УДК 621.83

М.В. МАРГУЛИС, д.т.н., профессор каф. ТМ ГВУЗ ПГТУ, Мариуполь; *Я.О. ГОРДИЕНКО*, аспирант каф. ТМ ГВУЗ ПГТУ

ОПТИМИЗАЦИЯ ОСНОВНЫХ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ВЫСОКОЭКОНОМИЧНЫХ ПРЕЦЕССИОННЫХ ПЕРЕДАТОЧНЫХ МЕХАНИЗМОВ С ТЕЛАМИ КАЧЕНИЯ

В данной статье на основе анализа работ по волновым передачам с телами качения, а так же выполненных аналитических и экспериментальных исследований предложена методика по оптимизации основных конструктивных параметров данных передач по критерию минимизации массогабаритных параметров. Приведены зависимости, учитывающие влияние кривизны дорожек и тел качения, угла нутации и угла наклона фронта периодической дорожки качения на величины возникающих напряжений в процессе передачи вращающего момента.

Ключевые слова: волновая передача, главные кривизны, периодическая дорожка качения, тело качения, угол нутации, оптимизация, прецессия.

Актуальность задачи. Повышение качества и надежности машин и механизмов при одновременном уменьшении их массогабаритных параметров и повышении экономичности является основной задачей современного машиностроения [1].

Известно, что волновые передачи с телами качения являются наиболее экономичной разновидностью волновых передач по массогабаритным параметрам и КПД. Это достигается заменой зубчатого зацепления шаровым, практически исключающим трение скольжения и повышающим КПД и надежность передачи за счет исключения гибких звеньев. В связи с этим актуальна разработка и оптимизация высокоэкономичных приводов с использованием волновых передаточных механизмов с телами качения.

Постановка задачи. Целью данной работы является разработка общего подхода к оптимизации основных конструктивных параметров волновых прецессионных передач с телами качения для снижения массогабаритных параметров передаточных механизмов.

Материалы исследований. Конструкции волновых прецессионных передач с телами качения, их основные элементы и принцип работы представлены в [2-3]. Принятые термины и обозначения для рассматриваемых передаточных механизмов описаны в [4].

Важным конструктивным параметром передачи, определяющим геометрию её основных звеньев и условия работы тел качения в зацеплении, является угол нутации β . Фактически угол нутации определяет траекторию периодических дорожек качения (ПДК), выполненных на основных звеньях передачи, вдоль которых перемещаются тела качения (ТК). На рисунке 1 видно, что угол нутации β для точек, совершающих прецессионное движение с нутацией, фактически определяет амплитуду A траектории кривой на сферической поверхности. На рисунке изображены три траектории ПДК с одинаковыми периодами T и базовыми диаметрами D_b , но разными углами нутации β .

Величина угла нутации ПДК должна обеспечить равномерное движение тел качения вдоль ПДК, с минимальным проскальзыванием и без заклинивания.

Угол нутации является так же фактическим углом наклона прецессионного колеса и должен обеспечить величину угла θ наклона двух сопряженных

© М.В. Маргулис, Я.О. Гордиенко, 2015

85

 β_1 β_2 β_3 β_3 β_3 β_4 β_3 β_4 β_3 β_4 β_3 β_4 β_4 β_3 β_4 β_4

Рисунок 1 – Зависимость траектории ПДК от угла нутации β

ПДК прецессионного и промежуточного колес в месте контакта с шариком меньшей или равной углу заклинивания тел качения. Согласно исследованиям [5] величина этого угла должна быть в пределах 0,1-10 градусов.

Угол θ наклона ПДК колес друг к другу, как видно на рисунке 2, зависит от углов ζ_ρ и ζ_ι. Это углы наклона фронтов ПДК к экваториальным линиям прецессионного и промежуточного колес соответственно. Он так же зависит от угла наклона β (угла нутации) прецессионного колеса,

 $\theta = \zeta_p - \zeta_i + \beta \ . \ (1)$

В общем случае углы ζ_p и ζ_i зависят от амплитуд и от числа периодов ПДК. Следовательно, регулировать угол θ можно изменением амплитуд ПДК, либо изменяя число периодов

Рисунок 2 – Связь угла нутации прецессионного колеса β, углов наклона фронтов ПДК ζ_ρ и ζ_i и угла между дорожками качения в месте контакта с шариком θ: тул ПЛК_либо изме-

1 – прецессионное колесо; 2 – промежуточное колесо; 3 – шарик

ПДК. В свою очередь число периодов ПДК определяются из необходимой кинематики передачи, т.е. выбирается для обеспечения необходимого передаточного числа, и не может быть изменено для конкретной передачи. Поэтому всю регулировку необходимо осуществить только изменением амплитуды ПДК, которая напрямую связанна с углом нутации β.

