## УДК 621.9.02

*Ю. Н. КУЗНЕЦОВ*, д-р техн. наук, проф., НТУУ «КПИ», Киев; *В. А. НЕДОБОЙ*, аспирант, НТУУ «КПИ», Киев; *ХАМУЙЕЛА Ж. А. ГЕРРА*, докторант, НТУУ «КПИ», Киев

## ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВЫСОКОСКОРОСТНОГО ИНСТРУМЕНТАЛЬНОГО ЗАЖИМНОГО ПАТРОНА

В работе рассмотрены результаты исследования силовых и жесткостных характеристик высокоскоростного инструментального зажимного патрона. Представлены зависимости силы проталкивания и момента прокручивания от давления зажима, рассчитаны коэффициенты усиления для обоих случаев и построены графики их зависимости от давления зажима. Также был проведен эксперимент по определению упругих отжатий патрона и представлены зависимости и радиальных отжатий от давления зажима оправок.

**Ключевые слова:** инструментальный зажимной патрон, сила проталкивания, момент прокручивания, радиальная жесткость, давление зажима.

**Введение.** Использование современных инструментальных зажимных систем для механической обработки позволяет значительно повысить скорости резания (частоту вращения шпинделя) на станках, в частности, сверлильных, фрезерных и обрабатывающих центрах [1].

Невозможность повышения частоты вращения инструментов вызвана высокими центробежными силами. Поэтому актуальным является использование и создание инструментальных зажимных патронов (ИЗП), обеспечивающих высокую силу зажима, что компенсирует влияние центробежных сил.

Ранее в работах ученых были рассмотрены принципы создания и проведены экспериментальные исследования высокоскоростных ИЗП, в том числе с упругими элементами [2–8].

Для установления полной картины необходимо провести эксперименты, отражающие силовые и жесткостные характеристики ИЗП.

**Цель работы.** Исследование и обоснование силовых и жесткостных характеристик ИЗП для определения основных зависимостей и характеристик процессов при различных величинах давления зажима.

Материал и результат исследований. Для исследования силовых характе-

инструментального ристик патрона зажимного нужно провести эксперименты на проталкивание и прокручивание определенного оправки диаметра, зажатой С определенным давлением в ИЗП [10]. качестве объекта В исследований выбран высокоскоростной ИЗП типа CoroGrip (рис. 1)



Рис. 1 – Разрез ИЗП типа CoroGrip в комплекте: 1 – подвижная конусная втулка; 2 – неподвижная упорная конусная втулка; 3 – сменная цилиндрическая цанга; 4 - шпиндель

© Ю. Н. КУЗНЕЦОВ, В. А. НЕДОБОЙ, ХАМУЙЕЛА Ж. А. ГЕРРА, 2014

Определение момента прокручивания  $M_{pr}$  проводилось на токарном станке согласно схемы (рис. 2).

Для проведения данного эксперимента на станке был осуществлен кинематический замок, поскольку для измерения  $M_{pr}$  оправки ИЗП должен быть неподвижным (рис. 3).

В патроне 1 станка через цилиндрический переходной элемент 2 был зажат ИЗП 3, а в сам ИЗП зажата оправка 4. Нагружение производилось С динамометрической помощью рукоятки 5 (рис. 2). Измерения происходили разных при значениях  $p_c$  – давления зажима (10-60). оправки Замеры по индикатору 6 проводятся трижды.



Рис. 2 – Схема измерения момента прокручивания *M*<sub>pr</sub>



Рис. 3 – Измерение момента прокручивания *М*<sub>pr</sub> оправки d= 12 мм

По этим данным получен коэффициент усиления патрону  $k_{af}^{'}$ .

Момент прокручивания  $M_{pr}$  зависит от давления  $p_c$ , площади гидроцилиндра  $F_c$  и коэффициента сцепления (трение)  $\mu_1$  оправки с зажимным элементом [9,10].

