne7). Images
have different sizes: from 512°512 to 102471024 pixels
and are grayscale with 256 intensity levels. It is well seen
that images have various content, e.g. textures, fine de-
tails, homogenous regions), and pixels size.

Practical denoising data and the predicted values
for IPSNR and IPSNR-HVS-M are shown in Figs 5 and
7 for AWGN data. In Figs 6 and 8, the results for speck-
le data are presented. Different number of looks of
remote sensing images are considered as examples:
single, four and seven. Prediction methods learned by
large datasets are verified by applying on real gray-
scale remote-sensing images. It is well seen that one-
look images is the hardest case for prediction. Predic-
tion using AWGN-distorted data is more effective per-

formed by the NN-predictor than by two-parameter
fitting for all metrics and data.

Prediction using NN and speckle data seems to be
the most effective for one-look images. However, for
multi-look images case, both AWGN and speckle
learned methods are quite effective. This is an interest-
ing observation: once the obtained data, e.g., AWGN-
distorted, and the NN-predictor trained on it can be
applied to some another noise model or model with
unknown parameters.

Note that threshold setting (26 or 0,50), i.e. input
parameter choosing for prediction model, influences
prediction performance. For instance, statistics ob-
tained from test image Ne38 produce outliers for the
NN- predictor if one uses P, whilst prediction using
P, ., performs better.

= Practical

——— Predicted by AWGN-learned NN using P,
Predicted by AWGN-learned NN using P,

Predicted by AWGN data fitting using P, _
——— Predicted by AWGN data fitting using P,
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Fig. 5. Improvement of practical PSNR values for 1-look images (a), 4 -look images (b), 7-look images (¢) processed by the DCT-based filter and
the predicted results by fitting and NN based methods using statistical parameters of local estimates of P, and P .
AWGN-distorted data were used)

(for NN training and fitting,
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Fig. 6. Improvement of practical PSNR values for 1-look images (), 4-look images (b), 7-look images (¢) processed by the DCT-based filter and

the predicted results by fitting and NN based methods using statistical parameters of local estimates of P,, and P, (for NN training and fitting,
speckle-distorted data were used)
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Fig. 8. Improvement of practical PSNR-HVS-M values for 1-look images (a), 4-look images (b), 7-look images (c) processed by the DCT-based
filter and the predicted results by fitting and NN based methods using statistical parameters of local estimates of P,  and P . (for NN training
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Table 4
Variances of errors in dB for prediction by different methods for 40 test aerial images
IPSNR IPSNR-HVS-M
Prediction method Py Pyso Py Py 5o
single-look images
AW GN-learned two-parameter fitting 2187 1176 2.115 1514
AW GN-learned multi-parameter NN 2464 0.257 1.739 0426
speckle-learne d two-parameter fitting 1846 0997 1.929 1.142
speckle-learne d multi- parameter NN 1.133 0.274 1.248 0.324
4-lookimages
AW GN-learned two-parameter fitting 2069 1065 1.782 1229
AW GN-learned multi-parameter NN 3926 0.331 1.293 0.293
spe ckle-learned two-parameter fitting 1662 0849 1.588 0901
speckle-learne d multi- parameter NN 1934 0.238 1.839 0.189
7-lookimages
AW GN-learned two-parameter fitting 1772 0888 1.467 1009
AW GN-learned multi-para meter NN 4161 0.387 0.974 0.289
spe ckle-learne d two-parameter fitting 1386 0699 1.312 0763
spe ckle-learne d multi- parameter NN 2316 0.263 2.032 0.232

From analysis of the presented plots, some observa-
tions can be done:

1. The DCT-based filter applied to speckled images
can provide significant improvement of visual quality
(see, e.g.,, the IPSNR and IPSNR-HVS-M values for the
test images Ne7, 11, 13,17, 18, 21, 22, 24, 25, and 38 in
Figs 5-8).

2. However, in some cases (see the data for the test
images Ne5, 16, 20, 23 and 32 due to their complex con-
tent), the filter provides insignificant improvement of
metrics.

3. It is well seen that differences between practical
and predicted results reach about one dB for multi-look
images (see Figs 5-8b, ¢) in some cases. For single-look
images such differences are, on the average, larger (see
Figs 5-8a).

