УДК 62.135

В. Г. СОЛОДОВ, В. А. КОНЕВ

СОВЕРШЕНСТВОВАНИЕ ПРОТОЧНОЙ ЧАСТИ ЦНД МОЩНОЙ ПАРОВОЙ ТУРБИНЫ С УЧЕТОМ ПРОТЕЧЕК

Розглянуто основні результати чисельних досліджень проточної частини циліндра низького тиску (ЦНТ) турбіни К-1250-6,9/25 з покращеними відносно раніш дослідженого вихідного варіанту геометричними параметрами відсіку перших трьох ступенів. Дослідження проведені з урахуванням відбору пари, протікання через діафрагмові, надбандажні ущільнення та розвантажувальні отвори в дисках і підсосу вологоємної пари з периферійних міжвінцових зазорів останніх ступенів. Представлено деякі методичні аспекти та порівняльні результати чисельного експерименту.

Ключові слова: ЦНТ, проточна частина, чисельна модель, відбори, ущільнення

Рассмотрены основные результаты численных исследований проточной части цилиндра низкого давления (ЦНД) турбины К-1250-6,9/25 с улучшенными относительно ранее исследованного исходного варианта геометрическими параметрами отсека первых трех ступеней. Исследования проведены с учетом отборов пара, протечек через надбандажные и диафрагменные уплотнения, разгрузочные отверстия в дисках и отсоса влагоемкого пара из периферийных межвенцовых зазоров последних ступеней. Представлены некоторые методические аспекты и сравнительные результаты численного эксперимента.

Ключевые слова: ЦНД, проточная часть, численная модель, отборы, уплотнения

The results of computational and engineering developments and numerical studies of low pressure cylinder of five stages are represented, taking into account the steam extraction, leakages under the diaphragms, shroud seals and discharge openings in the disks of the turbine K-1250-6.9/25. All the computations were based on the model of one speed wet steam flow without droplets and super cooling was not taken into account. The sectorial approach was applied to description of the interaction of the inlet pipe, the group stages and exhaust hood. The stages were considered in steady state formulation. The initial data and boundary conditions were taken basing on thermal design of "TURBOATOM". Some methodological aspects and the directions of improving of studied facilities by numerical experiment by $MTFS^{\text{m}}$ code are discussed.

Keywords LPC, flow path, numerical model, extraction, seals

Введение. Данная работа является развитием работ [1, 2] с использованием численного 3D эксперимента в процессе разработки проекта новой паровой турбины К-1250-6,9/25 с длиной рабочей лопатки последней ступени 1650 мм.

Цель работы – применение вычислительной модели проточной части ЦНД [1], включающей входной и выхлопной патрубки, и решений [2] для ступеней с вариантами надбандажных и диафрагменных уплотнений, промежуточными отборами пара, разгрузочными отверстиями в дисках рабочих колес и отсосов влагоемкого пара для определения, анализа и совершенствования аэродинамических и энергетических характеристик всей проточной части ЦНД.

Математическая 1. модель течения и постановка численного эксперимента. В численном эксперименте использован программный комплекс *MTFS*[®]oftware [3, 4], обеспечивающий интегрирование уравнений Навье-Стокса, осреднённых по Рейнольдсу-Фавру на основе неявной разностной TVD схемы конечных объёмов 2-го порядка точности и варианта алгоритма [4], обеспечивающего эффективное распараллеливание вычислительного процесса. подобласти Расчётные аппроксимировались неструктурированными гексагональными сетками. Твердые стенки предполагались адиабатическими с условием Турбулентные прилипания. эффекты описывались на основе SST модели Ментера [5]. Расчеты выполнены на основе табличной модели влажного пара и приближения равновесной конденсации.

Входной патрубок симметричен относительно продольной и поперечной вертикальных плоскостей. Его коллектор содержит внутренние элементы и два подвода в нижней половине. Подробное рассмотрение вариантов входного патрубка дано в [1]. С целью экономии вычислительных ресурсов использован секторный подход к осреднению [4] на интерфейсах пространства патрубка и каналов диафрагмы 1-й ступени. В вариантах расчетов на половине окружности подвода использовалось до трех секторов интерфейса (рис. 1, а). Каждому сектору соответствовала одна проточная часть ряда ступеней.