На входе в зажимной патрон осевая сила

$$S_{\Sigma} = p_c \cdot F_c, \qquad (1)$$

Для определения коэффициента усиления сначала нужно найти  $M_{pr}$ :

$$M_{pr} = \frac{T_{\Sigma} \cdot \mu_1 \cdot d}{2}, \qquad (2)$$

где *d* – диаметр оправки,  $\mu_1$  – коэф. трения при прокручивании Откуда

$$T_{\Sigma}' = \frac{2M_{pr}}{\mu_1 \cdot d}, \qquad (3)$$

а коэффициент усиления (табл. 1)

$$k_{af}^{'} = \frac{T_{\Sigma}^{'}}{S_{\Sigma}} = \frac{2M_{pr}}{\mu_{1} \cdot d \cdot p_{c} \cdot F_{c}}, \qquad (4)$$

После обработки результатов построены графики зависимости:  $M_{pr} = f(p_c) -$ рис. 4;  $k'_{af} = f(p_c)$ для различных  $\mu_1$  – рис. 5.





зажима  $p_c$ 



Рис. 5 – График зависимости коэф. усиления  $k_{af}$  от давления зажима  $p_c$ 

| Таблица 1 | – Значение | коэффициента | усиления | k'   |
|-----------|------------|--------------|----------|------|
| ···· • •  |            | T T          | J        | · ar |

| Давление зажима <i>p</i> <sub>c</sub> , MPa | Коэффициент усиления $k_{af}$ при $\mu_1$ |        |        |
|---------------------------------------------|-------------------------------------------|--------|--------|
|                                             | 0,1                                       | 0,15   | 0,2    |
| 10,0                                        | 0.2212                                    | 0.1474 | 0.1106 |
| 20,0                                        | 0.3687                                    | 0.2458 | 0.1843 |
| 30,0                                        | 0.4301                                    | 0.2867 | 0.2150 |
| 40,0                                        | 0.5715                                    | 0.3810 | 0.2857 |
| 50,0                                        | 0.6268                                    | 0.4178 | 0.3134 |
| 60,0                                        | 0.6637                                    | 0.4424 | 0.3318 |
|                                             |                                           |        |        |

Измерение силы протал-кивания проводилось на токарном станке согласно схемы (рис. 6). В патроне 1 станка с помощью переходного цилиндрического эле-мента 2 был закрепленный ИЗП 3. В ИЗП была зажата оправка 4 – ø 12 мм. Между оправкой и задним центром 6 был установлен дина-мометр 5. Нагрузка происходила при помощи передвижения заднего центра и суппорта (рис. 7, а, б). Для проведения экспериментов исполь-





зовались индикатор часового типа 7 с ценой деления 0, 01 мм.

Для каждого из давления  $p_c$  (10, 20, 30, 40, 50, 60 Мпа) результат фиксировался после того, как оправка приходила в движение (проскальзывается). Опыт повторялся три раза и определялось среднее значение.

По тонировочному графику динамометра значения индикатора пересчитывались в силу проталкивания  $P_{pr}$ .

Сила проталкивания  $P_{pr}$  зависит от давления  $p_c$ , площади гидроцилиндра  $F_c$  и коэффициента сцепления (трение)  $\mu_2$  оправки с зажимным элементом [9,10].



Рис. 7 – Измерение силы проталкивания оправки d= 12 мм в инструментальном зажимном патроне: а – нагрузка задним центром; б – нагрузка суппортом

На входе в зажимной патрон осевая сила

$$S_{\Sigma} = p_c \cdot F_c \,, \tag{5}$$

а на выходе нормальная (радиальная) сила зажима

$$T_{\Sigma}^{"} = \frac{P_{pr}}{\mu_{21}},$$
 (6)

Тогда коэффициент усиления патрона будет (табл. 2):

$$k_{af}^{"} = \frac{T_{\Sigma}^{"}}{S_{\Sigma}} = \frac{P_{pr}}{\mu_2 \cdot p_c \cdot F_c},$$
(7)

По полученным данным построим графики зависимостей  $P_{pr} = f(p_c)$  (рис. 8) и  $k_{af}^{"} = f(p_c)$  при различных значениях  $\mu_2$  (рис. 9).





