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UNIFIRM ATTRACTOR FOR WAVE EQUATION WITH NON-LINEAR DAMPING DEPENDING
EXPLICITLY ON TIME

The paper deals with long-time behavior of the solutions to the initial-boundary value problem for a non-autonomous non-linear wave equation. The
peculiarity of the equation is the non-linear damping term depending explicitly on time. The problem is studied in the framework of the theory of proc-
esses and their attractors. The family of processes generated by the initial-boundary value problem is introduced. It is proved that this family is uni-
formly (with respect to the time-dependent damping coefficient) dissipative and asymptotically compact, thus possesses a unique uniform attractor.
The attractor is a compact set in the common phase space of the processes.
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0. 0. HABOKA _ .
PIBHOMIPHUU ATPAKTOP XBUJIBOBOI'O PIBHAHHSA 3 HEJITHIMHUM JEMITI®YBAHHAM,
O ABHO 3AJIEXKUTD BIJI YACY

BuBuaeThcs acHMITOTHYHA TOBE/IiHKA PO3B’I3KiB MOYATKOBO-KPaHOBO1 3a1a4i TSl HEABTOHOMHOTO HEiHIHOTO XBUIILOBOTO PiBHAHHS. OCOOIUBICTIO
PIBHSIHHS € Te, IO JI0IAHOK PiBHSIHHS, SIKUI BiJNOBIIA€ 3a JieMI(yBaHHs, € HETIHIHIM 1 3aJIKUTh SIBHO Bij yacy. JlOC/iHKEHHs MPOBEICHO Y pam-
Kax Teopii npouecis Ta ix arpaktopis. [1o0ya0BaHO CiM 10 MPOLECIB, IO BiANOBIIa€ OYATKOBO-KpaiioBiii 3a1aui. JloBeeHO, 1O 1 CiM s € piBHOMIp-
HO (BiIHOCHO KoeillieHTa AeMrpyBaHHs, KU 3aNeKUTh Bijl 4acy) AUCHIIATHBHOIO Ta ACHMITOTHYHO KOMIIAKTHOK, OTXKE MA€ €IMHUI PIBHOMIpHHIT
aTpakTop. ATPAKTOP € KOMIIAKTHOKO MHOXKMHOIO y CHIJIEHOMY (ha30BOMY MPOCTOPI MPOLIECIB.

Ku11040Bi cj10Ba: HEABTOHOMHE XBHJILOBE PIBHSAHHS, HElliHIlHE qeMIdyBaHHs, ciM’s poLeciB, pIBHOMIPHUIA aTpakTop.

E. A. HABOKA .
PABHOMEPHBI ATTPAKTOP BOJJTHOBOTI'O YPABHEHMS C HEJIMHEMHBIM
JEMIT@ONPOBAHUEM, ABHO 3ABUCALINUM OT BPEMEHUA

M3yuaercsi acCHMIITOTHYECKOE TTOBEICHHUE PEIICHUI HAYaIbHO-KPAeBOii 3a1a4n Uil HEABTOHOMHOTO HEJIMHEHHOro BOJHOBOrO ypaBHeHHs. OcoOeH-
HOCTb YPABHEHHUsI COCTOUT B HAJIMYUU HEIMHEHHOTO AeMI(HUPOBAHHs, 3aBHCSIIErO SIBHO OT BpeMeHH. VccienoBaHne NpoBOIUTCS B paMKax TEOPUH
MPOLIECCOB M UX aTTPAKTOPOB. [TOCTPOECHO CEMENCTBO MPOLIECCOB, COOTBETCTBYIONIEE HAUaNbHO-KpaeBoii 3anaye. JlokasaHo, 4To 9T0 ceMeiicTBO pas-
HOMEPHO (OTHOCHTEIIBHO 3aBUCSAIIET0 OT BpeMeHH kod(uiieHTa 1eMnpupoBaHus) AMCCUIATHBHO U ACMMITOTHYECKH KOMIAKTHO M, CIIEI0BATEIBHO,
00aaeT eAMHCTBEHHBIM PABHOMEPHBIM aTTPAKTOPOM. ATTPAKTOP ABJISAETCS KOMIIAKTHBIM MHOXKECTBOM B 001IeM (Da30BOM MPOCTPAHCTBE MPOLIECCOB.
KutioueBbie ¢J10Ba: HEABTOHOMHOE BOJTHOBOE YpaBHEHHE, HETMHEIHHOE eMII(pUPOBAHKE, CEMEICTBO MPOLIECCOB, PABHOMEPHbIIT aTTPaKTOP.