Помимо условия незаклинивания тел качения согласно исследованиям [6] оптимальная величина углов ζ_p и ζ_i для механизмов, работающих в режиме редуктора, составляет 45°, что обеспечивает равномерность движения тел качения вдоль дорожек. Зная необходимую величину углов ζ_p и ζ_i , определим соответствующий им угол нутации передачи β .

Для этого воспользуемся функциями, определяющими траекторию ПДК. Параметрическое задание ПДК одноступенчатой ВППТК имеет вид:

> $x(\alpha) = (\cos\alpha \cdot \sin\gamma - \sin\alpha \cdot \cos\gamma \cdot \cos\beta) \cdot D_b;$ $y(\alpha) = (\sin\alpha \cdot \sin\gamma - \cos\alpha \cdot \cos\gamma \cdot \cos\beta) \cdot D_b;$ $z(\alpha) = \cos\gamma \cdot \sin\beta \cdot D_b,$ (2)

где а – угол прецессии, а= $[0..(2z\pm 2)\pi]$, град; β – угол нутации, град; γ – угол собственного вращения, $\gamma=\alpha z/(z\pm 1)$, град; D_b – базовый диаметр – диаметр сферической поверхности, на которой расположена траектория движения центров тел качения (шариков) передачи, мм;

Если через ζ_x , ζ_y , ζ_z обозначить углы, составленные касательной к ПДК с осями координат (рисунок 3), то направляющие косинусы $\cos \zeta_x$, $\cos \zeta_y$, $\cos \zeta_z$ вы-

разятся по следующим зависимостям [7]:

$$\cos\zeta_{x} = x'' \pm \sqrt{x'^{2} + y'^{2} + z'^{2}}; \\ \cos\zeta_{y} = y'' \pm \sqrt{x'^{2} + y'^{2} + z'^{2}}; \\ \cos\zeta_{z} = z'' \pm \sqrt{x'^{2} + y'^{2} + z'^{2}},$$
(3)

где $x=x(\alpha)$; $y=y(\alpha)$; $z=z(\alpha)$ – координаты точек ПДК.

Направляющие косинусы это косинусы углов, которые образует вектор касательной к ПДК с положительными полуосями координат. Выбор определенного знака перед радикалом отвечает выбору определенного направления касательной. ZI

Теперь для определения искомых углов ζ_p и ζ_i используем поворот системы координат. Новую повернутую систему координат расположим таким образом, что бы касательная к ПДК лежала в плоскости ZOX, для этого выполним поворот существующей системы координат вокруг оси Z. Для поворота системы координат воспользуемся матрицей поворота [7]:

$$\begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = \begin{pmatrix} \cos \Delta \zeta & -\sin \Delta \zeta & 0 \\ \sin \Delta \zeta & \cos \Delta \zeta & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ x \end{pmatrix}, (4)$$

где x_n, y_n, z_n – значение координат в новой системе координат; $\Delta \zeta$ – угол поворота новой системы координат вокруг оси Z исходной системы координат.

Рисунок 3 – Касательная к ПДК и направляющие косинусы вектора касательной к ПДК: 1 – периодическая дорожка качения; 2 - касательная к ПДК

По приведенным зависимостям рассчитаны углы нутации траекторий ПДК с числом периодов от 10 до 100, что позволяет охватить передаточные числа 4,5 до 50,5 для одноступенчатых передач и от 55 до 4950 для двухступенчатых.

На рисунке 4 приведен результирующий график изменения угла нутации передачи в зависимости от числа периодов при оптимальных значениях углов наклона фронтов ПДК ζ_р или ζ_i равных 45°.

Фактически мы имеем для каждого значения количества периодов ПДК, которые определяют передаточное число механизма, единственную конкретную величину угла нутации, которая обеспечивает заданные углы наклона фронта ПДК и удовлетворяет условию незаклинивания ТК.

