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MATHEMATICAL MODEL AND CALCULATION METHOD
QUASI-STATIONARY TRANSPORT AND DISTRIBUTION NATURAL GAS SYSTEMS

YV ecmammi nasedeno cmoxacmuuny moolenv KeazicmayioHaApHO20 HEI30MePMIUHO20 PedtCUMY MPAHCHOpmy i
po3noodiny npupooHozo 2dzy 6 2a30MPAHCHOPMHUX CcUCmeMax 3 O0acamoHUMKOSUMYU JNiHIUHUMU OLIAHKAMU mMA
bazamoyexosumu Komnpecopuumu cmaunyiamu. Haeedeno memoo po3paxymky CcmMamucmuyHux racmusocmel
3ANEHCHUX 3MIHHUX MOOei 8i0 CIAMUCMUYHUX 81ACIUBOCEl HE3ANeHCHUX 3MIHHUX.

B pabome npedcmasnena cmoxacmuueckas Mooeib K8A3sUCMAayuoOHApHO20 Heusomepmuiec-

K020 pexcuma mpancnopma u pacnpeoenenus npUpooHo2o 2da3d 8 2a30MpAaHCNOPMHBIX CUCEMAX C MHO2OHUTNOYHBIMU
JUHEUHbIMU — YHACMKAMU U MHO20YEX08bIMU — KOMAPeccOpHbiMu  cmaunyusamu. Ilpuseden memod pacuéma
CMAamucmuyecKux c80UCme 3a8UCUMbIX NePeMeHHbIX MOOeNU OM CIAMUCMUYEeCKUX C8OUCME He3ABUCUMbBLX NePEeMEHHDIX.

The paper presents a stochastic model of a quasi-stationary non-isothermal mode of transport and distribution of
natural gas transportation systems with multilinear linear plots and a lot of craft compressor stations A method for
calculating the statistical properties of the dependent variables of the model from the statistical properties of the
independent variables.

Keywords. Transmission system, mathematical model, a quasi-steady non-isothermal mode, natural gas, a linear
plot, compressor station, the statistical properties.

1. Introduction

Solution of the problem of analysis and optimization of the actual modes of gas transportation systems (GTS) is
associated with the development of mathematical models that more adequately and in a wider range describe the actual
modes of the TCA. One such model is a stochastic model of quasi-stationary non-isothermal mode of transport and
distribution of natural gas in the GTA with multithread linear sections (MLS), and many craft compressor stations (CS).
In this article we give a general stochastic model of quasi-stationary non-isothermal mode of transport and distribution of
natural gas in the GTS with MLS and compressor stations (CS). This model explicitly takes into account both the internal
uncertainty of the parameters of technological elements of the GTS, and external uncertainty parameters of the processes
of natural gas consumption by various categories of consumers. We consider the method of constructing the
deterministic equivalent stochastic model of a quasi-stationary non-isothermal mode of transport and distribution of
natural gas in the GTS and the approximate solutions obtained by co-nematode system of nonlinear and linear algebraic
equations defined on a graph reflecting the structure of the GTS; and the method for calculating the statistical properties
of the dependent variables model the statistical properties of the independent variables.
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2. Mathematical modeling of stochastic quasi-stationary mode of natural gas transportation in GTS with
MTS and MGP, CS

To build a general stochastic model of a quasi-stationary non-isothermal mode of transport and distribution of
natural gas in the GTS with MLS and many CS will use the results obtained in [1]: stochastic models of the
quasistationary mode of transport of natural gas pipeline and the stochastic model mode pumping unit (GPU). As a
model of the structure of the GTS will use oriented connected graph G(V, E) [2], which is supplemented by a zero vertex

and dummy arcs connecting this vertex with all inputs and outputs of the GTS, where ¥ (|“J| =11y _ a set of vertices, E-

the set of arcs (|E|= ). Choose a tree graph G(V, E) so that its branches have become real and fake parts of the arc

corresponding to the input of GTS. Then the set of arcs of the graph E represented as a union of disjoint subsets of the
following: the real sections T, ; fictitious sections on the network inputs [, ; fictitious sections on the network output D,

fictitious sections, connecting the input of the active elements with the zero point (fictitious additional network input) T ;
real tree branches ; real tree branches, which correspond to passive M) and active 2 elements; real chords of the
graph M3 real chords of the graph which correspond to passive ™21 and active M2z elements; fictitious branches of a
tree, which correspond to inputs L1 ; branches of a tree on the inputs of the network with a preset flow , pressure
L12 and temperature L13; chords of the graph, which correspond to inputs Lz; chords of the graph of the network
inputs with the preset flow Lo, pressure Lo temperature Los . fictitious chords which correspond to outputs