Introduction. In the paper the following initial-boundary value problem for a non-linear non-autonomous wave
equation in a bounded domain Q < R? is studied:

Ug —Au+dg (t)ud + 0 =g(x), u=u(xt), xeQt>r; 1)
Usa =0 @
Uler =Uoc (), Ul =the (X)- ®)

In (1) the term do(t)uf introduces non-linear damping, the damping coefficient d,(t) >0, Vt being a periodic function

depending explicitly on time; the constant y > 0 ; the external load g(x) € L, (Q).

Equations of the form (1) arise in relativistic quantum mechanics (see [1] and references therein).

We are interested in the long-time behavior of solutions to problem (1) — (3). The asymptotic behavior of the solu-
tions to initial-boundary value problems for non-linear wave equations was addressed in [1 — 3], and others, where an
autonomous case (i.e. the case of the damping coefficient independent of time: d,(t) = d, = const > 0 ) was studied. The

research was conducted in the framework of the dynamical system theory, the long-time behavior being described
through the properties of the global attractor of the semigroup of operators generated by the respective initial-boundary

value problem in its phase space H(l)(Q)x L, ().

The asymptotic behavior of solutions to a non-autonomous wave equation was studied in [4 —6]. Unlike the
autonomous case, solutions to the initial-boundary value problem for a non-autonomous wave equation do not determine

a semigroup of operators in H(l)(Q)x L, (€) . The approach adopted for studying long-time behavior of solutions to non-
autonomous problems is to introduce a family of processes in an extended phase space, which is a direct product of the
space Hé(Q)x L, (€2) and a functional space to which all the coefficients of the equation depending explicitly on time

belong. The generalization of the notion of the global attractor on the case of a non-autonomous equation is the uniform
attractor of the family of processes thus defined. A brief outline of the theory of processes and their attractors as it is de-
veloped in [4] is found in the next section of the paper.

In the present paper the long-time behavior of the solutions to non-autonomous non-linear problem (1) —(3) is

© 0. O. Naboka, 2018

Bicnux Hayionanornoeo mexwiunoeo yHigepcumemy «XI11».Cepia:. Mamemamuyne
Mooentosanis 8 mexuiyi ma mexuonoeisx, Ne 3 (1279) 2018. 73



ISSN 2222-0631 (print)

studied in terms of the uniform attractor. The family of processes generated by the problem in appropriate phase space is
described. It is proved that the family possesses the unique uniform attractor, which is a compact set in its phase space.
We would like to point out that the damping term in equation (1) is non-linear and non-autonomous, i.e. depends
explicitly on time, which distinguishes our problem from those studied in earlier works. Thus the main point of the paper
is to deal with this peculiarity of the equation. That is why, unlike in [5], we choose other terms of the problem such as

the non-linearity yu® and the external load g(x) to be autonomous. Nevertheless, the results on the existence of the uni-

form attractor to problem (1) — (3) can be extended to the case of non-linearity and the external load of more general
form depending explicitly on time. The technique developed in [5] can then be applied to deal with them.

Abstract results on processes and their attractors. We start with a brief summary of basic notions and theorems
from the general theory of processes and their attractors, as they are given in the book by V. Chepyzhov and M. Vishik

[4].

Let E be a Banach space.
Definition 1. A two-parametric family of mappings {U (t,7)}: U (t,7):E > E,t>7,7e R is said to be a proc-
essin E if it satisfies the following properties:
U(t,s)U(s,7)=U(t,7), Vt2s27,7eR, U(r,7)=1, 7eR, 4)
where | : E — E is the identity operator.
In this paper we shall be dealing with a family of processes {UG (t,r)} depending on a parameter o, which be-

longs to some complete metric space X . The parameter o is called the symbol of the family of processes {Ua (t,r)}
and the space X is called the symbol space.

