Биофизика клеточных процессов [Текст] / А. Б. Рубин. – М.: Высшая школа, 1987. – Т.2. – 303 с. **10.** Аккерман, Ю. Биофизика [Текст] / Ю. Аккерман (пер. с англ.). – М.: Мир, 1964. – 684 с. **11.** Plonsey, R. Bioelectricity a Quantative Approach [Текст] / R. Plonsey, E. Barr. – New Vork: Plenum Press, 1988. – 366 р.

Bibliography (transliterated): 1. *Shukanov, A. V., Semenov, V. G. (2000).* Rearing in conditions of adaptive technology. Veterinary medicine, 10, 48 - 51. **2.** *Yudin, M. F.* (2001). Physical condition of cows in different seasons of the year. Veterinary medicine, 2, 38 - 41. **3.** *Cocnen, M., Ullerich, A.* (2005). Nutritiv bedingte probleme in kalberbestanden. Ubeisicht. Tieremahr, 24, 1, 2433. **4.** Elze K. (2006). Der Kalberdurchfall. Milchpraxis, 4, 178 – 182. **5.** *Belanovsky A. S.* (2007). Fundamentals of Biophysics in veterinary medicine. M: great bustard, 332. **6.** *Sasimova I. A., Kuchin, L. F. (2008).* Explanation of informational biophysical effect of electromagnetic radiation on microbiological livestock objects. Eastern-European journal of advanced technologies, 4/2 (34), 27 - 29. **7.** *Krylov, V. I. Bobkov, V. V., Monastyrskiy, P. I.* (1976). Computational methods. M.: Nauka, 302. **8.** *Pirotti, E. L., Cherenkov, A. D.* (2000). Changes in membrane potential of cells of biological objects that are affected by external electromagnetic fields. Vestnik Khark'kovskogo natsional'nogo universiteta (KHPI), 92, 96-99. **9.** *Rubin A. B.* (1987). Biophysics. Biophysics of cellular processes. M.: Vysshaya shkola, 2, 303. **10.** *Akkerman, J.* (1964). Biophysics. M.: Mir, 684. **11**. *Plonsey, R., Barr, E.* (1988). Bioelectricity a Quantative Approach. New Vork: Plenum Press, 366.

Поступила (received) 12.05.2014

УДК 621.374

М. А. ЧЁРНАЯ, аспирант, ХНТУСХ им. Петра Василенко, Харьков; *И. К. КУЗМИЧЁВ*, д-р физ.-мат. наук, с.н.с., ХНУРЭ, Харьков

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ РЕЗОНАТОРНОЙ СИСТЕМЫ ДЛЯ ИЗМЕРЕНИЯ ХЕМИЛЮМИНЕСЦЕНЦИИ СЕМЯН ПОДСОЛНУХА

Предварительные теоретические и экспериментальные исследования показывают, что желаемые изменения хода информационных процессов в биологическом объекте (семенах) оптимальном сочетании значений биотропных параметров возможно только при воздействующего электромагнитного поля, определения которых необходимо для использовать метод измерения хемилюминесценции на основе резонаторных систем. В данной статье проведен теоретический анализ открытой резонаторной системы с определением её конструктивных параметров для измерения сверхслабого свечения семян подсолнуха, находящихся под воздействием низкоэнергетического (информационнного) электромагнитного поля.

Ключевые слова: семена подсолнуха; частота электромагнитного поля; резонаторная открытая система; хемилюминесценция семян.

Введение. При измерениях хемилюминесценции семян, обработанных ЭМП КВЧ диапазона, возникают трудности из-за возбуждения высших типов волн в волноводных и резонансных системах с кюветами для семян. Одночастотный отклик резонатора необходим для того, чтобы исключить неоднозначность при проведении измерений. При перестройке частоты задающего генератора в резонаторе может возбудиться другой тип колебаний, что в итоге исказит результаты измерений. С другой стороны, поскольку добротность возбуждаемого колебания определяется энергией, накопленной в резонансном объеме, то в миллиметровом диапазоне одномодовые резонаторы должны иметь низкую

© М. А. ЧЁРНАЯ, И. К. КУЗМИЧЁВ, 2014

добротность из-за их малых геометрических размеров и омических потерь в стенках. А помещение измеряемого объекта в резонансный объем может вообще привести к срыву колебаний. Именно поэтому в диапазоне КВЧ для проведения исследований по воздействию излучения на семена сельскохозяйственных культур необходимо переходить к резонансным системам, адекватным мм частотному диапазону–открытым резонаторам (OP) [1].