K4 (K3 =K fictitious chords on the outputs of the network with a preset flow ¥ 21 pressure ¥z, temperature Ko ;
fictitious chords of the graph, corresponding to fictitious additional network input (arcs connecting the input of the active
elements with the zero point) with a preset flow T21. The quantity is considered preset if it is a normally distributed

random variable with known expectation and variance. ) ) )
We introduce the following notation: the number of nodes, in which pressure is preset —

mi=|L;3u Ly K 3 UK 3|, number of branches, in which flow is preset — 11=[L11w La1w 11w Karl, the number
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of nodes, in which temperature is preset — the number of branches with active elements —| =1

Given quantities are random variables with normal distribution law and represented by their mathematical
expectations and variances.

Then the stochastic model of quasi-stationary non-isothermal mode of transport and distribution of natural gas in
the GTS can be expressed as follows:
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where:

+ ot ot ot A+ .
(Pei» Pas Tag» Ty -9y — marks the preset quantities);

Gy — the set of elements on which the gas comes into the 1 -th node, and is bled from it, respectively;

by — Cyclomatic matrix element, located at the intersection of the r-th row and the i-th column;

[l — Random variables, characterizing the pressure at the beginning and the end of the i-th arc;

Tysler), Tyi(@) — Random variables, characterizing the temperature at the beginning and the end of the i-th arc;
o; (2] — Random variable characterizing the commercial flow of i-th arc;

B; (2) — Random variable characterizing the assessment ratio of hydraulic resistance of pipeline:
() LT g () Z (0

T L LA (15)

where &%) — random variable characterizing the assessment ratio of the relative density of natural gas in the air,
Tcpi(m:'= thl (9} _ random variable characterizing the estimation of the average temperature and average density of

natural gas of i-th arc, E; () — random variable characterizing the assessment of effectiveness ratio i-th pipeline.

() — random variable defined by the expression:
Eli(m}=62.6KTi(m}DHiflﬂﬁqi(m}ﬁ(m}ﬂ(m}, (16)

where K'Ti(m} — random variable characterizing the estimate of the average values of the coefficient of heat transfer

from the gas in the ground on the i — th section of the pipeline, E(f) - a random variable characterizing the estimate of
the coefficient of the specific heat of natural gas;

aj (@), Bilw), ci(@) — random variable characterizing the approximation estimates for the coefficients describe
the degree of compression of GPA from the commercial flow for GPA-owned i-th arc:

;ir:m) = agy(w] (17.1)

, (17.2)
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where:
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where api(7), bpi(ev), i) and a0, byie), (80 — random variables characterizing the estimates of coefficients

n ]
—| =1
of approximation polynomials of the degree of compression GPA first and second degree, respectively, at [ mp

n'i(2) — random variables characterizing the above assessment of the relative speed drive of i-th GPA:
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19 )i 10 Y2l Ry Tog() (19)

) Lk
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Thimen (%) — random variable characterizing the assessment polytropic efficiency:

ez (@) = 0 (0 + 3009 Qg () + ol (0) Qi () + b (@) Qi) 1)

Qmi(® _ random variable characterizing the performance evaluation of the reduced vo-
lume of i-th GPA:

ZlMET ;e o ()
1440 Pi(m) (22)

Qi) = L1y

Stochastic model of quasi-stationary non-isothermal mode of transport and distribution of natural gas
transportation systems (1)—(22) takes into account almost all sources of internal and external uncertainties modes TCA
and allows enough to adequately analyze and simulate a wide class of quasi-stationary modes of the GTS. Of greatest
interest, this model is to optimize the planned modes GTS. In this case the optimal plan of GTS at a given time interval is
represented as mathematical expectations and variances of parameters of flows of natural gas (pressure, flow,
temperature) on the inputs and outputs of the GTS, expectations and variances of operational parameters (speed drives)
GPA. To calculate the mathematical expectation of flow parameters of natural gas for each real portion, and at every
entrance and exit of the GTS is necessary to construct a deterministic equivalent stochastic model of a quasi-stationary
non-isothermal mode of transport and distribution of natural gas transportation systems (1)—(14).