Let {T (h)}hZO be a semigroup of the translation operators on X :

T(h+hy)=T(h) T(hy), h,h, =20, T(h)Z=%, Vh>0.
We assume further that the family of the processes {UU (t,r)}, o € X satisfies the translation identity:
U, (t+h,7+h) =UT(h)U (t,7), VoeZt27,7e R, h20. (5)

Definition 2. A family of processes {U(7 (t,z’)}, o€ X is said to be uniformly (with respect to o) bounded, if for

any set B bounded in E theset  J [ J(JU (t,7)B is also bounded in E .

oeXreRt27
Definition 3. A set B, c E is said to be a uniformly (with respect to o ) absorbing set for the family of processes

{Us(t.7)},oex, if for any 7eR and any bounded in E set B there exists ty=t;(z,B)>7 such that
(JU(t.7)Bc B, forall t>t,.
oeX

Definition 4. A family of processes {Ua (t,r)}, o€ X is said to be uniformly (with respect to o) dissipative if it

posesses a bounded uniformly (with respect to o ) absorbing set.
Definition 5. A set Ac E is said to be a uniformly (with respect to ¢ ) attracting set for the family of processes

{Ug(t.7)}, oex,ifforany fixed ze R and any set B bounded in E one has:

tI_|)r11m(sup distg (U(7 (t,7)B, A)) =0,

oeX
where distg (-,-) stands for the Hausdorff semidistance in E between two sets.
Definition 6. A closed uniformly (with respect to o ) attracting set Ay is said to be a uniform (with respect to o)
attractor of the family of processes {UG (t,r)}, oe X, ifitis contained in any closed uniformly attracting set.

Definition 6 implies that the uniform attractor of a family of processes is its minimal closed uniformly attracting
set. The minimality property here replaces the invariance property imposed on an attractor of a semigroup. It is also ob-
vious that if a uniform attractor of a family of processes exists then it is unique.

We introduce now a notion of uniform asymptotic compactness of a family of processes which is due to [7] and
differs from the one given in [4]:

Definition 7. A family of processes {U(7 (t,z’)}, o€ X is said to be uniformly (with respect to ¢ ) asymptotically

compact if and only if for any fixed 7€ R, any bounded sequence {u,}~ < E, any sequence of symbols{c,} " <X

and {t, ], c R, t, ————e the sequence {Uan (tn,z')un}:_1 is precompact in E .
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We outline here a method for verifying whether a family of processes is uniformly asymptotically compact pre-
sented in [5] and inspired by similar techniques introduced for the autonomous case in [8] and developed further in [2 —
3]

Definition 8. Let E be a Banach space, B be a bounded set in E, and X be a symbol space. Let ¢(-,---) bea

function defined on (ExE)x(ZxX). Then ¢(----) is a contractive function on B if for any sequences {u,}" B

and {0'“}::1 c X there exist subsequences {unk}:_l and {O'nk}:_l such that

lim lim (g, Uy 10y, 107, ) =0.

Theorem 1. Let {U(r (t,r)}, o€ X be a family of processes satisfying the translation identity (5) and possessing a
bounded uniformly (with respect to o ) absorbing set By. Assume that for any &> 0 there exists T =T (By,¢) and a

contractive function ¢ (-,+;-,-) such that
||U(71 (T, 7)u-U,, (T,r)v” <e+¢p (u,v;0,,0,), VYuveB; Vo, 0,¢€X (6)
Then the family {Ua (t,r)}, o e X is uniformly (with respect to o ) asymptotically compact in E .

The criterion for the existence of a uniform attractor of a family of processes {U, (t,7)}, o€ £ in terms of uni-
form dissipativity and uniform asymptotic compactness reads then as follows (see [4 - 5]):

Theorem 2. Let {UU (t,T)}, oeX be a family of processes satisfying the translation identity (5). Then
{UU (t,T)}, o€ X has a compact uniform (with respect to o ) attractor Ay if and only if it is uniformly (with respect to
o) dissipative and asymptotically compact.