4. Multi-look images have lower relative variance
than single-look images due to (4). Therefore, en-
hanced multi-look images have higher visual quality.

In Table 7, MSE values of prediction errors for 40 test
images dataset and different number of looks are pre-
sented. Let us summarize these results:

1.Itiswell seen that prediction error MSEs are smaller
if P, is used for prediction. That is true for all predic-
tion methods and metrics.

2. AWGN- and speckle-learned two-parameter fitting
for multi-look images have larger error MSEs than NN-
predictors.

3. For single- and multi-look images, AWGN- and
speckle-learned NN-predictor using P . have appropri-
ate error MSEs where RMSE values do not exceed 0,5 dB.

4. Speckle-learned NN are even better than AWGN-
learned NN for multi-look images (see bold numbers).
For single-look images and IPSNR metric, however, the
situation is the opposite.

5. AWGN-learned NN can be applied to speckle-dis-
torted images instead of speckle-learned NN without
significant increasing of errors.

Besides, accuracy of denoising efficiency prediction
provided by prediction methods and exploited by other

automatic processing without human interaction have
to be more accurate. Thus, our further work will be de-
voted to providing more accurate prediction for other
noise models and denoising techniques.

Conclusions

Methodology of denoising efficiency prediction of
the DCT-based filter is proposed. The proposed method
estimates local statistics from image 8x8 pixel blocks in
DCT domain. Transformed blocks are processed by hard
thresholding procedure to provide local estimates of the
considered probabilities. Local estimates are collected
and their distribution parameter(s) is calculated. These
can be sample mean or other simple statistics. These
parameters are inputs for prediction model with output
predicted metric (IPSNR and IPSNR-HVS-M) of denois-
ing efficiency.

Two prediction models are exploited: fitting function
model and feed-forward neural network (NN). It is
shown that two-parameter function fitting model is very
simple procedure with high prediction performance. In
turn, the NN-predictor demonstrates the highest predic-
tion performance using more statistics with more com-
plicated prediction mechanism.

For prediction providing by the model fitting or by
the NN training, a rather large data (image) set is needed.
Images in this set can be distorted by noise of two models:
AWGN or speckle. In general, it is possible to apply the
models obtained for AWGN case to predicting speckle
suppression efficiency in single and multi-look remote
sensing images. This proves a certain universality of the
proposed prediction approach. However, it is better to
use images with simulated speckle at initial stage (curve
fitting or NN training) and then to apply these results to
images corrupted by speckle. The largest benefit is
provided for one-look images.

Further works will be devoted to predicting denois-
ing efficiency for other noise models and other denois-
ing techniques.
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METOIBI ITPOTHO3NPOBAHUA DPDPEKTUBHOCTU ITOJABJIEHMSA CITEKII-IITYMA JIJI GMJIBI'PA HA OCHOBE JIKII