3. Construction of the deterministic equivalent stochastic model of quasi-stationary non-isothermal mode of
transport and distribution of natural gas transportation systems

To construct a deterministic equivalent stochastic model of a quasi-stationary non-isothermal mode of transport
and distribution of natural gas transportation systems ((1)—(14) will replace all the random quantities in the system of
equations (1)—(14) of their assessments in the form of conditional expectations. In because of the nonlinearity of the
system of equations (1)—(14), such replacement would result in the right side of equations (1)—(14) of non-zero residuals,
the sign and magnitude of which, according to Jensen's inequality [3], determined by the degree of convexity (concavity)
of implicit functions of the variables defining the system of equations (1)—(14). As shown by our studies, the numerical
value of these residuals is comparable with the magnitude of error in the numerical solution of equations (1)—(14).
Therefore, without loss of genera-
lity , residuals of the deterministic equivalent stochastic model of a quasi-stationary non-isothermal mode of transport
and distribution of natural gas transportation systems (1)—(14) will be neglected. It can be shown [3] that in this case, the
deterministic equivalent stochastic model of a quasi-stationary non-isothermal mode of transport and distribution of
natural gas in the transmission system (1)—(14) will coincide with the steady-state model of the flow of gas pipeline
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networks with active elements, in which the boundary conditions and unknown parameters are represented by

their conditional expectation. A numerical algorithm for solving systems of equations of the deterministic equivalent
stochastic model of a quasi-stationary non-isothermal mode of transport and distribution of natural gas transportation

systems is given in [3].
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where the parameters marked feature of the above are estimates in the form of mathematical expectation of the random

variables model presented in section 2.
4. Assessing the relation of statistical properties of the dependent and the independent variables in the
stochastic model of the quasi-stationary non-isothermal natural gas transportation mode in the gas transportation
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systems

Formal statement of the problem of assessing the statistical properties of the dependent variables in the stochastic
model of the quasi-stationary non-isothermal natural gas transportation mode in the GTS, is the necessity to determine
the numerical characteristics of random variables, which are the solution of the deterministic analogue of the functional
relationships (1)—(14) supplemented by equations (15)—(22):

(23)

We define the vector of dependent variables as = (P T.9Tep. 8, 2 bc 2z, by, c2, 1 T]: W, QHP) and the

vector of independent variables as P T T S R N U =F .q 1=T -E sK-lT-)s Then

the solution takes on the following form:

+
;= F(R P, Bl o Lo T T LT E K*ﬂf
_IT

-

24)

where N — number of calculated parameters in the general case equal to N = (2n + 5m + 7gl — 4ml — — nl — 11), and
M2 =(ml+nl +1+2) _ number of the preset parameters.

Since the system (24) is given implicitly, and the conditions of the theorem “on the existence and differentiability
of the implicit functions determined by a system of functional equations” [6, 7] hold, we assume that there exists a
functional dependence between random variables that are system's dependent and independent parameters, which is
defined by the model (1)—(22).

As a result of applying the method of linearizing the function of several random variables [6, 7], as well as the
subsequent applying the properties of the numerical characteristics of functions of random variables to the resulting
expression, we obtain the following dependencies of the statistical characteristics (excluding random variables
correlation):
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To determine the values of the expectations (25) we need to solve the system of equations (23), relative to the
variables — the random variates ‘ [<1 ‘ B an at the point, corresponding to the
expectations of gas flow parameters in the network,
Mp=|M_, M M M M MM M M MM +].

[Plpz I T W T GUTUEY URE

To find the variance (26) it is necessary to calculate the partial derivatives used in dependencies. Since the system
(24) is implicit, and therefore it is impossible to find its general analytical solution, a method for calculating the partial
derivatives for a system of implicitly defined functions follows.