Анализ предшествующих исследований. Хорошо известно, что ОР находят различных областях науки [1.2]. широкое применение В И техники Отличительной особенностью таких резонансных систем являются ИХ геометрические размеры, которые значительно превышают длину волны. Кроме того, связь с внешним пространством обеспечивает дополнительную селекцию спектра, что является положительным фактором для решения поставленной в диссертации задачи. Наиболее часто ОР используются в составе волноводной линии передачи, поэтому для возбуждения вынужденных колебаний в таких резонансных системах применяется сосредоточенный элемент связи в виде щели, которая не может обеспечить одночастотный отклик в широкой полосе частот [2-4]. Поэтому для создания одночастотного отклика в широкой полосе частот необходимо обеспечить согласованное возбуждение основного колебания ТЕМ_{00а} с помощью волноводной волны ТЕ₁₀ прямоугольного волновода.

Цель статьи. Определить основные характеристики и параметры открытого резонатора в измерительном резонаторном устройстве при измерении сверхслабого свечения семена подсолнуха.

Изложение основного материала по определению параметров резонатора.

Рассмотрим возбуждение основного колебания резонатора с помощью волны TE_{10} прямоугольного волновода сечением $a \times b$, расположенного в центре плоского зеркала (рис. 1). При проведении анализа будем считать. что Распределение возбуждающего E_{a} поля в декартовой системе координат в плоскости z = 0 имеет вид [3]. прямоугольный волновод является ОДНОМОДОВЫМ.

$$\dot{E}_e\left(x',y\right) = j \,\frac{\omega \,\mu_a \,a}{\pi} \,H_{0z} \,\sin\frac{\pi x'}{a},\tag{1}$$

где $\omega = 2\pi f$ – круговая частота; μ_a – абсолютная магнитная проницаемость; a – широкая сторона воловода; H_{0z} – амплитуда продольной составляющей магнитного поля.

Здесь опущен множитель $e^{-j\beta z}$, описывающий изменение \dot{E}_e вдоль оси z. После переноса начала координат в центр раскрыва (x' = x + (a/2)), выражение (1) примет вид:

$$\dot{E}_{e}(x,y) = j \frac{\omega \,\mu_{a} \,a}{\pi} \,H_{0z} \cos \frac{\pi x}{a}.$$
(2)

Считаем, что апертуры зеркал резонатора бесконечны. В этом случае в декартовой системе координат в плоскости z = 0 амплитудное распределение поля колебания ТЕМ_{00q} , которое будем называть рабочим E_w (см. рис.1), является гауссовым и описывается выражением:

$$E_w(x,y) = \exp\left(-\frac{x^2 + y^2}{w_0^2}\right),\tag{3}$$

где w₀ – радиус пятна поля колебания TEM_{00q} в плоскости анализа (на поверхности плоского зеркала).

Для определения эффективности возбуждения рассматриваемого колебания в ОР воспользуемся соотношением [4], которое в декартовой системе координат для рассматриваемой нами задачи (см. рис.1) будет иметь вид:

$$\eta = \frac{\left| \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \dot{E}_{e}(x, y) E_{w}^{*}(x, y) dx dy \right|^{2}}{\left\| \dot{E}_{e}(x, y) \right\|^{2} \left\| E_{w}(x, y) \right\|^{2}}.$$
(4)

В нашем случае величина η показывает какая доля мощности, поступающей в OP из возбуждающего волновода сечением $a \times b$, идет на возбуждение n-го колебания в резонаторе.