B. B.Jlykum, A. C. Py6enn, A. B. Haymenko, b. Bosesnb

ITpesicTaBIeHO ¥ MPOM3BEACHO CPABHEHHUE HECKOJIBKUX METO/IOB TPOTHO3MPOBAHNA 3(P(PEKTHBHOCTH MO/IABICHUA CIIEK/I-IITyMa
st JKIT cpunsrpa. TIpeicTaBIeHHbIE METOBI TO3BOJIAIOT BBITOIHATH IPOTHO3UPOBAHNE 3HAYEHHUIT HEKOTOPBIX CTAH/1ApPT-
HBIX KOJINYECTBEHHBIX KDUTEPHUEB, HAIIPHMED, BO3PACTAHUA TMKOBOT'O COOTHOIEHM curHai/mym (IPSNR) 61arogaps puib-
TPAIWN TAK K€ YCIEIMHO, KAK ¥ 3HAYEHHUI HEKOTOPBIX KPUTEPHUEB BU3YaTbHOI'O KAYECTBA OT(PUIBTPOBAHHBIX M300PAKEHNI.
VccneJoBaHbl TOYHBIE aBTOMATHYECKUE TIPOLIEyPBl TIPOTHO3MPOBAHMSA, UCIIONB3YIOMIUE MOMEHTBI CTATUCTUYECKHX 1apa-
MeTpOB. TaKMe MapaMeTPhl PACCYUTHIBAIOTCA B 6JIOKAX pa3MepoM 8°8 muKceeit Ha U300PAKEHNAX, NCKAKEHHBIX CIIEKII-ITy-
MOM C HEKOTOPBIMH XaPaKTEPUCTUKAMU (KOJIMYECTBO B3IVIA/IOB), KOTOPBIE CUUTAIOTCA alIPHOPHO U3BECTHBIMU MJIH BBIUNC-
JIEHHBIMH 3aPaHee C IPUEMJIEMON TOYHOCTHIO. ITOKa3aHa BO3MOKHOCTb IPUMEHEHHUSA METO/IOB I MCKAKEHHBIX H300paKe-
HMIT IPU PA3HOM KOJIMYECTBE B3IVIAO0B. IIPOrHO3MPOBAHME HA OCHOBE HEHPOHHOM CETH, OOYYEHHON Ha MPE/IBAPUTEILHO
MOJTyYE€HHBIX JJAHHBIX CO CIEKJI-IIIyMOM, AB/IACTCA Hanbomnee 3PPEKTUBHBIM.

KiroueBsnie CI0BaA: CIICK/I-ITYM, JUCTAHITMOHHOE 30H11poBanue, IKIT punsrp, apOeKTHBHOCTL TPOrHO3UPOBAHNUA

METOIUW ITPOTHO3YBAHHA EGEKTUBHOCTI ITPUAYVIIEHHS CITEKJI-ITYMY JJIS1 GIIBI'PA HA OCHOBI IKTI

B. B. JIykin, O. C. Py6ens, O. B. Haymenko, b. Bozenb

IIpeaCTaBICHO Ta IPOBEIEHO MNOPIBHAHHA JEKIIBKOX METO/AIB IPOTHO3YBAHHA €(DEKTUBHOCTI IPUAYIICHHS CIICKI-ITYMY JJI
JKII pinsrpa. 3aporoHOBaHi METOAU JO3BOJIAIOT BUKOHYBATH IPOTHO3YBAHHS 3HAYCHbD JCAKUX CTAHIAPTHUX KiJIbBKICHUX
KpUTEPiiB, HAIPUK/IAJ 30UIbIIEHHS IIKOBOT'O CIiBBifHOMEHHA cUrHan/myMm (IPSNR) Tak ke yCHilHO, K i 3HaYEHb JCAKUX
KPUTEPIIB Bi3yaabHOI AKOCTi BifpIBIPOBAHUX 3006paKeHb. JJOCIPKEHI TOUH] aBTOMATUYHI IIPOLIEAYPH IPOTHO3YBAHHS, 10
BUKOPHCTOBYIOTb MOMEHTH CTATUCTUYHUX ITapaMeTpiB. Taki mapaMeTpu pO3paxoOBYIOThCs B OJI0KAX pO3MipoM 8*8 miKkcestis Ha
300PAKEHHAX, CIIOTBOPEHUX CIIEKI-IIYMOM 3 ICAKUMHU XaPAKTEPUCTUKAMU (KUIBKICTD HOIVIAIB), IKi BBAKAIOTHCS AlIPiOPHO
BiJTOMHUMH 260 OOUUCICHUMU 3a3/1JIETi/b i3 TPUIHATHOIO TOYHICTIO. [TOKa3aHA MOXJIUBICTB 3ACTOCYBAHHS METO/IIB JUISI CITOT-
BOPEHUX 300PAKCHD IIPHU Pi3Hil KiTbKOCTI OB, [IpOrHO3yBAHHA HA OCHOBI HEUPOHHOI MEPEXi, HABUCHOI HA 343AJICTilb
OTPUMAHUX JAHHUX 3i CIICKI-IIYMOM, € HAUO61/IbII €(PEKTHBHUM.

K1r040Bi c10Ba: ClICKI-IIYM, JUCTaHIilTHEe 30H1yBaHHsd, JIKIT (hinbrp, e(peKTUBHICTD IPOTHO3YBAHHA



