VYKpaiHCBbKUN XKyPHAJI JUCTAHLIHHOIO 30HAYBaHH:A 3emiti 7 (2015) 4-11

UDC004.021

Application of filtering efficiency prediction to hyperspectral data
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Several approaches to prediction image denoising efficiency for DCT-based filter have been proposed recently. They allow
predicting improvement of PSNR (IPSNR) and visual quality metrics as PSNR-HVS-M (IPHVYS) for denoised images under
condition of noise characteristics known or pre-estimated in advance. Here we apply the prediction approach to pre-processing

ten sub-bands of Hyperion hyperspectral data. It is shown that there are sub-band images for which there is no necessity to

carry out filtering. Meanwhile, there are sub-bands for which IPSNR reaches 5..9 dB and the use of denoising is expedient.
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Introduction

Airborne and spaceborne remote sensing (RS) sys-
tems are widely used for various applications nowadays
[22]. Hyperspectral imagers are a relatively new tool of
remote sensing [1, 3]. They potentially provide useful
data for extractring different types of information on
sensed terrains. However, there are, at least, two obsta-
cles that complicate processing of hyperspectral imag-
eswith the goals of classification, object detections and
others. These obstacles are huge amount of data to be
processed due to high resolution of modern hyperspec-
tral systems and hundreds of used sub-bands [4] and
noise present acquired images [1, 3, 23]. Therefore, it is
desired to carry out image pre-processing (noise remov-
al), at least, for those bands where noise intensity is high
enough to sufficiently influence (in negative sense) solv-
ing the final tasks of hyperspectral data processing.

Note that there is no need to perform denoising for
all sub-bands. There could be different reasons to avoid
(skip) denoising. Firstly, noise intensity (or, more strictly,
input PSNR) can be such that filtering practically does
not remove noise [5, 6]. Secondly, image structure can
be such (for example, highly textural) that denoising
does not produce positive effect [5,6, 12, 15, 23]. Then,
it is expedient to have some rules and/or means to un-
dertake a decision is it worth filtering a given sub-band
image or no. Obviously, such a decision should be fast
enough and reliable enough [3]. Meanwhile, it should
take into account image properties (complexity) and
noise properties (type, intensity, etc.).

There are certain pre-requisites for undertaking
such decisions in automatic manner. Firstly, quite ac-
curate methods for blind estimation of noise charac-
teristics (including the cases of signal-dependent noise
typical for hyperspectral images [1]) have been de-
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signed recently [24, 25]. Their application to real-life
hyperspectral acquired images by moderm sensors has
confirmed one more time [1, 24, 25] that signal-depen-
dent noise component is usually dominant. Secondly,
it has been shown that filtering efficiency for, at least,
DCT-based filters [7, 8... +10, 11] can be predicted un-
der condition of accurately estimated noise parame-
ters [16—21] for such parameters characterizing filter-
ing efficiency as improvement of peak signal-to-noise
ratio (IPSNR) or improvement of visual quality metric
PSNR-HVS-M [14] (IPHVS). To undertake a decision on
using or avoiding filtering, these metrics can be used
jointly or separately

The goal of this paper is to apply the designed pre-
diction methodology to real life data and to analyze the
obtained results from practical viewpoint. For this pur-
pose, we use a group of sub-bands of two Hyperion sen-
sor hyperspectral images.

The paper structure is the following. Section 2 de-
scribes the conventional DCT-based filter and the de-
signed methodologies of filtering efficiency prediction.
Section 3 presents data on noise properties in hyper-
spectral data and the results of prediction method ap-
plication to them. Finally, the conclusions and practi-
cal recommendations are presented and discussed.