Для дальнейших исследований найдем квадрат нормы функции, описывающей возбуждающее поле, амплитудное распределение которого показано на рис. 1. Для этого используем выражение:

$$\|\dot{E}_{e}(\rho)\|^{2} = \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \dot{E}_{e}(x, y) \dot{E}_{e}^{*}(x, y) dx dy.$$
(5)

После подстановки в уравнение (5) значения \dot{E}_e из выражения (2) получим:

$$\left\|\dot{E}_{e}(x,y)\right\|^{2} = \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \dot{E}_{e}(x,y) \dot{E}_{e}^{*}(x,y) dx dy = \left(\frac{\omega\mu_{a}H_{0z}a}{\pi}\right)^{2} 2b \int_{0}^{\pi/2} \cos^{2}z dz.$$
(6)

С учётом результатов работы [5], выражение (4) запишем в окончательном виде:

$$\left\|\dot{E}_{e}(x,y)\right\|^{2} = \left(\frac{\omega\mu_{a}H_{0z}a}{\pi}\right)^{2}\frac{ab}{2}.$$
(7)

Теперь найдем квадрат нормы функции, описывающей рабочее поле:

$$\|E_{w}(x,y)\|^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{w}(x,y) E_{w}^{*}(x,y) dx dy = 2 \int_{0}^{\infty} \exp\left(-2\frac{x^{2}}{w_{0}^{2}}\right) dx \int_{0}^{\infty} \exp\left(-2\frac{y^{2}}{w_{0}^{2}}\right) dy.$$
(8)

С учетом значения табличного интеграла [6]:

$$\int_{0}^{\infty} \exp\left(-q^2 u^2\right) du = \sqrt{\pi}/2q, \qquad (9)$$

соотношение (8) запишем в следующем виде:

$$\|E_w(x, y)\|^2 = \pi w_0^2 / 2.$$
(10)

При дальнейшем анализе рассмотрим интеграл в числителе уравнения (4), который после подстановки в него значений \dot{E}_e и E_w из уравнений (2) и (3) примет вид:

$$H(x, y) = \int_{-a/2-b/2}^{a/2} \int_{-a/2-b/2}^{b/2} \dot{E}_e(x, y) E_w^*(x, y) dx dy = \left(j \frac{\omega \mu_a H_{0z} a}{\pi}\right)_{-a/2}^{a/2} \exp\left(-\frac{x^2}{w_0^2}\right) \cos\left(\frac{\pi x}{a}\right) dx \times \times \int_{-b/2}^{b/2} \exp\left(-\frac{y^2}{w_0^2}\right) dy \cdot (11)$$

Проанализируем интегралы, входящие в выражение (11). Для этого их обозначим и, учитывая, что подынтегральные функции четные, запишем

$$H_{1}(x, y) = 2 \int_{0}^{a/2} \exp\left(-\frac{x^{2}}{w_{0}^{2}}\right) \cos\left(\frac{\pi x}{a}\right) dx,$$
 (12)

$$H_{2}(x, y) = 2 \int_{0}^{b/2} \exp\left(-\frac{y^{2}}{w_{0}^{2}}\right) dy.$$
 (13)

С учетом значения табличного интеграла [3]:

$$\int_{0}^{u} \exp\left(-q^{2}v^{2}\right) dv = \frac{\sqrt{\pi}}{2q} \Phi(qu),$$

уравнение (13) запишем в окончательном виде:

$$H_{2}(x, y) = \sqrt{\pi} w_{0} \Phi(b/2w_{0}), \qquad (14)$$

где $\Phi\left(\frac{b}{2w_0}\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{b/2w_0} \exp\left(-z^2\right) dz$ - интеграл вероятности [6].

С учётом преобразований соотношение (12) примет вид:

$$H_{1}(x, y) = 2 \int_{0}^{a/2} \exp\left(-\frac{x^{2}}{w_{0}^{2}}\right) \cos\left(\frac{\pi x}{a}\right) dx = \int_{0}^{a/2} \exp\left(-\frac{x^{2}}{w_{0}^{2}} + j\frac{\pi x}{a}\right) dx +$$
(15)

$$+\int_{0}^{a/2}\exp\left(-\frac{x^2}{w_0^2}-j\frac{\pi x}{a}\right)dx.$$

Сделаем обозначения $\alpha = j/w_0^2$, $\beta = \pi/a$. Тогда выражение (15) примет вид:

$$H_{1}(x,y) = \int_{0}^{a/2} \exp[j(\alpha x^{2} + \beta x)] dx + \int_{0}^{a/2} \exp[j(\alpha x^{2} - \beta x)] dx.$$
(16)