5. The method of calculating the partial derivatives of implicitly defined functions

Since for the system of implicitly defined functions being considered (24), at points, which correspond to optimal
and average values of the network parameters, the conditions of the theorem “On the existence and differentiability of

o

the implicit functions determined by a system of functional equations” hold, then the partial derivatives 31fj ,

1=1HN,1=1LM2 can be found, according to the general form of the partial derivative of implicitly defined function:
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(26)

@7

and D(Ep, o &, ¥ Xy, - Z @) — determinant of the matrix obtained from (4.48) by replacing the j-th column with the

derivatives of the corresponding functions f; with respect to the variable Yj, i=LH, j=1LH2,
6. Partial derivatives

Let’s denote a couple more classes of functions, as the dependences (15)—(22) are included in the system (23) in

exactly that form.
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for expressions (30.1-35) t € by« I ;.
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Analytical form of partial derivatives and @Y ( tk=1LHM,1=1Ni ), is presented below [8, 9]:
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— for equation of kind (14):
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351 ieMy, rebly Ly By T, lebly w Lo KTy,

— for equation of kind (2):

o
= =—Pu(@)® + 2, bhuada {-Pua (@)},
Bay ieHy te 1eT,

ke i

=
Partial derivatives (11t )equal:
— for equation of kind (1), (3)—(7):
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o, 1 ho Lo b Py | Bl g
?El'k%lhmdﬂ{ P‘“@[%w Toi) ] T }ﬁ

leb il By wTy,

— for equation of kind (2):

af, br i) P (e br () 2
—2 =4-F _(m o — it -— P
3 { e j[qr( ) 2 (o) ] 2eplm) ()7

ieH,, 2ci(m) 2ci(m)

+ 3 ey d-Pa@) [qiu:m)— bi(“’jpﬂ‘f“j] - B p @)’
t e I'u'I:,_.I le T:u-

af

Zr
Partial derivatives &c1 (1=t ) equal:
— for equation of kind (1), (3)—(7):

- 2 o - 2 2
3, 2 Bi ()P () Bi(@)Py(e) | Bi(@)Pyg(@) _ Bi(0)Pyg(e)
= bind ) — ————— | — | g;lm) - -
s ie%:u mdﬂ{[%( ) 20i(w) ] [ql( ) 20i(8) ] ) ' A% (@) }

‘m ‘IEMHULIUKIUTH,

— for equation of kind (2):

- 2 o . -2 5
% _ [%@ _ brr:;)Pmch] _ [%@ _ brc;:]Pmcm)] LOLNONE{OLHOMN
3 cr (o) cri) or (63) ot ()
P 2 m oy Bt Pt BB
LY b [ ) - blcmg_Pmch] _ [ (- hlcmg_Pmcm)] Bi@)P(®) | B (@)Pu(@)
i=y Zeiln) 2ci(w) £yl Ae; (o) rebd,,, 1T,
o
Partial derivatives &% equal:
— for equation of kind (14):
af,
352 =B (@], =]

— for equation of kind (17.1):

&y

Far

H
Partial derivatives @by equal:
— for equation of kind (14):
3
= Be(0) (o)

— for equation of kind (17.2):

%1

&y

Bf,
Partial derivatives @cr equal:
— for equation of kind (14):
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by

— for equation of kind (17.3):

af;
Partial derivatives E equal:
af, JALT, ()2,
— for equation of kind (15): 3E, T agp Es(o) D]

afr af‘r _ a6 DHr
Partial derivatives @Eg for equation of kind (16): P& 10% g, () AB
2

Partial derivatives @0} equal:
— for equation of kind (17.1):

= —n'r3 ap—(1 —En'fj-’-ln'r ag +4n' {1 —n'f),
— for equation of kind (17.2):

o 3 : 2

o = —dn iy - dnt 1202 )by,
— for equation of kind (17.3):
af;
2n'

T

= —411'1.3 op —4dn' {1 —Eﬂ'f) Cirs

— for equation of kind (19):
af,

an'

I

The rest partial derivatives for equation of kind (18.1):

a1, af,
L=l =t
Jay, 3

Jaq,

The rest partial derivatives for equation of kind (18.2):