DCT-based filtering for different noise
types and methodologies of prediction

First of all, let us explain why below the DCT-based
filtering is considered. One useful property is that it has
low computational complexity [11, 15] — this is impor-
tant since there are many sub-band images that have to
be processed and it is possible [3] that this has to be done
on-board where computational resources are limited.
Another advantage is that, as it has been demonstrated
in[12, 15], the DCT-based filter possesses denoising ef-
ficiency close to the best known filters (e.g. BM3D [10])



V.V.Lukin et al./ YKpaincokuil scyprast Oucmanyitino2o 301H0yearns 3emni 7 (2015) 4—11 5

and to potential denoising bounds [4] for images cor-
rupted by additive white Gaussian noise (AWGN):
156, 7)=1,06, )+ No(0) )
where 7, denotes true image, /" is noisy image, i and j
are image pixel indices, V. denotes zero mean AWGN
with standard deviation of the noise o.
Recall that DCT-based filtering relates to orthogo-
nal transform based denoising techniques. In the case

of AWGN, after direct 2D DCT in each block, the thresh-
olding operation is performed as:

By (1,m) — B (1,m)> po.
add =J"in " mo\ ’
Boul (l,m)—{o - B‘“dd (l,m)S ﬁa-, (2)

m

where fis a thresholding parameter (the recommend-
ed value of which is equal to 2.7),/and m denote spa-
tial frequency indices in an image 8 x 8 pixels block,
B denote DCT coefficients of noisy image block,

m

B*“ are DCT coefficients after thresholding. After hard

out

thresholding (2), inverse 2D DCT is applied to B4 . The
most efficient (standard) DCT-based filter [12] works
with full-overlapping of blocks where, at the final stage,
data from overlapping blocks are collected for averag-
ing the filtered values for a given pixel.

One more advantage of the DCT-based filtering is
that it is applicable to different types of noise. If one
deals with signal-dependent noise, the image-noise
model is the following [13]:

Isdn (Z.’j):[l (Z’])+N(Z’]’1/)7 (5)

where N (4, j, 1) denotes signal-dependent noise that
has zero mean but its probability density function and
variance o’ (z’, Jd, ) ,in general, depend upon/, for a giv-
en pixel. We assume that o” (z’, Js 1,) is a priori known or
accurately pre-estimated.

Then for signal-dependent spatially uncorrelated
noise the thresholding is modified as [13]:

out 0 « B™"(I,m)< Ba(l,m),

m

Bsd (l,m) = {B;zd (l’m) b B;nd (l7m) > ﬁa-(l7m)’ (4)

where ﬁa(l,m) denotes the estimate of local standard
deviation of the signal-dependent noise. Note that since
I, in the dependence Bo l,m) is different for different
pixels of a given block and is unknown for noisy data
at hand, it is usually replaced by block mean (can be
also replaced by block median).

All other operations including direct and inverse 2D
DCT and final averaging of filtered values are the same
as for the case of AWGN described above. The DCT-
based filtering itself [13] and combined with other tech-
niques [8] is one of the best denoising technique for sig-
nal-dependent noise case.

Let us recall a general principle of filtering efficiency
prediction. An idea consists in the following. There is

some input parameter that is easily computed and that
is able to characterize image complexity and noise in-
tensity simultaneously. There is also some output pa-
rameter (metric) able to adequately characterize de-
noising efficiency. These two parameters are strictly
connected between each other and this connection is
described by an analytical dependence which is known
to the moment prediction is needed. In other words,
the dependence is obtained off-line (in advance). Then,
prediction is carried out as follows. An input parameter
is calculated, its value is inserted into the dependence
asitsargument and the output parameter is calculated.
Then this put parameter (predicted value) is used for
deciding is it worth filtering or not or for some other
purpose (e.g., for setting the filter parameters).

Then, the main goal of preparatory work is to obtain
an analytically described dependence of an output pa-
rameter on an input parameter. The output parameter
could be, e.g, IPSNR (i.e, the difference between the
output and input PSNR, expressed in dB) and the input
parameter could be, e.g., the probability P, [16, 18-21].
This is mean probability that absolute values of DCT
coefficients do not exceed 280 (l ,m) in the considered
blocks.