Обсуждение вариантов модели входного патрубка проводилось в [2] по параметрам: высота и конфигурация рассекателя, размер горла, ширина и осевая длина осерадиального канала, внутренние очертания коллектора и форма канала сопряжения подводящей трубы (ресивера) с коллектором. В данном исследовании за основу принят вариант входного патрубка М4 из работы [2]. В расчетах проточной части выполнялось осреднение параметров потока в зазоре вдоль окружности интерфейса между патрубком и входом в подключенную ступень. Исходя из малости окружных градиентов параметров на интерфейсе «ступень-патрубок», выбраны секторы осреднения интерфейса размером в 30°, 60°, 90° [2]. Также, учитывалось, что патрубок спроектирован с установкой разделительных стенок в плоскости симметрии.

На выходе из проточной части присутствовал вариант модели выхлопного патрубка без внутренних турбины элементов, спроектированный для К-1250-6,9/25 (рис. 1, в). Передача параметров OT ступени к патрубку происходила с осреднением по окружной координате, то есть окружная неравномерность от выхлопного патрубка не учитывалась В модели проточной части ЦНД. Результаты по выхлопному патрубку не приведены в связи с ограниченным объемом данной статьи.

ISSN 2411-3441 (print)

Рис. 1. – Проточная часть ЦНД паровой турбины К-1250-6,9/25: *а* – подвод, *б* – проточная часть, *в* – выхлопной патрубок

Мощности сеточного разбиения по элементам проточной части ЦНД в среднем составляли около 10 млн. ячеек в проточной части патрубков и до 30 млн. ячеек в ступенях отсека. В численной детально описаны основные молепи все параметры, геометрические определяющие характеристики проточной части пяти ступеней ЦНД, в том числе надбандажные и диафрагменные уплотнения, разгрузочные отверстия, отборы и отсосы пара.

Все каналы уплотнений в ступенях и междисковые разгрузочные отверстия моделировались в трехмерной постановке в рамках условий периодичности.

Стратегия численного эксперимента основывалась на опыте расчетных исследований двухступенчатых и трехступенчатых отсеков с паровпуском [2], двухступенчатых переходных отсеков с промежуточным отводом пара [6], выхлопных отсеков [7], а также основывалась на предварительном выборе вычислительной сетки для течения через одиночное уплотнение путем сравнения с известными экспериментальными данными.

Исследование проводилось для номинального режима работы ЦНД на основе данных теплового расчета. При этом на входных сечениях подводящих труб входного патрубка задавались полные параметры потока без завихренности и нулевая влажность. На выходе из выхлопного патрубка фиксировалось постоянное статическое давление.

2. Обсуждение результатов совершенствования проточной части ЦНД Исходный вариант ЦНД тихоходной паровой турбины К-1250-6,9/25 представлен на схеме проточной части (рис. 1). Основные данные исходной и исследуемой конструкции приведены в табл. 1,2, и в части первой, второй и третьей ступеней соответствуют исходному варианту облопачивания входного отсека [2].

2.1 Методика обработки полей газодинамических величин. В табл. 3 приведены некоторые интегральные массовые и энергетические характеристики элементов которые проточной части, вычислялись в характерных сечениях: на входе в патрубок, по кромкам сопловых и рабочих лопаток. Осреднение параметров в этих сечениях выполнялось по методике [8]. Интегральные внутренние потери полного давления и кинетической энергии (КЭ) на участках между сечениями определялись по общепринятым формулам [8]. Для каналов сопел и рабочих венцов потери КЭ вычислялись по 2 - 3сечениям на расстоянии диаметров входных/выходных кромок и таким образом не учитывали потери КЭ в надбандажных и диафрагменных протечках, а также полные потери вследствие отборов и отсосов пара. Внутренний КПД ступени [7] определялся через внутреннюю мощность ступени, расход через ступень и разность энтальпий, которая вычислялась по полной энтальпии потока в сечении перед сопловым аппаратом ступени и адиабатическому значению энтальпии в сечении за ступенью. Внутренняя мощность ступени вычислялась через осевой момент на рабочем венце и угловую скорость вращения ротора. Таким образом, внутренний КПД ступени учитывал межвенцовые отборы и отсосы, перетекания в надбандажных и диафрагменных протечках.