В различных исследованиях, опубликованных ранее разными авторами [5-6, 8], фигурировала рекомендуемая величина угла нутации от 0,2 до 15 градусов, но не было приведено конкретной методики по его выбору. Согласно предложенной нами методике выбора угла нутации его величина может составлять от 0,2 до 5,5 градусов, уменьшаясь с ростом числа периодов в передаче, и эта величина имеет четкую зависимость от числа периодов ПДК. Такой подход к выбору угла нутации позволяет обеспечить равные условия работы тел качения при любом числе периодов ПДК.

Так как в зацеплении находятся колеса с различным числом периодов ПДК, а угол нутации у сопряженной пары колес должен быть одинаковым – величину угла нутации необходимо выбирать по количеству тел качения в зацеплении.

Основной составной частью прочностного расчета ВППТК является определение контактных напряжений, возникающих в процессе работы механизма при контакте ТК с ПДК [9]. Нагрузки, воспринимаемые прецессионным и промежуточным колесами, передаются от одного звена к другому через ТК, находящиеся в постоянном контакте с ПДК, выполненными на указанных звеньях механизма. Определение контактных напряжений согласно теории Герца невозможно без определения величины главных кривизн контактирующих поверхностей, ПДК и ТК.

На рисунке 5 приведена схема контакта ТК и ПЛК сопряженной пары колес в зацеплении. Максимальные контактные напряжения будут в точках с максимальной кривизной ПДК, т.е. минимальным радиусом кривизны R_a , которые находятся в вершинах профиля ПДК. Поэтому определение кривизны в этих точ-

Рисунок 5 – Схема контакта ПДК и ТК: 1 – профиль ПДК прецессионного колеса; 2 – траектория ПДК прецессионного колеса; 3 - профиль ПДК промежуточного колеса (обоймы); 4 – траектория ПДК промежуточного колеса (обоймы); 5 – тело качения (шарик); D_{re} – диаметр шарика, R_{pc} – радиус производящей фрезы; R_a – радиус кривизны вершины ПДК; *R*_f – радиус кривизны впадины ПДК

ках представляет особый практический интерес.

 R_a и R_{pc} – являются радиусами главных кривизн ПДК, а $D_{re}/2$ – радиусом главной кривизны тела качения (шарика).

На рисунке 6 изображены радиусы кривизны траектории ПДК, которая является траекторией движения производящей фрезы при нарезании дорожки качения.

Радиус кривизны ПДК в продольном сечении связан с радиусом кривизны траектории ПДК следующими зависимостями:

$$R_a = R_{\min} - R_{pc};$$
 (5) $R_f = R_{\min} + R_{pc}.$ (6)

Вісник НТУ "ХПІ". 2015. № 34 (1143)

88

Радиус производящей фрезы, согласно [9] определяется по формуле:

(7)

$$R_{pc} = 0,51 \cdot D_{re},$$

На кривизну траектории ПДК оказывает влияние ряд параметров: число периодов ПДК, величина угла нутации, величина базового диаметра. Расчет оптимального угла нутации, описанный выше, позволил нам ограничить величину угла нутации до одного конкретного значения для каждого числа периодов ПДК, что значительно упрощает последующие расчеты.

R1 O R3 1 Rmin

ZI

Радиус кривизны траектории ПДК в *i*й точке определяется как:

 $R_i = 1/p_i$,

Рисунок 6 – Радиусы кривизны траектории ПДК

где *p_i* – кривизна траектории ПДК в *i*-й точке, мм.

Кривизна траектории ПДК в любой точке определяется по формуле [7]:

(8)

$$p_{i} = \frac{\sqrt{\begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix}^{2} + \begin{vmatrix} z' & x' \\ z'' & x'' \end{vmatrix}^{2} + \begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix}^{2}}}{\sqrt{\left(x'^{2} + y'^{2} + z'^{2}\right)^{3}}},$$
(9)

где x', y', z' и x", y", z" – соответственно первая и вторая производная координат *i*-й точки ПДК, мм.

Так как приведенная зависимость для расчета кривизны траектории ПДК довольно сложная для практических расчетов, нами на основе аналитических расчетов была выведена графическая зависимость для определения радиуса кривизны ПДК в зависимости от количества периодов ПДК при оптимальном угле нутации. Что позволяет значительно снизить временные затраты на расчет данной величины.