The aforementioned analytical dependence can be
obtained in different ways. The simplest one is to use
scatter-plots and curve fitting into them. For the scat-
ter-plot points, their arguments are the values of in-
put parameter and vertical axis corresponds to out-
put values. Each scatter-plot point corresponds to one
test image with one set of signal dependent noise pa-
rameters. The test image is artificially noised with de-
termining input value of a considered metric (e.g.,
PSNR) and then filtered with determining output val-
ue (e.g., output PSNR and, then, IPSNR). We do not go
deeply into the questions of how to select test images,
what should be sets of parameters of signal-dependent
noise, etc. Some details are presented in papers [16,
18-21]. We would like to mention only the following.
The number of test images should be large enough
(more than ten, desirably about 30..40) and their com-
plexity has to be very different. The cases of prevailing
signal-independent and signal-dependent compo-
nents should be considered and noise intensity has to
vary in wide limits. Then, the scatter-plot looks as
shown in Fig. 1 and it is possible to fit a curve into it
and to analyze accuracy of such fitting. The fitting
quality (and, respectively, quality of prediction) can be
characterized by different statistical criteria [2]. The
most popular of them is goodness of fit (R?) that
should be as close to unity as possible and root mean
square error (RMSE) that should be as close to zero as
possible.

It is clear that different quality criteria can be pre-
dicted with different accuracy. For example, IPSNR is
usually predicted more accurately than IPHVS (the lat-
ter is also expressed in dB). Prediction also depends
upon input parameter, output parameter, used function
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Fig. 1. 1D catterplots of IPSNR for the DCT-based denoising vs mean
of local estimates of P,

(power, exponential, polynomial) and the number of
its free parameters. There are also ways to improve pre-
diction using two or more input parameters [20, 21]
and/or optimizing them. However, even for the simplest
prediction method (based on a curve fitted intoa 1D
scatter-plot as in Fig. 1) IPSNR can be predicted with R?
about 0.95 and RMSE about 0.6..1.0 [20]. This can be
acceptable for practical applications.

It is also important that it is enough to estimate P,
locally in non-overlapping or randomly chosen blocks
and/or to employ, at least, 300..500 blocks. Due to this,
prediction is by about two orders faster than the stan-
dard DCT based denoising that, recall, employs two DCTs
(direct and inverse) in fully overlapping blocks [11].

If there is only one input parameter, then it is rea-
sonable to apply the probability P that absolute val-
ues of DCT coefficients do not exceed 0.5 U(l ,m) [20].
The scatter-plot is presented in Fig. 2. Analysis of both
scatter-plots and fitted curves shows that there are strict
monotonous dependences between output and input
parameters that allow undertaking decisions based on
predicted data. Suppose that IPSNR should be larger
than 1 dB to consider filtering useful. Then, roughly say-
ing, it is possible to skip filtering if P,_isless than 0.6 or
P, isless than 0.2,

In both cases (Figures 1 and 2), as prediction model,
the exponent fitting function was found as the most
suitable:

Metric

- =acxplph,,) )

where Metric,,,, is a predicted value of a considered
metric of denoising efficiency, a and b are coefficients
of fitting function, @ = 0.5 or 2.0. In particular, for the
fitted curve in Fig. 1,a=0.00797 and b =7.62 whilst for
the curve in Fig. 2 the parameters are 2 =0.11 and b =
12.53. Similarly, IPHVS can be predicted but with less
accuracy (larger RMSE and smaller R2 [20, 21]). Thus,
we have methodology of prediction and the task now
is to verify it for real life data.
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Fig. 2. 1D catterplots of IPSNR for the DCT-based denoising vs mean
of local estimates of P,

Application of Prediction to Real-Life Data

First of all, it is needed to have some imagination on
properties of noise in hyperspectral images. For the
model (3), one has for n-th sub-band

0;(m) =0, () + k(M1 (i, j,n), ©
where o (1) denotes the signal-independent (SI) noise
variance and R(n) is the signal-dependent (SD) noise
parameter. Both parameters o (1) and k(1) are often
assumed to be non-negative. This assumption is based
on physical properties and it can be used as certain re-
strictions in methods of noise parameters estimation
(negative estimates of the considered parameters can
be assigned zero values).

Fig. 3 presents the estimates of these parameters ob-
tained by the method [24] for datasets of Hyperion data
(taken from http://eros.usgs.gov/). There are two
groups of sub-bands with indices 1..12, 62..77 and
231..240 that are not used in analysis due to very bad
quality of images in them. Because of this, noise param-
eter estimates for them are not presented in plots.