2.2 Анализ аэродинамических характеристик отсека ступеней. В работе проводится анализ и сравнение характеристик течений через ступени в рамках трехступенчатых отсеков [2] и течения в исходном [1] и исследуемом в данной работе варианте ЦНД.

Отличия в геометрии трехступенчатых отсеков, как видно из табл. 1, 2, заключались в применении разных уплотнений для 1-й и 2-й ступеней, конструкции выходной части входного патрубка (ВХП) и некоторых изменений в облопачивании первых трех ступеней. В частности, уменьшились углы выхода потока из сопел № 1, 2, увеличился угол выхода потока из сопла №3. Также уменьшились углы выхода потока из ступеней № 1–3. В целом, ступень № 3 подверглась небольшим изменениям. Те же отличия сохранены и в вариантах геометрии ЦНД, однако условия работы ступеней № 1–3 в составе ЦНД отличались от условий работы в составе трехступенчатого отсека.

Общая характеристика течения в ЦНД. Течение в ступенях ЦНД в целом соответствует данным теплового расчета по зазорам в среднем сечении и течению в ступенях исходного ЦНД. Температура пара к выходу из патрубка снижается от 430 К до 295 К, за кромками рабочей лопатки (РЛ) № 5 и в струе над бандажом – до 290 К; влажность, отсутствующая на входе в ЦНД, появляется уже за сопловым аппаратом № 1, на выходе ступени № 3 достигает 7 % в ядре потока, в зазоре и на выходе из 5-й ступени – 15–16 %, при этом корневые пояса имеют пониженную влажность из-за протечек в уплотнениях (рис. 2). Первые три ступени ЦНД работают в дозвуковом режиме, максимальное число Маха 0,95 достигается локально в корневой зоне межвенцового зазора 3-ей ступени.

Паталана	05	№ ступени								
Параметры	Ооозначение	1 2		3	4	5				
Высота сопла, мм	Lc	225/255	335/360	521/548	829	1523				
Корневой диаметр сопловой решетки, мм	<i>D</i> с.к	3052	3040	3020 2980		2930				
Углы выхода потока из сопла, град	4a1cp	14,3/12,25	14,6/14,3	13,8/14,8	16,1	16,3				
Количество сопловых лопаток, шт.	Zc	142	142	142	68	66				
Количество рабочих лопаток, шт.	Ζл	220	170	100	108	112				
Длина рабочих лопаток, мм	L_{π}	238/262	394/411	590	910	1650				
Корневой диаметр рабочей решетки, мм	$D_{{\scriptscriptstyle {\rm J}}{\scriptscriptstyle {\rm K}}}$	3046	3030	3005	2970	2900				
Веерность рабочих лопаток	D_{π}/L_{π}	13,8/12,6	8,69/8,37	6,09	4,26	2,76				
Угол корневого меридиональн.раскрытия, град	<i>ү</i> л.к	0	0	0	0	0				
Угол периферийного раскрытия, град	γ л.п	0	15	0	0	0				
Периферийная перекрыша (радиальная), мм	Ππ	10	32,5	61,5	87	109				
Углы выхода потока из ступени, град	β _{2cp}	20,7/18,6	19,0/18,0	18,2/17,3	19,7	31,4				
Уплотнение надбандажное	-	лабиринтное прямоточное/многодроссельное								
Радиальный зазор, мм	dr	3/1	3,5/1	4	5,5	9,25				
Количество гребней на статоре, шт	Ζ	7/9	8/9	2+3	4	-				
Уплотнение диафрагменное	_	ступенчатое								

Таблица 1 – Геометрические характеристики ступеней исходного [1]/исследуемого ЦНД