Коэфициент усиления 0,6 µ11=0,1 0,5 µ2=\$,15 0,4 k"af 0,3 0,2 μ3=**0**,2 0,1 0 10 20 30 40 Давление зажима pc (MPa)

Рис. 9 – График зависимости коэф. усиления  $k_{af}^{"}$  от давления зажима  $p_c$ 

| Давление зажима             | Коэффициент усиления $k_{af}^{"}$ при $\mu_2$ |        |        |  |
|-----------------------------|-----------------------------------------------|--------|--------|--|
| <i>p</i> <sub>c</sub> , Мпа | 0,1                                           | 0,15   | 0,2    |  |
| 10,0                        | 0,1548                                        | 0,1031 | 0,0774 |  |
| 20,0                        | 0.3871                                        | 0.2581 | 0.1935 |  |
| 30,0                        | 0.4136                                        | 0.2704 | 0.2028 |  |
| 40,0                        | 0.5530                                        | 0.3687 | 0.2765 |  |

Таблица 2 – Значение коэффициента усиления  $k_{af}^{"}$ 

Пересчет коэффициента усиления патрона  $k_{af}$  и  $k_{af}$  по результатам экспериментов на силу проталкивания и момента прокручивания показал, что они почти совпадают по характеру изменения и величине, что свидетельствует о достоверности полученных результатов.

Определение упругих радиальных

отжиманий (радиальной жесткости) выполнялся на том же токарном станке согласно схемы (рис. 10) [8, 10].

В патроне 1 станка с помощью переходного цилиндрического элемента 2 был закрепленный ИЗП 3.

В ИЗП была закреплена оправка 4 (d= 12 мм). Нагружение осуществлялось через динамометр 5 на вылете 50 мм. С стороны одной прикладывалась радиальная сила Р, через динамометр (с индикатором I, 7) путем нагрузки от поперечного перемещения суппорта станка, а с другой установлен индикатор *I*<sub>rs</sub> 8 для измерения радиальных отжатий (рис. 11). Замеры выполнялись с повторением 3 раза. Измерения проводились при разных значениях р. (10, 20, 30, 40, 50, 60 МПа). Радиальная сила нагрузки создавалась от *P<sub>r</sub>*=200H до 1000Н (с интервалом 200Н). Показания фиксировались индикатора  $I_{rs}$ при ступенчатой нагрузке И разгрузке, а показатели индикатора Ι. по тарировочном графику.

По результатам экспериментов построены графики зависимости  $j_r = f(p_c)$  (рис. 12), а также отжатий  $Y_{rs}$  от силы  $P_r$  при нагрузке и разгрузке (рис. 13).



Рис. 10 – Схема измерений упругих радиальных отжатий



Рис. 11 – Измерения радиальной жесткости *j*, оправки d= 12 мм



Рис. 12 – График зависимости радиальной жесткости *j*<sub>r</sub> от давления зажима *p*<sub>c</sub>



Рис. 13 – Графики зависимости упругих отжатий  $Y_{rs}$  от силы  $P_r$  при нагружении и разгружении:  $a - p_c = 10MPa$ ;  $6 - p_c = 20MPa$ ;  $B - p_c = 30MPa$ ;  $\Gamma - p_c = 40MPa$ ;  $\pi - p_c = 50MPa$ ;  $e - p_c = 60MPa$ .

Свыше представленных графиков видно, что силовые и жесткостные характеристики патрона прямо зависят от давления зажима (силы зажима), а значить следует – чем больше давление, тем они выше и патрон надёжнее.

**Выводы.** Результаты выполненных экспериментов и построенных зависимостей показали, что силовые и жесткостные характеристики ИЗП типа CoroGrip напрямую зависят от давления зажима оправки (инструмента) в гидроцилиндре патрона, а следовательно, при увеличении силы зажима влияние центробежных сил будут уменьшаться. Из графиков видно, что при увеличении силы зажима (давления зажима) повышается жесткостные характеристики. Из эксперимента четко видно, что при различных методах проверки коэффициент усиления остается тот же, что свидетельствует о достоверности эксперимента.