Estimate analysis shows the following. First, for all
three datasets the estimates’ dependences on sub-band
index behave similarly. Second, there is more intensive
noise (both larger estimates of o (1) and k(72) for imag-
es at the edges of sensor ranges, e.g., for sub-bands with
indices 13..15 and 59..61. Noise is seen well for visual-
ized images for these sub-bands. Meanwhile, the noise
isone-two order less intensive in the middle of this range.
In fact, noise is of such intensity (more exactly, PSNR is
as high) that noise is practically not seen in visualized
sub-band images with indices about 35..40. Third, it is
possible to evaluate contribution of SD noise component
by calculating equivalent noise variance for it as

Iim Jim

Toysp ()=, > RV, (1, .1) Ly ] 1) =

=1 j=1
Iim JIm .

= R(DI"(G,j,10) [T Ji) =RODL,, ()

= j=l

@
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Fig. 3. The estimates 0}? (n) and & (n) for sub-bands of three sets of Hyperion data

where/ (7)definesimage mean foranz-th sub-band.
Then this equivalent variance can be compared to
o2 (n) . Such comparisons were performed in [25] and it
has been shown that for most sub-bands &ﬁg sp (n) is of
the same order as a;(n) or larger. This means that SD
character of the noise should be taken into consider-
ation in processing and analysis of hyperspectral data.
The exceptions could be several sub-bands (see the
plots in Fig. 3) where the estimates &(#72) are negative
This mostly happens due to imperfectness of the esti-
mation method and for sub-bands with very high PSNR.

Having the estimates of signal-dependent noise pa-
rameters and assuming their high accuracy, it becomes
possible to predict filtering efficiency. Since we do not
have noise-free images, it is impossible to evaluate how
accurate prediction is. But it is possible to compare the
prediction results for different input parameters and to
analyze the observed tendencies.

In our analysis, we have considered the sub-bands
with indices 13..22. As it follows from analysis of the
plots in Fig. 3, there is a tendency to noise intensity re-
duction for them. This tendency is supported by numer-
ical data presented in Tables 1 and 2. Meanwhile, dy-
namic range for these images remains practically the

same. Thus, there is the tendency to increasing of input
PSNR. Du to this, the largest values of P, are observed
for the 13-th sub-band (recall that P,_is large (ap-
proaches to the maximally possible value of 0.95) for
simple structure images and high intensity noise.

According to prediction dependence (fitted approx-
imating curve) in Fig. 1, IPSNR and IPSNR-HVS-M in-
crease if P, is larger. Because of this, the maximal ex-
pected positive effect of filtering is predicted for 13-th
sub-band image. This effect is quite large — predicted
IPSNR (based on P, ) reaches 5.6 dB for the first dataset
and 9.06 dB for the second dataset. Such improvement
should be obviously seen if input and output images are
compared visually. This is possible to do. Fig. 4 presents
original (noisy) and output (filtered) images in 13-th
sub-band of the dataset EO1H1800252002116110KZ.
Whilst noise is visible in original image (especially in
homogeneous image regions), it is effectively sup-
pressed in output image alongside with good preserva-
tion of important details and edges.

Meanwhile, there are also many sub-bands for which
IPSNR predicted on basis of P, is of the order of 1 dB or
less. Simultaneously, predicted values of IPHVS (see data
in the rightmost columns in Tables 1 and 2) are even
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Table 1.
Noise parameters and prediction results for sub-band images with indices 13..22 of Hyperion sensor dataset EO1H2010262004157110KP
Subband o (n) k (n) Dynamic Py Predicted Predicted Pred. Pred.
Index# range IPSNR IPSNR based IPSNR IPHVS
based on onP 7 based based
Py on Py, on P,
13 6361 0.78 416600 0385 5.60 4.72 590 3.45
14 4154 0.62 4098.00 0.78 3.84 3.31 409 219
15 27.38 0.49 431600 071 242 2.08 265 1.25
16 2001 0.42 441100 064 170 1.44 192 0.82
17 1745 0.39 441800 0063 1.56 1.32 177 0.74
18 1664 0.37 461500 062 144 1.23 164 0.67
19 14.09 0.34 4741.00 059 1.27 1.07 147 0.57
20 1329 0.31 4885.00 057 1.10 0.91 130 048
21 1205 0.31 5007.00 0.54 0.96 0.78 115 041
22 1098 0.30 487200 052 0.83 0.65 1.00 0.34

Table 2.