Выражения под знаком экспоненты в уравнении (16) представим в виде

$$\left(\alpha x^{2} + \beta x\right) = \left(\sqrt{\alpha}x + \frac{\beta}{2\sqrt{\alpha}}\right)^{2} - \frac{\beta^{2}}{4\alpha}, \quad \left(\alpha x^{2} - \beta x\right) = \left(\sqrt{\alpha}x - \frac{\beta}{2\sqrt{\alpha}}\right)^{2} - \frac{\beta^{2}}{4\alpha}.$$
The second secon

Теперь введем новые переменные $(\sqrt{\alpha}x + \beta/2\sqrt{\alpha} = m)$, $(\sqrt{\alpha}x - \beta/2\sqrt{\alpha} = n)$, тогда выражение (16) примет вид

$$H_{1}(m,n) = \frac{1}{\sqrt{\alpha}} \exp\left(-j\frac{\beta^{2}}{4\alpha}\right) \begin{bmatrix} \sqrt{\alpha}\frac{a}{2} + \frac{\beta}{2\sqrt{\alpha}} \\ \int \\ \frac{\beta}{2\sqrt{\alpha}} \\ \frac{\beta}{2\sqrt{\alpha}} \\ \frac{\beta}{2\sqrt{\alpha}} \end{bmatrix} \exp\left(jm^{2}\right) dm + \int \\ \frac{\beta}{2\sqrt{\alpha}} \\$$

Еще раз переобозначим $\sqrt{j}m = s$, $\sqrt{j}n = p$, и, учитывая введенные значения α и β , соотношение (17) запишем в виде:

$$H_{1}(s,p) = \frac{w_{0}}{j} \exp(-c^{2}) \left[\int_{c}^{c+jd} \exp(s^{2}) ds + \int_{-c}^{-c+jd} \exp(p^{2}) dp \right],$$
(18)

где $c = \pi w_0 / 2a$; $d = a / 2w_0$.

Теперь можем вычислить интегралы, входящие в выражение (18). Для этого воспользуемся теоремой Коши [7]. Опуская промежуточные выкладки, запишем выражение (13) в окончательном виде:

$$H_1(x, y) = w_0 \sqrt{\pi} \left[\exp(-c^2) + j \frac{\exp(-d^2)}{2} (W^*(c+jd) - W(c+jd)) \right], \quad (19)$$

иде W(c + jd) – интеграл вероятности комплексного аргумента.

На основании проведенных вычислений с учетом соотношений (14) и (19) запишем в окончательном виде выражение (11):

$$H(x, y) = \left(j\frac{\omega\mu_a H_{0z}a}{\pi}\right) w_0^2 \pi \Phi\left(\frac{b}{2w_0}\right) \left[\exp\left(-c^2\right) + \left(\exp\left(-d^2\right)\left(w_0^*\left(-c^2\right)\right)\right)\right]$$
(20)

 $+ j \frac{\exp(-d^2)}{2} \left(W^*(c+jd) - W(c+jd) \right) \right].$

Подставляя выражения (7), (10), (20) в соотношение (4), можем записать уравнение, определяющее эффективность возбуждения основного колебания TEM_{00q} полусферического OP с помощью волноводной волны TE_{10} . Раскрывая значения *с* и *d*, получим в окончательном виде аналитическое выражение для η :

$$\eta = \frac{4\pi}{\widetilde{a}\,\widetilde{b}}\,\Phi^2\left(\frac{\widetilde{b}}{2}\right) \left[e^{-\left(\frac{\pi}{2\widetilde{a}}\right)^2} + j\,\frac{e^{-\left(\frac{\widetilde{a}}{2}\right)^2}}{2}\left(W^*\left(\frac{\pi}{2\widetilde{a}} + j\frac{\widetilde{a}}{2}\right) - W\left(\frac{\pi}{2\widetilde{a}} + j\frac{\widetilde{a}}{2}\right)\right)\right]^2, (21)$$

где $\widetilde{a} = a / w_0$; $\widetilde{b} = b / w_0$.

Результаты расчета по формуле (21) показывают, что имеет место явно выраженный максимум возбуждения колебания TEM_{00q} в ОР волноводной волной TE_{10} . В этом случае величина $\eta = 0,881$ при нормированных размерах элемента связи $\tilde{a} = 2,844$ и $\tilde{b} = 1,980$.

Проведенные исследования показывают, что почти вся мощность, поступающая в резонатор ($\approx 88\%$), идет на возбуждение анализируемого колебания TEM_{00q} . Следовательно, такой ОР должен обладать унимодальной резонансной кривой в интервале перестройки порядка λ .