Список литературы: 1. Вейц, В. Л. Электромеханические зажимные устройства станков и станочных линий. Расчет и конструирование [Текст] / В. Л. Вейц, Л. И. Фридман. – Л.: Машиностроение, 1973. – 262 с. 2. Фіранський, В. Б. Пружно-напружений стан інструментально затискних патронів нової конструкції [Текст] / В. Б. Фіранський // Збірник наукових праць "Вісник Національного технічного університету України "Київський політехнічний інститут" серія машинобудування.-2010. - Вип. 59.- С. 19-23. 3. Hasan, Al Dabbas. A Study of Efficiency Eccentric Drilling-Milling Chuck / Hasan, Al Dabbas // International Journal of Materials, Mechanics and Manufacturing. - 2015. - Vol. 3, No. 1. - Р. - 5-8. 4. Кузнецов, Ю. М. Принципи створення інструментальних прецизійних затискних патронів для високошвидкісної обробки [Текст] / Ю. М. Кузнецов, О. А. Гуменюк, А. М. Рудковський, Хасан Аль-Дабас //Збірник наукових праць Кіровоградського національного технічного університету.-2006. - Вип.17. - С. 134-141. 5. Кузнецов, Ю. М. Системно-морфологический подход при синтезе высокоскоростных зажимных патронов [Текст] / Ю. М. Кузнецов, Аль-Дахаби Фарук //Збірник наукових праць Кіровоградського національного технічного ун-ту. – 2004. - №15. – С. 388-398. 6. Кузнєцов, Ю. М. Експериментальні дослідження високошвидкісного інструментального затискного патрону з пружним елементом затиску [Текст] / Ю. М. Кузнецов, В. Б. Фіранський, О. В. Грисюк, В. Н. Волошин //Вісник ХНТУСГ. – 2008. - №45. – С. 294-299. 7. Кузнецов, Ю. Н. Расчет и экспериментальные исследования силовых характеристик высокоскоростного инструментального зажимного патрона [Текст] / Ю. Н. Кузнецов, В. А. Недобой, Герра Ж. А. Хамуйела // International Scientific Conference "UNITECH '13" - Gabrovo, UNITECH-2013. 8. Кузнецов, Ю. М. Високоточні надшвидкісні патрони для хвостового різального інструменту [Текст] / Ю. М. Кузнецов, О. А. Гуменюк //Вісник НТУУ "КПІ", серія машино-будування.-2004.-№ 45.- С. 80-83. 9. Кузнецов, Ю. Н. Зажимные механизмы для высокопроизводительной и высокоточной обработки резанием: Монография [Текст] / Ю. Н. Кузнецов, В. Н. Волошин, П. М. Неделчева, Ф. В. Эль-Дахаби; Под ред. Ю.Н. Кузнецова. – Габрово. Ун. изд-во «Васил Априлов», 2010. – 724 с. 10. Кузнецов, Ю. Н. Инструментальные зажимные патроны: Монография [Текст] / Ю. Н. Кузнецов, В. Н. Волошин, В. Б. Фиранский, О. А. Гуменюк; Под ред. Ю. Н. Кузнецова - К. ООО "ГНОЗИС", 2012. -286 с.

**Bibliography (transliterated):** 1. *Weitz V., Friedman, L.* (1973). Electromechanical clamping devices of machine tools and machining lines. Calculation and design. L.: Mechanical, 262. [in USSR] 2. *Firansky, V.* (2010). Elastic stress state instrumentally Chuck new design. Collected Works "Proceedings of the National Technical University of Ukraine" Kyiv Polytechnic Institute "series engineering, 59, 19-23. [in Ukrainian] 3. Hasan, Al Dabbas. (2015). A Study of Efficiency Eccentric Drilling-Milling Chuck / International Journal of Materials, Mechanics and Manufacturing, vol. 3, no. 1, 5-8. [in USA] 4. *Kuznetsov, Y., Gumenyuk, O., Rudkovsky, A., Hassan Al-Dabas.* (2006). Principles of creation of instrumental precision chuck for high-speed processing // Scientific Papers of Kirovograd National Technical university, 17, 134-141 [in Ukrainian] 5. *Kuznetsov, Y., Hassan, Al-Dabas.* (2004).