Таблица 2 – Некоторые геометрические характеристики исходного[1]/исследуемого входного патрубка

Полуширина радиального канала ВХП	a _p	ММ	510/402
Полуширина горла радиального канала	a	ММ	200/272
Диаметр входного сечения радиального канала ВХП	Dp	ММ	4660
Диаметр горлового сечения радиального канала ВХП	Da	ММ	3582,7/3642,7

На периферийную зону проточной части ЦНД оказывают влияние надбандажные протечки и отборы. За РЛ №1 протечка прилегает к обечайке статора провоцирует отрыв, И который присоединяется на обечайке ближе к горлу СА № 2. За РЛ № 2 взаимодействие протечки (5,93 кг/сек) и основного потока обеспечивает прилегание потока и сток в отбор, которого, однако, не хватает для заполнения щели отбора (17,68 кг/сек) и, кроме того, верхний пояс СА № 3 оказывается незаполненным. Незаполненность отборной щели расходом (рис. 4, 5) перед СА № 5 и раскрытие проточной части на данном режиме приводят к обтеканию СА № 5 в верхних поясах на нерасчетных углах (рис. 4), вблизи

входных кромок возникает противоток. По этой причине зона отбора за РЛ № 4 требует совершенствования.

Влажность за РЛ 4-й ступени достигает 10 %, в корневой части зазора между СА № 5 и РЛ № 5 и за выходными кромками РЛ № 5 локально достигает 17 %. При этом температура снижается в соответствии с таблицами водяного пара.

В выхлопном патрубке обечайка диффузора обтекается безотрывно по всей длине за счет высокоскоростной закрученной струи надбандажной протечки при максимальном числе Маха – 2, 2, и в связи со специальным профилированием контура диффузора.

0.91

Рис. 4 – Поля относительного числа Маха на среднеканальной поверхности исходного ЦНД и расходы

0.1

Расходы в ЦНД: исходный модернизированный

265.9 268.1

0.9 0.92

4 1

Рис. 5 – Поля относительного числа Маха на среднеканальной поверхности модифицированного ЦНД

Сопоставление результатов по структуре течения и потерям КЭ показывают близкие значения, как для случая трехступенчатого отсека [2], так и ЦНД в целом [1]. Для трехступенчатого отсека [2] наблюдаются отличия в сравнении с ЦНД по расходам в сечениях диафрагменных протечек, что связано с неадекватным моделированием противодавления за третьей ступенью трехступенчатого отсека, а также отсутствием в нем третьего разгрузочного отверстия. Расходы через надбандажные протечки первых двух рабочих венцов практически совпадают с таковыми для трехступенчатого отсека с соответствующими уплотнениями.

Расходные характеристики в усовершенствованной проточной части ЦНД снижены в среднем на 1 % (рис. 4) (при сохранении теплоперепада на ЦНД), предположительно из-за уменьшенных углов

выхода в соплах № 1-2 и изменения облопачивания в целом.

Судя по структуре потока, РЛ № 4 нуждается в доработке. След за проволокой РЛ № 4 заметно выделяется, прежде всего, из-за аэродинамически несовершенного профиля лопатки в этом поясе; при удалении проволоки (рис. 3, 5) ширина слела уменьшается. Для РЛ № 5 утолщение профиля выполнено более совершенно и след за проволокой практически не виден. Последнее подтверждается и предыдущими исследованиями авторов [7]. В исходном ЦНД рабочие лопатки №№ 1-5 во входной части среднего пояса обтекаются под нерасчетными углами. Усовершенствованное облопачивание ступеней № 1-3 снижает этот эффект, однако ступени № 4-5 нуждаются в корректировке. Поля влажности (рис. 2) незначительно различаются в 1-й – 3-й ступенях и на входе в СА № 4.