При определении конструктивных параметров резонаторной системы, для измерения хемилюминесценции семян, мы использовали следующие параметры. Максимальная эффективность возбуждения колебания ТЕM_{00q} в полусферическом OP с помощью волны TE_{10} , как было показано выше, равна 0,881 при нормированных размерах волновода $\tilde{a} = 2,844$ и $\tilde{b} = 1,980$. В этом

случае радиус пятна поля основного колебания на плоском зеркале OP, на который нормированы поперечные размеры волновода(см. рис. 1), будет определятся из уравнения [8]:

$$w_0 = \sqrt{\frac{\lambda}{\pi} R \sqrt{\frac{L}{R} \left(1 - \frac{L}{R}\right)}}, \qquad (22)$$

где $\lambda = 8,152$ мм – длина волны в свободном пространстве.

другой стороны, режим максимальной величины нагруженной C добротности Q_H OP будет иметь место при таком расстоянии между зеркалами, когда омические и дифракционные потери в резонансной системе примерно равны. Кроме того, объем занимаемый колебанием, должен быть большим. Для полусферического ОР этот режим соответствует нормированному расстоянию между зеркалами $L/R \cong 0,7$ [2]. В общем случае апертуры зеркал рассматриваемого ОР определяются размерами сферического зеркала. Это связано с тем, что размер пятна поля w_1 колебания TEM_{00q} на этом зеркале всегда больше, чем на плоском, так как $w_1^2 = w_0^2 / (1 - L/R)$ [9], а L/R < 1. Поэтому условие малости дифракционных потерь для такой электродинамической системы определяется условием $a_1 \cong 2 w_1$ [10]. Теперь из уравнения (22) найдем, что $w_0 = 11,025$ мм, $w_1 = 20,129$ мм. Тогда поперечные размеры волновода равны: *a*=31,4 мм; *b*=21,8 мм. Исходя из полученных размеров прямоугольного волновода, которые в несколько раз превышают рабочую длину волны, можем сказать, что этот волновод является сверхразмерным. Диаметры зеркал рассматриваемого полусферического OP не должны быть меньше $4 w_1 \cong 80,5$ мм. Поэтому мы выбрали апертуры зеркал исследуемого резонатора, равными 100 MM.

Для обеспечения угловой и частотной селекции в резонаторной системе длина волноводного отрезка будет определяться из выражения [9]:

$$h = \frac{3\lambda}{\sqrt{1 - (\lambda/2a)^2}} = 25,221 \text{ MM.}$$
(23)

Выводы. Для получения одночастотного отклика в широкой полосе частот, при максимальной эффективности возбуждения 88%, следует использовать резонаторную систему с параметрами: размеры сверхразмерного прямоугольного волновода 31,4 x 21,8 x 25,221 мм; апертура зеркал ОР 100 мм; расстояние между зеркалами $\frac{L}{R} = 0,716$.

Список литературы: 1. Шестопалов, В. П. Физические основы миллиметровой и субмиллиметровой техники [Текст]: в 2 т. / В. П. Шестопалов. – К.: Наукова думка. – Источники. Элементная база. Радиосистемы, 1985. – 256 с. 2. Шестопалов, В. П. Дифракционная электроника [Текст] / В. П. Шестопалов. – Харьков: Вища школа, 1976. – 232 с. 3. Вольман, В. И. Техническая электродинамика [Текст] / В. И. Вольман, Ю. В. Пименов; под ред. Б. 3. Айзенберга. – М.: Связь, 1971. – 488. 4. Kuzmichev I. K. Exitation efficiency of quasioptical resonance systems [Teкст] / I. K. Kuzmichev // Telecommunications and Radio