Noise parameters and prediction results for sub-band images with indices 13..22 of Hyperion sensor dataset EO1H1800252002116110KZ

Subband o (n) k(n) Dynamic Py, Predicted Predicted Pred. Pred.
Index 7 range IPSNR IPSNR based IPSNR IPHVS
based on onPs based based
Py on Pys, on P,
13 5444 078 1793.00 0.93 9.06 733 943 6.17
14 3639 045 1835.00 0.88 6.85 580 7.20 4.40
15 2374 0.27 1894.00 0.81 4.35 3.86 4.68 2.54
16 1685 0.20 1985.00 0.73 2.80 253 311 1.49
17 1448 0.17 1943.00 0.70 241 2.16 271 1.24
18 1483 0.14 2118.00 0.67 2.02 180 230 1.01
19 1184 0.13 2190.00 0.63 1.58 1.38 1.84 0.75
20 1191 0.10 2265.00 0.60 1.33 1.13 157 0.61
21 1090 0.10 2321.00 0.58 1.14 094 135 0.50
22 977 0.09 2226.00 0.55 1.00 080 115 0.43

less than 1 dB. This means that improvements accord-
ing to the considered metrics due to filtering are negli-
gible.

This is seen well in Fig. 5 where input and output im-
ages for 22-th sub-band are represented. Noise in the
original image can be hardly noticed and the processed
(filtered) image looks practically the same as input one.
Thus, there is no need in filtering this image.

Three other observations that follow from analysis
of datainTables 1 and 2 are the following, First, all three
predictions (based on P, , P, [16], and P ) are quite
close. This means that, in fact, all three input parame-
ters can be used in practice. Second, predicted IPHVS
are always smaller than IPSNR (both are expressed in
dB and, thus, can be compared). This is typical for de-
noising where IPSNR of about 1...3 dB does not guaran-
tee improvement of visual quality. Third, improvement
depends upon image complexity. The considered frag-
ment of the dataset EO1H1800252002116110KZ
(Fig. 4) is less complex than the analyzed fragment of
the other dataset because there are quite large homo-
geneous image regions in it. The analyzed fragment for
the dataset EO1H2010262004157110KP is represent-
ed in Fig. 6 where Fig. 6a shows original image in 13-th
sub-band. It has smaller homogeneous regions and
more edges and details. Due to this, noise is less visible
and can be noticed mainly in lighter color (higher mean
intensity) parts of the image.

Online ISSN 2313-2132

The filtered image is given in Fig. 6b and it is seen tht
noise is suppressed whilst useful information is pre-
seved. Visual analysis of input and output images for
oher sub-bands has been carried out as well. Starting
fom n about 18 it becomes difficult to find differences.
Tis means that, on one hand, filtering does not introuce
distortions and this is valuable advantage of the DCT-
based filter (e.g., the standard median filter introduces
visible distortions in such cases). On the other hand, this
means that there is no need to apply filtering and it
can be skipped. This can accelerate processing of hy-
perspectral data where, in fact, filtering can be skipped
for about 70..80% of sub-bands. This can be especially
important for on-board processing of data.Suppose that
the rule for avoiding filtering is the following: skip de-
noising of a given sub-band image if P, > 0.6 (see Fig. 1).
Then, there is no need to perform image filtering for
sub-bands  with n>18 of the subset
EOH2010262004157110KP and n>20 for the subset
EO1H1800252002116110KZ (see data in Tables).

Conclusions

The method of denoising efficiency prediction is
described and tested for real-life multichannel images
corrupted by signal-dependent noise. It is shown that
the metrics IPSNR and IPSNR-HVS-M can be predicted
rather well.
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Fig. 4. Input (2) and output (b) images in the 13-th sub-band of Hyperion data

Fig. 5. Input (a) and output (b) images in the 22-th sub-band of Hyperion data

". ". ".