Unique solvability and family of processes. Our aim now is to apply the abstract theory from the previous section
to prove the existence of a compact uniform with respect to the time-dependent damping d, (t) attractor for non-

autonomous initial-boundary problem (1) — (3). The first step is to define properly the symbol space X and the family
of processes {Uy (t,7)}, d € £, generated by the problem.

We impose the following assumptions on the parameters and functions of equation (1):
(A1). The damping coefficient d, (t)e C(R) is a positive periodic function:

do(t)2my >0, VteR, dy(txHy)=dy(t), Hy >0 VteR; 7
(A2). The right-hand side in (1) is such that g(x)e L, (Q);
(A3). The coefficient y is positive: y > 0.
Let us denote by C, (R,R) the space of bounded continuous functions endowed with the following norm:
e, =supld (¢) ©
The functional damping coefficient d, (t) belongs to Cy (R, IR). Let the hull H (d,) be the set of all the translations of
the function d, (t):
H(do)={d(t): d(t)=dy(t+h), he R} =C, (R, R).
Note that since the function d, (t) is periodic in t then the hull H(d,) is actually reduced to the set of the shifts of
dy (t) by he[0,H,), where Hy is the period of d, (t):
H(do)={d(t): d(t)=dy(t+h), he[0,H,)} =C, (R, R).
Let = be the closure of the hull H(d,) in norm (8):
z=[H(d0)]Cb. )

The set X possesses the following important properties:
1. ZXiscompactin C, (R, R), in particular.

2. Zisuniformly bounded in Cy (R, R), i.e. there exists a positive constant M >1such that
ldflg, Mg, Vdex. (10)

Moreover, for any d (t)e £ we have d(t)>my, Vte R with my from (7).
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3. Any function d(t)e X is periodic as a uniform limit of periodic functions, hence.
4. X is invariant with respect to the translation operator:
T(H)z=2
We opt for X as the symbol space for non-autonomous problem (1) — (3).
In what follows the notations (-,-) and ||| stand for the scalar product and norm in L, (€2) respectively.

For arbitrary d (t)e X consider the following non-autonomous equation:
Ug —Au+d (t)ud +nd =g (x), xeQt>r, (11)

supplemented by boundary and initial conditions (2) — (3). The following theorem on the existence of solution to non-
autonomous initial-boundary value problem (11), (2) — (3) can be proved the same way it is done for autonomous equa-
tion in [9] the non-autonomous term presenting no essential difficulty:

Theorem 3. Assume the parameters and functions of equation (11) satisfy conditions (A1) — (A3). Then problem
(11), (2) - (3) has a unique solution u(x,t) for any initial data (U, U, )e Hg (Q)xL, (Q). The solution u(x,t) is

continuous in time: u(t)e C([z,); H3(Q))NC ([7,=); L, (L)), and ug e L, ([7,); H™(Q2)). Moreover, the so-

lution u(x,t) satisfies the following energy identity:

t
E(t)+'|'d(s){J'ut4dQst= E(z)+(g,u(t))-(g.u(r)), (12)
T Q
where E(t) stands for the energy of the problem:
£ (0)=2{Ju +[Vu )+ £ [utse (13)
Q

Corollary 1: Theorem 3 implies that problem (11), (2) — (3) generates a family of processes {Ud (t,z’)}, de X with
the symbol space X defined by (9). The operators Uy (t,7): Hg (Q)x L, (Q) — Hg (Q)xL, (Q) act by the formula:
Ug (.7) (Uor ) = (u(t), u (1)), ¥ (Ugg, Uy ) € H (Q)x Ly (),
where u(t) is the solution to problem (11), (2) - (3) for the initial data (u,,,u;, ) and respective functional damping co-

efficient d (t)e . Since the solution to problem (11), (2) — (3) is unique, the family of processes {Ud (t,r)}, de X sat-

isfies the translation identity (5).
Corollary 2: Energy identity (12) coupled with assumption (A1) on the damping coefficient d(t) imply the fol-

lowing estimate for the L, ([s,t]xQ) —norm of the derivative u :