Епдіпеегіпд. – 2009. – Vol. 68, No. 1. – Р. 49 – 63. **5.** Градштейн И. С. Таблицы интегралов, сумм, рядов и произведений [Текст] / И. С. Градштейн, И. М. Рыжик. – М.: Госуд. изд-во физ. – мат. лит-ры, 1962. –1100 с. **6.** Янке, Е. Специальные функции [Текст] / Е. Янке, Ф. Эмде, Ф. Леш; пер. с нем. под ред. Л.И. Седова. – М.: Наука, 1977. – 342 с. **7.** Бронштейн, И. Н. Справочник по математике [Текст] / И. Н. Бронштейн, К. А. Семендяев. – М.: Наука, 1986. – 544 с. **8.** Тарасов, Л. В. Физика процессов в генераторах когерентного оптического излучения [Текст] / Л. В. Тарасов. – М.: Радио и связь, 1981. – 440 с. **9.** Лебедев, И. В. Техника и приборы СВЧ: В 2-х т. [Текст] / И. В. Лебедев. – М.: Высшая школа, 1970. – Т. 1. – 440 с. **10.** Глоге, Д. Расчет оптических резонаторов и линзовых систем [Текст] / Д. Глоге; пер. с нем. и англ. под ред. Б. 3. Каценеленбаума и В. В. Шевченко // Квазиоптика. – М.: Мир, 1966. – С. 280 – 314.

Bibliography (transliterated): 1. *Shestopalov B. N.* (1985). Physical basics of millimeter and sub millimeter technologies. K.: Scientific thought. - Sources. Element base. Radio systems, 256. **2**. *Shestopalov B. N.* (1976). Diffraction electronics. Kharkov: Vyscha shkola, 232. **3**. *Volman, V. I., Pimenov, J. V.* (1971). Technical electrodynamics. M: Communications, 488. **4**. *Kuzmichev, I. K.* (2009). Exitation efficiency of quasioptical resonance systems. Telecommunications and Radio Engineering, 68, 1, 49-63. **5**. *Gradstain I. S., Ryzhik, I. M.* (1962). Tables of integrals, sums, series, and is produced deposits. Mat. literature, 1100. **6**. *Janke, E., Emde, F., Lesh; F.* (1977). Special functions. M: Nauka, 342. **7**. *Bronshtein, I. N. Semendyaev, K. A.* (1986). Handbook of mathematics. M: Nauka, 544. **8**. *Tarasov, L. V.* (1981). Physics of processes in the generation of coherent op-optical radiation. M: Radio and communication, 440. **9**. *Lebedev, I. V.* (1970). Technology and microwave devices. High school, 1, 440. **10**. *Hlohe, D., Katsenelenbauma, B. Z., Shevchenko, V. V.* (1966). Calculation of optical resonator and lens systems. M.: Mir, 280 – 314.

Поступила (received) 12.05.2014

УДК 681.2: 620.1

Е. М. ПРОХОРЕНКО, канд. физ.-мат. наук, с. н. с. ИЭРТ НАН Украины, Харьков;

В. Ф. КЛЕПИКОВ, д-р физ.-мат.наук, проф., директор ИЭРТ НАН Украины Харьков;

В. В. ЛИТВИНЕНКО, д-р техн. наук, с. н. с. ИЭРТ НАН Украины, Харьков;

С. Е. ДОНЕЦ, канд. техн. наук, с. н. с. ИЭРТ НАН Украины, Харьков;

Г. В. МОРОЗОВА, канд. техн. наук, доц., УкрГАЖТ, Харьков;

А. О. КОРЧИНСКИЙ, нач. ПТО, Змиевская ТЕС, Комсомольский;

ИЗМЕНЕНИЕ ТЕРМОПРОЯВЛЕНИЙ ДЕФЕКТОВ МАТЕРИАЛОВ И ЭЛЕКТРООБОРУДОВАНИЯ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ КЛИМАТИЧЕСКИХ ФАКТОРОВ

Методами тепловизионной термографии осуществлен контроль нарушения структуры материалов и дефектов электрооборудования. Степень проявления термоаномалий от нарушений, обусловлена структурными неоднородностями и внешними искажающими факторами. Изучались зависимости изменения теплового образа от силы воздушного потока и его направления. Показано, что использование параметров приведенного превышения температур, коэффициента дефектности, градиента температурного поля позволяет идентифицировать термоаномалии при воздушных потоках существенно выше нормативных. Методики апробированы на объектах Змиевской ТЕС.

Ключевые слова: термопроявления нарушения структуры материалов и дефектов, метод ИК-радиометрии, коэффициент дефектности.

© Е. М. ПРОХОРЕНКО, В. Ф. КЛЕПИКОВ, В. В. ЛИТВИНЕНКО, С. Е. ДОНЕЦ, Г. В. МОРОЗОВА, А. О. КОРЧИНСКИЙ, 2014