Fig. 6. Input (2) and output (b) images in the 13-th sub-band of Hyperion data
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Based on such prediction, it is possible to undertake

decisions on applying image denoising to a given sub-
band images or skipping this operation if, supposedly,
itis practically useless. It is demonstrated that there are
quite many sub-band images in hyperspectral data for
which the use of denoising is expedient since consid-
erable improvement of image quality can be provided.
The corresponding illustrations are given.
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MMPUMEHEHME ITPOTHO3NPOBAHMA DOOEKTHUBHOCTHU GUJIBTPAIIMN K OGPABOTKE I'MITEPCITEKTPAJIbHBIX
JAHHDBIX

B. B.JIykuH, C. C. KpuseHko, A. C. Py6eisn, C. K. A6pamos, M. C. 3psaxos, M. JI. Ycc, B. Boseins, K. lleau

HepaBHO GbUIN IIPEIOKEHDBI HECKOJIBKO HOAXO/O0B K IIPOIHO3UPOBAHMIO 3ddeKkTuBHOCTH JKIT-PrisrpoB. OHU ITO3BOJISAIOT
nporuo3uposars noseiuenue [TIOCHI (IPSNR) u yirydimenue METPUKU BU3YaIbHOI'O KadecTBa PSNR-HVS-M (IPHVS) i 06-
PabOTAHHBIX U300PAKEHUI IIPU YCJIOBUM, YTO XAPAKTEPUCTUKH IIOMEX U3BECTHDI WIM IIPEABAPUTEILHO OLICHEHBL B cTarne
MIPOrHO3UPOBAHHE IPUMEHEHO K ITPE/IBAPUTENILHON 06PA6OTKE JECATH COCETHUX KAHAJIOB TUIIEPCIEKTPAIbHBIX JJAHHBIX CEH-
copa lunepuon. [TokazaHo, YTO €CTh KAHAJIBL, /I KOTOPBIX HE UMEET CMbIC/IA IIPUMEHATD (DUILTPpALMIO. BMecTe ¢ Tem, eCTb U
KaHaJIbL, 11 KOTOPBIX IPSNR gocturaer 5..9 gb 1, COOTBETCTBEHHO, IIPUMEHEHUE (PUIBTPALIAU LEJIECOOOPA3HO.
Kirouessle CJI0BA: JUCTAHIMOHHOE 30HAupoBanue, JKII-(puisrp, nporaosupoBanue 3OOEKTUBHOCTH, I'MIIEPCIIEKTPA/Ib-
HbIE JAHHBIE

3ACTOCYBAHS ITPOTHO3VBAHHS EOEKTUBHOCTI ®UIBTPALIIT IO OBPOBKU I'TTEPCITEKTPAJIBHUX JIAHWX

B. B. JIykin, C. C. KpuseHko, O. C. Py6eins, C. K. A6pamos, M. C. 3psaxos, M. JI. Vec, B. Bozeins, K. Ilexai

HemoaBHO 6y/10 3aIIPONOHOBAHO JICKi/IbKA MiIXO/iB IO MPOTrHO3yBaHHA epekTuBHOCTI JKIT-pinsTpis. BOoHN /103BOISAIOTH
nporuosysaru 36inemenHs PBCII (IPSNR) Ta mMOKpaIieHHs METPUKH BidyanbHOT skocTi PSNR-HVS-M (IPHVS) 115t 06po6iie-
HMX 300Pa’KEHB 32 YMOBH, 1[0 XaPaKTEPUCTHUKU 3aB4]] € BiJOMHUM 260 IIONIEPEHBO OliHEHI. B CTaTTi IPOrHO3yBAHHS 34CTOCO-
BAHO /IO IIONIEPEHBOI OOPOOKU JECATH KAHAIB TiIIePCIEKTPAIBHUX JaHUX ceHcopa [inepion. ITokasaHo, Mo € KaHa/Iu, It
AKUX HEMAE CEHCY 3aCTOCOBYBATH (pibrpariito. Brim, € it kananu, jyia akux IPSNR carae 5.9 ab i, BijIIOBijHO, 33CTOCYBAHHS
insrparii € JOLIbHHUM.

Karouosi coBa: aucraHiifine 3ouaysanHs, JKIT-insrp, MporHo3yBaHHs €(OEKTUBHOCTI, TilepCrieKTpaibHi JaHi
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