Рис. 6 – Линии уровня относительного числа Маха в надбандажном уплотнении для РК1–РК3 в исходном и модифицированном исполнении ЦНД

Hydraulic machines and hydraulic units

Параметры	Вход	CA1	РК1	ст1	A2	РК2	ст2	CA3	RK3	ст3	CA4	RK4	ст4	CA5	RK5	ст5
КПД по моменту	_	_	<u>0,915</u> 0,939	Ι	_	<u>0,932</u> 0,931	Ι	_	<u>0,911</u> 0,904	_	_	<u>0,862</u> 0,877	Ι	_	<u>0,754</u> 0,759	-
Интегральные потери ступени, %	_	_	-	<u>5,6</u> 5,2	_	_	<u>5,8</u> 4,6	_	_	<u>7,0</u> 5,2	_	-	<u>8,0</u> 7,98	_	Ι	<u>7.6</u> 7,3
Момент РК, Нм	_	_	<u>620,1</u> 721,1	_	_	<u>866,6</u> 927,8	_	_	<u>1692,8</u> 1466,5	_	_	<u>1585,2</u> 1585,5	-	_	<u>2054,3</u> 2000,9	_
Расход, кг/с	<u>272,4</u> 269,1	<u>272,3</u> 269,1	<u>265,9</u> 268,1	_	<u>271,4</u> 268,3	<u>264,2</u> 265,8	_	<u>254,0</u> 251,0	<u>250,1</u> 246,6	_	<u>254,5</u> 251,4	<u>242,1</u> 239,1	_	<u>236,7</u> 233,1	<u>225,1</u> 221,2	_

Таблица 3 – Энергетические характеристики ступеней исходного/модифицированного ЦНД

Рис. 7 – Потери кинетической энергии на каналах ступеней ЦНД

В табл. 3 и на рис. 7 даны энергетические характеристики каналов и ступеней: интегральные потери КЭ канала, отнесенные к располагаемому перепаду на канал, потери ступени, отнесенные к перепаду на ступень, моменты на рабочих венцах и внутренние КПД ступеней, вычисленные по моментам на рабочих лопатках. Потери КЭ на сопловых каналах даны без учета межвенцовых зазоров (по кромкам). Следует отметить снижение потерь кинетической энергии практически на всех каналах ЦНД, кроме ступени № 4. Моментные характеристики на ступенях повысились за исключением 5-й ступени, на которой падение 2.5 %. Структура составляет течения в разношаговых надбандажных уплотнениях (рис. 6) указывает на их преимущества перед рядовыми уплотнениями, что проявляется в существенном снижении расхода и малой зависимости от смещения.

Заключение Представлена вычислительная модель варианта проточной части цилиндра низкого давления турбины К-1250-6,9/25 на влажном паре с табличными свойствами при использовании равновесной модели течения без учета переохлаждения, движения капель и пленочной влаги. Модель включает входной и выхлопной патрубки, и ступени с вариантами диафрагменных и уплотнений, надбандажных промежуточными отборами пара, разгрузочными отверстиями в дисках рабочих колес. Формирование требований к математическим моделям и проведению численных исследований с учетом реальных граничных условий выполнено путем предварительного проведения комплекса верификационных численных расчетов [1, 5, 6].

Подход к разработке модели может применяться для исследования аэродинамики проточной части цилиндров высокого, среднего и низкого давления паровых турбин различной мощности.

Обсуждаются результаты численного эксперимента по совершенствованию аэродинамических и энергетических характеристик исходного варианта проточной части цилиндра низкого давления турбины К-1250-6,9/25.

Исследования ступеней №1-3 в составе ЦНД показывают эффективность реализованных мероприятий по модернизации сопловых и рабочих решеток. Усовершенствование сопряжения сопловых и рабочих решеток в ступенях ЦНД и их корректировка с учетом изменения располагаемых теплоперепадов позволили снизить коэффициент потерь КЭ 1-й ступени на 6,8 %, 2-й – на 20,7 %, 3-й ступени на 25,7 %.

Опыт расчетных исследований [1, 2, 6] показывает, что вариантные расчеты отсека и ЦНД в целом на фиксированном по расходу режиме можно проводить при замене входного патрубка граничным условием в виде распределения расхода по радиусу в осесимметричной постановке. При использовании модели ЦНД для режимных расчетов с неизменным входным патрубком целесообразно ограничиваться областью входного патрубка от горла подвода.