System-morphological approach in the synthesis of high-speed chucks. Scientific Papers of Kirovograd National Technical University, 15, 388-398 [in Ukrainian] **6.** *Kuznetsov, Y., Firansky, V., Grysyuk, A., Voloshin, V.* (2008). Experimental studies of high-speed tool chuck with elastic clamping element. Bulletin KNTUA, 45, 294-299. [in Ukrainian] **7.** *Kuznetsov, Y., Nedoboi, V., Guerra, J. A.* (2013). Hamuyela. Calculation and experimental study performance power of high-speed tool chuck. International Scientific Conference "UNITECH '13" - Gabrovo, UNITECH-2013. [in Bulgarian] **8.** *Kuznetsov, Y., Gumeniuk, O.* (2004). Precision superfast ammunition for tail cutting tools. Journal "KPI", a series of machine-building, 45, 80 - 83. [in Ukrainian] **9.** *Kuznetsov, Y., Voloshin, V., Nedelcheva, P., El-Dahab, F.* (2010). The clamping mechanism for high-performance and high-precision machining: Monograph. Ed. red Y. Kuznetsova. Gabrovo. Un. publishing house "Vasil Aprilov", 724. [in Bulgarian] **10.** *Kuznetsov, Y., Voloshin, V., Firansky, V. Gumeniuk, O.* (2012). Tool chucks: Monograph. Ed. Y. Kuznetsova. K. LLC "Gnosis", 286. [in Ukrainian]

Надійшла (received) 17.12.2014

## УДК 661.32(04)

*В. Ф. РАЙКО*, канд. техн. наук, проф., НТУ «ХПИ»; *М. А. ЦЕЙТЛИН*, д-р техн. наук, проф., НТУ «ХПИ»

## РАСТВОРИМОСТЬ ОТЛОЖЕНИЙ ГИДРОКАРБОНАТА НАТРИЯ, ОБРАЗУЮЩИХСЯ В КОЛОННАХ КАРБОНИЗАЦИИ ПРОИЗВОДСТВА КАЛЬЦИНИРОВАННОЙ СОДЫ

Проведено исследование растворимости в аммонизированном карбонизованном растворе хлорида натрия отложений NaHCO<sub>3</sub> из карбонизационных колонн производства кальцинированной соды. Установлено, что на количество растворившегося NaHCO<sub>3</sub> влияет, главным образом, исходная концентрация карбонатных ионов в растворе, а также температура, степень влияния которой ослабевает с ростом концентрации аммиака.

**Ключевые слова:** растворимость, недосыщение, гидрокарбонат натрия, аммонизированный рассол, карбонатные отложения.

**Введение.** Процесс получения кальцинированной соды по аммиачному способу, несмотря на почти двухсотлетнюю историю, все еще уверенно конкурирует с альтернативными технологиями. В то же время, его основная стадия – карбонизация водного раствора хлорида натрия, насыщенного аммиаком (аммониизированного рассола) остается недостаточно изученной из-за большой сложности протекающих на ней физико-химических процессов.

Существующая технологическая схема этой стадии [1] предусматривает последовательную обработку охлажденного до 30 °C аммонизированного рассола в колонне предварительной карбонизации (КЛПК), промывателе газа колонн (ПГКЛ-1) и собственно продукционной колонне (КЛ) газом, содержащим диоксид углерода. КЛПК не является специальным аппаратом. Периодически продукционная колонна переводится в режим КЛПК для отмывки образовавшихся отложений гидрокарбоната натрия. В КЛПК также как и в КЛ подается газ известковых печей, содержащий 32-40 % (объемных) диоксида углерода. Перемешивая жидкость в этом аппарате, газ способствует растворению осадков и в то же время обеспечивает предварительную карбонизацию аммонизированного рассола.