't”ut“dﬂds=mio(E(r)+(g,u(t))—(g,u(r))). (14)

Main Result. The main result of the paper is the following theorem on the existence of a compact uniform attractor
of the family of processes {Ud (t,r)}, d e X generated by non-autonomous non-linear initial-boundary value problem

(11). @ -@):
Theorem 4. Let assumptions (A1) — (A3) hold. Then the family of processes {Ud (t,r)}, d e X generated by prob-

lem (11), (2) — (3) possesses a uniform (with respect tod ) attractor A;. The attractor A; is a compact set in the space
Hp (Q)xL, (©).
To prove Theorem 4 by Theorem 2 we need to show that the family of processes {Ud (t,r)}, de X is uniformly

(with respect to d ) dissipative and uniformly (with respect to d ) asymptotically compact.

Uniform dissipativity. We start with proving that the family of processes {Ud (t,r)}, d e X possesses a bounded
uniform (with respect to d ) absorbing set B, < H3 (Q)xL, (Q).
Lemma 1. Let assumptions (A1) — (A3) hold. Let B be a bounded set in H3 (Q)x L, (). Then for any initial data
(Ug;, Uy, ) € B the solution u(x,t) to problem (11), (2) - (3) satisfies the following inequality:
[lug ||2 +||Vu||2 <Ce™+C,, (15)
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with >0, t>7, and the positive constants C,,C, depending on the set B, the L, (L) -norm of the right-hand side
g(x) of equation (11), the parameter y, the constants m, from (7) and Mg from (10), and the volume of the domain
Q, but not depending on the particular choice of the parameter d(t)e =

From Lemma 1 the existence of a bounded uniform (with respect to d ) absorbing set for {Ud (t,r)}, de X imme-

diately follows.

Proof (of Lemma 1). To derive (15) we exploit the well-known technique (see [2] for the autonomous case and [4 —
5] for the non-autonomous one).

We first multiply (11) by u; in L, (Q) to obtain

d

d—E(t)+d(t)jufdQ=(g,ut), (16)
t Q

where the energy E(t) is defined by (13).

Next we multiply (11) by 77u (7 >0) in L, () which leads to

d
na(ut, —n|ue|? +2|Vul? +7d (¢ IutudQ+nyju4dQ n(g,u). (17)
Summing (16) and (17) up we arrive at the inequality
D (t)+ (1)

(77+ j"ut" +( j”Vu" —un(ug,u )+7[77— jj.u4d§2+d J.ut“d§2+77d J'utudQ_

=(9.u)+n(g,u),
with >0 and

W(t)=E(t)+n(u,u).

Now choosing 77 and u sufficiently small (we can opt for 7 = min % y,L, ﬁ and ,u=% with m, from

8(y+2Mm§) 2

(7), My from (10), and (-4,) - the first eigenvalue of the Laplace operator) we obtain the estimate:

d
E‘{’(t)+,u\l‘(t) <C(mg, My, ||g]. 7. @),
wherefrom, by integrating in time over [z, t] we get
W (t)<W(z)e +C(my, My, |g]. 7. Q). (18)

It is easy to prove that for the above choice of the parameters 7 and x# we have
1
¥ (1) 27l +[Vul*) and ¥ (2) <C (o], Jusc ).
Then combining these estimates with (18) and keeping in mind that we have the initial data (u,,,u;,) from a

bounded set B c Hg (Q)xL, (Q) we arrive readily at (15). m

Uniform asymptotic compactness. We proceed now with proving uniform (with respect to d ) asymptotic com-
pactness of the family of processes {Ud (t, 1)} d e X generated by non-autonomous initial-boundary value problem