Список литературы

- 1. Солодов В. Г. Численная модель проточной части ЦНД мощной паровой турбины с учетом протечек/ В. Г. Солодов, В. Л. Швецов, В. А. Конев // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. Харків: НТУ «ХПІ». 2017. № 8. С. 6–12.
- Солодов В. Г. Исследование аэродинамических и энергетических характеристик отсека ступеней с патрубком паровпуска ЦНД мощной паровой турбины с учётом протечек / В. Г. Солодов, А. А. Хандримайлов, В. Л. Швецов, И. И. Кожешкурт, В. А. Конев // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. – Харків : НТУ «ХПІ». – 2016. – № 8. – С. 6–15.
- Сертификат гос. регистрации авторских прав № 5921 Украины. Научно-прикладной программный комплекс MTFS[®] для расчета трехмерных вязких турбулентных течений жидкостей и газов в областях произвольной формы / В. Г Солодов, Ю. В. Стародубцев // Украинское Государственное Агентство по авторским и смежным правам. – № 5921; заявл. 24.05.2002; опубл. 17.07.2002.
- Солодов В. Г. Опыт трехмерного моделирования сжимаемых вязких турбулентных течений в турбомашинах / В. Г Солодов, Ю. В. Стародубцев // В кн: Аэрогидродинамика: Проблемы и перспективы. – Харьков : Нац. Аэрокосм. Ун-тет «ХАИ», 2004. – С. 134–157.
- Солодов В. Г. Моделирование турбулентных течений: расчет больших вихрей / В. Г. Солодов. – Харьков : ХНАДУ, 2011. – 168 с.
- Шубенко А. Л. Совершенствование термо-газодинамических характеристик проточных частей мощных паровых турбин / А. Л. Шубенко, В. Л. Швецов, В. Н. Голощапов, В. Г. Солодов, С. В. Алехина. – Харьков : Цифрова друкарня № 1, 2013. – 172 с.
- Швецов В. Л. Исследование аэродинамических и энергетических характеристик выхлопного отсека ЦНД в диапазоне режимов / В. Л. Швецов, И. И. Кожешкурт,

математические Разработанные модели и методические аспекты численных исследований указывают на возможность постановки численного эксперимента по определению И совершенствованию газодинамических И энергетических характеристик проточной части цилиндра паровой турбины.

Объем и детальность полученных результатов обеспечивают возможность разработки эффективных конструктивно-технологичных решений для создания новых и модернизации существующих ЦНД на современном уровне.

Аэродинамические энергетические И характеристики 4-й и 5-й ступеней, полученные в настоящей работе, подтверждают выводы [1] о том, что ступени нуждаются в корректировке. В эффективным методом частности, улучшения аэродинамических характеристик ступеней является применение саблевидных сопловых лопаток в направляющих аппаратах. Для последней ступени это направление является особо важным в связи с улучшением распределений параметров перед РК, которые влияют на снижение эрозионной нагрузки и мощности торможения рабочего колеса, выходной потери. При этом расчеты, выполненные без учета влияния выхлопного тракта, не позволяют корректно оптимизировать последнюю ступень. Поэтому реальные характеристики ступени и выхлопного тракта возможно определять в процессе проведения численных 3D исследований последней ступени совместно с выхлопным трактом.

В. А. Конев, В. Г. Солодов, А. А. Хандримайлов // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. – Харків : НТУ «ХПІ», 2015. – С. 5–13.

 Аэродинамические характеристики ступеней тепловых турбин / под ред. В. А Черникова. – Ленинград : Машиностроение, ЛО, 1980. – 263 с.