3t 3,
&h i

oy

The rest partial derivatives for equation of kind (18.3):

o, af, o,

Lot —eoaf), S = amb@(-nfe).
Car oy ey

B, Bf Of

And partial derivatives fay &by 8ty for equation of kind (17.1)—(17.3) respectively equal: Pag

2
n tZ ()BT (0] 2 _ [0 % (0 )RT, (o]
Thg 140 3y lng 14411 '

S

Partial derivatives #1't equal:

— for equation of kind (10):

= —FTH(@ (2. L=,

— for equation of kind (20):
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L i
=T
o
Partial derivatives @7y equal:
— for equation of kind (20):
#  k
g k-1
— for equation of kind (21):
2 i
M

The rest partial derivatives for equation of kind (21) equal:

*, % o
adm_=_1’ |E| |E| ad}r_ QTE'P'I :I

o _,  Shi
and 2¥;

The rest partial derivatives &%

7. Modeling results
Let us consider the following example. We’ll perform the hydraulic calculation for a section of the gas tranport

system in the form of a main gas pipeline, which includes compressor section with five gas pumping units. Figure 1
shows the corresponding computational graph, consisting of 16 nodes and 21 branches, 5 of which are active (arcs Ne

14-18) of pipes: L2 =102 km, Lag =34 km, L399 =0.3 km, the diameters d3=dag =14 m, dy_jg =102

]

Figure 1. MGP Graph

Suppose the maximum deviations of preset parameters are as follows:

. U =10 . . . .
— commercial flow — 2 =1 5-1 , where 5Q =1% _ relative error in measuring commercial flow;

- .
— for pressure — TP =F *&p  where relative error of pressure measurements;

— for temperature — @T = T *&1  where & =0.35% _ relative error of temperature measurements.
— for efficiency factor — @E = E*8g | where o =U.35% _ relative error of measurements.

— for the average coefficient of the gas — OKT TKT *EKT, where E'KT =0.35% relative error of

measurements.

As the mathematical expectations of random variables at the inputs the following parameters Mp =313k
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Mp =83MIIa | Mgg =102 I"'mHMB’r':Eﬂ, were taken. Next, we determined Eqﬂ: 1.02 MTHMZICYT,

op = 0.083 LI1a, om = 1.0955K , as a result of the calculations the expectations (13)—(16), were obtained, among

which the study of random variables T Plg- o is of a special interest. That is, the calculated parameters for nodes 1
and 16 (Figure 1); Mg = 283425 K My = 6070MIMa Mgy =102 oI { CyT ).

To establish the dependence between the variances of random variables and variances T1. Fy. 931 of

parameters we used the method presented in Section 3. Below are the charts of some of them— each such chart shows two
dependencies: in the first case partial derivatives were calculated analytically (dashed line), as described in Section 4,
while in the second case-numerically (solid line).

TPl

-
i ik A T ] o = [ =

Figure 2. Dependence between the variances Figure 5. Dependence between

of output pressure Fis and variances input the variances of output temperature 14

pressure and variances input pressure I}

Ly ]

2 r : : it
Figure 3. Dependence between the variances
of output pressure Fig and variances input

temperature 11

L PR i i
4 ] B

Figure 4. Dependence between the variances

of output pressure Fig and variances output

commercial flow H31

i

Figure 6. Dependence between
the variances of output temperature Tig

and variances input temperature 1}

Figure 7. Dependence between the variances
of output temperature Tis and variances

input pressure a1
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Tg2i

3 4 :; a'
Figure 8. Dependence between the variances of input commercial flow 4; and variances output

commercial flow 421

Conclusions.

This paper addresses the problem of mathematical modeling of stationary non-isothermal modes of the natural gas
transportation with the multithread LS and multishop CS. The novelty of this work lies in the fact that for the first time
the problem of mathematical modeling of stochastic quasi-stationary non-isothermal mode of natural gas transportation
over the network with multithread LS and multishop CS, and the problem of assessing the relation between the statistical
properties of the dependent and independent variables in presented model was solved. Practical significance is that these
models provide upper and lower bounds for ranges of gas flow parameters at any GTS node for a given level of external
stochastic disturbances.
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