(11), (2) - (3). We are going to apply Theorem 1 so we need to check if inequality (6) holds.
Let u(x,t) and v(x,t) be two solutions to problem (11), (2) — (3) for the initial data (u,,, U, ) and (vy,, v, ) and

different symbols d, (t), d,(t)e = respectively. Denote w(x,t)=u(x,t)—v(x,t). Then w(t) solves the following
problem:
Wy —Aw+d (t)u3 —d, () +7 (0 =v*) =0, xeQt=7 w, =0,
W|t —r = Wor = U, —Vor» Wt|t = Wi = Uy — Vg (19)

We multiply (19) by w;, in L, (€) and integrate in t over [s,T], T >s>7 to get
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T T T
= (T)+jdl(t)(uf’ -2, Wt)dt+_“(dl(t)—d2 (t))(vf Wt)dt+I(U3 -3, wt)dt =E,(s) (20)
S S S
with E,, (||Wt || +||VW|| ) wherefrom by assumption (A1) on the nonlinear damping we derive that

T T

m(,J'(ut3 -V, w, )dt <E,(s)-[(d(t)-d, (t))(vt3 Wt)— ;/J'(u3 ¢, w, )dt, VT >s>7.
S S S

We now note (see [8]) that for any & >0 there exists a constant C5 >0 such that

\w|* < 5+Cy (uf’ -2, wt).
Combining the two inequalities we deduce the following estimate:

T
I||Wt|| dt<(T-s |Q|6+C5E j (vf’,wt)dt—&'[(u:g—vs,Wt)dt, VT >s>7. (21)
mo s

The next step is to multiply (19) by w in L2( ) and integrate in t over [z, T] which leads to the equality
T T T
“WW"Z dt = —(w (T), w(T))+(w (7), w(z))+ [ |w I at = [(du (t)u = d, (1), w)dt, (22)
T T T

Inequalities (21) and (22) imply that

I €, (1)t <= (w(T), w<T>)+§<wt<r>,w<r>)+(T—r)|ﬂ|5+fn—jEw(r)—

17 3 ’ 7C
—Ej'(dl(t)ut—d Ve, )dt——J' (vt,wt)dt— mo‘sj'(u -8 Wt)dt, T>t (23)

We integrate next (20) in s over [z, T] and use (23) to estimate the integral of E,, (t) we get in the right-hand side
of the equality. Thus we arrive at the inequality:
1 1
E,(T) S|Q|6+EC(5; w, (7), w(z), w, (T), w(T ))—T—_z_(p(u, v;dg, dy), (24)
where ¢ >0 is an arbitrary constant, thus the term |Q|5 can be made arbitrary small,

C (1 (£), W(z). W (), W(T)) == (e (T), W(T))+Z (e (1), w()) =2 E, (1)

2 My
and
o(u,v; dy, d, 7”(u —V@ Wt)dtds+ 57/J'(u —v@ wt)dt+ J'dl (uf,w)dt—}dz(t)(vf,w)dt +
+” dy (t) (vt,wt)dtds+ J' (vt,wt)dt (25)

T
We prove now that from (24) follows (6), namely, that the term

1
T C(w (7). w(z). w (T), w(T))
can be made arbitrary small by choosing T large, and that the function ¢(u,v;d;, d,) defined by (25) is contractive

(see Definition 8 above).
Let B be a bounded set in H(Q)x L, (). Consider a sequence of initial data {(ug,, Uy, )}::1 cB and a se-

quence of symbols {dn(t)}:zlcz. Let u,(x,t) be the solution to problem (11), (2) — (3) for the initial data

(Ugzns Uiy ) and the dissipation coefficient d (t) =d,, (t) . Since all the initial data (uy,,, U, ) belong to the bounded set
B and the family of processes generated by (11), (2) — (3) is uniformly (with respect to d ) dissipative, there exist a
moment of time T, =T, (7, B)>7 and the number R, =R;(z, B)>0 depending only on the initial time 7 and the
bounded set B such that

[ ()] + [V, (V)] <Ry, WA= Ty,

Since the sequence of solutions {u, (x,t)}, t>T, is bounded in Hg(Q) and the sequence of their derivatives
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{une (x,t)} is bounded in L, (Q) uniformly with respect to te [Ty, T] then by the Aubin’s lemma and Sobolev’s em-
bedding theorem it follows (up to a subsequence) that the sequence {un(x,t)} is converging in

C (s, T L, (Q)) 0<qg<6 forany T >s>T,. Moreover, the sequence of the derivatives {um (x, t)} converges weakly

in Ly(s,T; L, (Q)), T=s>T,. The symbol space £ being compact in C, (R, R), the sequence {dn(t)}:;l cXis
also converging (up to a subsequence) in C, (R, R).