References

- Solodov, V. G., V. L. Shvetsov and V. A. Konev "Chislennaya model protochnoy chasti TsND moschnoy parovoy turbinyi s uchetom protechek" *Bulletin of NTU "KhPI"*. Series: Power and heat engineering processes and equipment, No. 8. Kharkiv: NTU "KhPI", 2017. 6–12. Print.
- Solodov, V. G., et al. "Investigation of aerodynamic and energy characteristics of L.P.C. compartment of stages with inlet pipe and leak system for powerful steam turbine unit". *Bulletin of NTU* "KhPI". Series: Power and heat engineering processes and equipment, No. 8. Kharkiv: NTU "KhPI", 2016. 6–15. Print.
- Solodov, V. G., and Yu. V. Starodubtsev Scientific Application Program Complex MTFS® for Calculation of 3D Viscous Turbulent Flows of Liquids and Gases in the Regions of Arbitrary Form Sertifikat Gos. Registr. Avtorskikh Prav," UGAASP, No. 5921, 2002. Print.
- Solodov, V. G. and Starodubtsev, Yu. V., "The experience of 3D modeling of compressible viscous turbulent flows in turbomachinery". In book: Aerodynamics: Problems and Perspectives, National Aerospace University "KhAI", Kharkov. 2004. 134–157. Print.
- 5. Solodov, V.G. *Turbulent flow modeling. Large eddy simulation* Kharkov: Publishing house KhNAHU, 2011. Print.
- 6. Shubenko, A.L., et al. An improvement of thermo and gas dynamic characteristics of flow path of power steam turbine units. Kharkov: Cifrova Drukarnia No 1, 2013. Print.
- 7. Shvetsov, V. L., et al. "Studying Aerodynamic and Energetic Characteristics of the Exhaust Section of LPC", *Bulletin of NTU*

"KhPI". Series: Power and heat engineering processes and equipment. No. 16. 5–13. Print.

 Chernikov, V. A. Aerodynamic Characteristics of Heat Turbine Stages Heat Turbine Stages. Leningrad: Mashinostroenie, 1980. Print.

Поступила (received) 30.10.2017

Бібліографічні описи / Библиографические описания / Bibliographic descriptions

Удосконалення проточної частини ЦНД потужної парової турбіни з урахуванням протікання / В. Г. Солодов, В. А. Конев // Вісник НТУ «ХПІ». Серія: Гідравлічні машини та гідроагрегати. – Х. : НТУ «ХПІ», 2017. – № 42 (1264). – С. 43–50. – Бібліогр.: 8 назв. – ISSN 2411-3441.

Совершенствование проточной части ЦНД мощной паровой турбины с учетом протечек / В. Г. Солодов, В. А. Конев // Вісник НТУ «ХПІ». Серія: Гідравлічні машини та гідроагрегати. – Х. : НТУ «ХПІ», 2017. – № 42 (1264). – С. 43–50. – Библиогр.: 8 назв. – ISSN 2411-3441.

Improvement of the L.P.C. flow path of powerful steam turbine unit with the account of leaks / V. G. Solodov, V. Konev // Bulletin of NTU "KhPI". Series: Hydraulic machines and hydrounits. – Kharkov : NTU "KhPI", 2017. – No. 42 (1264). – P. 43–50. – Bibliogr.: 8. – ISSN 2411-3441.

Відомості про авторів / Сведения об авторах / About the Authors

Солодов Валерій Григорович – доктор технічних наук, професор, Національний технічний університет «Харківський політехнічний інститут», професор кафедри «Гідравлічні машини» м. Харків; тел.: (057) 707-66-46; e-mail: solodov.v@gmail.com.

Солодов Валерий Григорьевич – доктор технических наук, профессор, Национальный технический университет «Харьковский политехнический институт», профессор кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46; e-mail: solodov.v@gmail.com.

Solodov Valeriy Grigorievich – Doctor of Technical Sciences, Full Professor, National Technical University "Kharkov Polytechnic Institute", Professor at the Department of "Hydraulic machines", Kharkov; tel.: (057) 707-66-46; e-mail: solodov.v@gmail.com.

Конев Владимир Афанасьевич – ПАО «Турбоатом», начальник сектора, г. Харьков; e-mail: v.konev.1402@gmail.com

Конев Володимир Опасасович – ПАТ «Турбоатом», начальник сектору, м. Харків; e-mail: v.konev.1402@gmail.com

Koniev Vladimir Afanasievich – PJSC «Turboatom», Head of the sector, Kharkov, e-mail: v.konev.1402@gmail.com