Let us now consider inequality (24) with 7=T,, T>s>T,, u=u, v=u and d,=d,, d, =d;, where
U, =U (x,t), u =u,(xt) are two different members of our sequence of solutions, w=u, —u,, and d, =d, (t),
d, =d, (t) are the respective members of the sequence of symbols. Then C(w, (T,), w(Ty), W, (T), w(T)) can be esti-
mated from above by some constant depending only on the time T, and the ball B for T large:

C(w (To), W(Tp), W (T), w(T))<Cy(Tp, B), VT 2T,

Hence, by fixing T =T, large enough we can make the first term in the right-hand part of (24) arbitrary small.

We prove next that the function ¢(-,-,-) vanishes along {u, (x,t), d, (t)}:

kI|_r>r30I|_>r11o(p(uk,u,,dk,d )=0.

To this end we show that each term in (25) tends to zero along the sequence. We argue as in [5]. We start with the first
term:

klmlll_)rPO;['TI( —uf, Wt)dtdS— lim I'_[E,[”( (jt up - 3 u|) uSu|t+u|3uktdedtds:

_ Jim lim|1=T0 ( )dQ— o gup j(uk (s))dQ—}}jufu|td9dtds+Tfhuf’uktdgdtds.

kel 4 selty.T] T s Q TosQ

Passing to the limit first in k — e and then in | — « (which is possible due to the fact that the sequence {un (x, t)} is
converging in C(TO,T; Ly (Q)) 0<q<6) we note that the first two terms here vanish and the third and fourth ones
become equal. Hence,

TT
lim lim Ij(uf—uf,wt)dtds:o.

k—>c0 | —e0
T

The third and fourth terms in (25) are identical, so we only consider the third one and prove that

;
lim lim [ dy (t )(uf’t,uk —u,)dt=0. (26)
k—)ool—)oo_l_o

Indeed, taking into account that the damping coefficients d, (t) are bounded (see (10)) and applying Holder’s inequality
we write that

T T y Y4
J'dk(t)(u,ft,uk—m)dtSM{J'J'uftdetJ (H detJ . @7

%

T

By estimate (14) from our previous discussion it follows that the multiple (I ju,ftdetJ in (27) is bounded. Then the
T Q

%
T
compact embedding of the Hg () space in L, () implies that the multiple {“'(uk ~u)* det] vanishes as the
ToQ
indices tend to the infinity. Hence, (26) holds.
We now deal with the last two terms of (25). They are quite similar so we provide the argument for the last one
here. We argue as in (27) again:
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T % T Ya

.
[ (di (t)=d, (1)) (Ui, e —uye )| < sup_[dy (t)=dy (0)]| [ [utdt | | [ [lug—uy| dodt| <
T te[To,T] ToQ ToQ

<C(g,my, B) sup |d (t)—d, (t

tE TO

The sequence {d, (t)}:’:1 being convergent in C, (R, R) we conclude that

lim lim i (di (t)=dy (1)) (uit, U —uy )t =0

K—ool—00
To

Hence, the function ¢(--,-) is contractive and the family of processes {Uy (t,7)},de £ generated by non-

autonomous initial-boundary value problem (11), (2) — (3) is uniformly (with respect to d ) asymptotically compact.

Conclusions. In the paper the initial-boundary value problem for a wave equation with a non-linear damping term
depending explicitly on time is considered. The long-time behavior of the solutions to this problem is studied in term of
the attractor of the family of processes generated by the problem. It is proved that the family of processes is uniformly
(with respect to the time-dependent damping coefficient) dissipative and asymptotically compact, thus possesses a
unique uniform attractor which is a compact set in its phase space.
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