На рисунке 7 приведена величина радиуса кривизны траектории ПДК в за-

висимости от числа периодов ПДК при базовом диаметре передачи 100мм. Радиус кривизны траектории ПДК находится в прямой зависимости от величины базового диаметра, т.е. с увеличением базового диаметра пропорционально увеличивается радиус кривизны ПДК. И приведенные данные могут использоваться для расчета передач с любым базовым диаметром пересчетом по формуле:

$$R_{\min} = \frac{R_{\min \ 100}}{100} \cdot D_b.$$
(9)

Уменьшая или увеличивая радиус кривизны траектории ПДК при неизменном диаметре шарика, мы можем соответственно уменьшать или увеличивать контактные напряжения и, следовательно, несущую способность передачи, что непосредственно сказывается на её габаритных размерах, массе и работоспособности механизма.

Для определения оптимального отношения радиуса кривизны ПДК и диаметра ТК ($k_a = R_a/D_{re}$) вычислим согласно теории Герца величину контактных напряжений для различных соотношений радиуса ПДК и диаметра ТК. Зависимости для определения увеличены контактных напряжений при различных соотношениях радиуса кривизны ПДК и диаметра ТК приведены в [9].

В качестве критерия оптимизации принимаем минимальные контактные напряжения, возникающие при контакте ПДК и ТК. Минимизация контактных напряжений позволит снизить массогабаритные показатели механизма, и, следовательно, повысить его экономические показатели.

В качестве исходных данных для расчета принимаем: D_b =100мм; усилие, приложенное к телу качения F=12,5H. На рисунке 8 представлены графики за-

90

висимости величины контактных напряжений при различных соотношениях радиуса кривизны k_a ПДК и диаметра ТК для чисел периодов ПДК от 10 до 100.

Из представленного графика видно, что минимальные напряжения, при неизменном базовом диаметре и постоянной нагрузке будут при k_a =0,35. Это является оптимальным соотношением, позволяющим максимально минимизировать массогабаритные размеры передаточного механизма при сохранении его несущей способности. Представленные зависимости ранее не исследовались для ВППТК что является новизной и призвано повысить эффективность и экономичность вновь разрабатываемых передач.

Определим отношение напряжений при различных величинах k_a к минимальным контактным напряжениям при $k_a=0,35$:

$$k_r = \frac{\sigma_i}{\sigma_{\min}},\tag{10}$$

где σ_i – напряжения при различных значениях $k_a \in [0.05; 1]; \sigma_{\min}$ – минимальные контактные напряжения, соответствующие $k_a=0,35$.

На рисунке 9 представлен график изменения коэффициента k_f в зависимости от соотношения k_a .

с 9 – 1 рафики зависимости коэффициента kr от соотношения р кривизны ПДК и диаметра ТК

Из рисунка видно, что при величине значений коэффициента k_a от 0,22 до 0,61 величина контактных напряжений изменяется незначительно, в пределах 3%, что позволяет конструктору округлять полученные расчетные значения ТК до ближайших стандартных типоразмеров, без существенного влияния на величину контактных напряжений.

Выводы:

1. В результате проведенных аналитических исследований определена оптимальная величина угла нутации передачи, обеспечивающая равномерное, без заклинивания, движение тех качения вдоль дорожек качения. Диапазон охватываемых передаточных чисел от 4.5 до 4950.

2. Определено оптимальное соотношение кривизны ПДК и ТК, которое позволяет минимизировать массогабаритные параметры механизма, без снижения его несущей способности. Рассчитанная величина этого соотношения комплексно учитывает влияние всех геометрических параметров передачи: угла нутации, кривизны ПДК, угла наклона фронта ПДК, числе периодов ПДК.

3. Представленные результаты исследований позволяют существенно оптимизировать ВППТК по критериям минимальных массогабаритных параметров и контактных напряжений.

Список литературы: 1. Маргулис М.В. Пути совершенствования приводов машин различного назначения / М.В. Маргулис // Вестник Приазовского гос. техн. ун-та. Серия: Техн. науки. - 2000. - Вып.10. - С.133-138. 2. Маргулис М.В. Разработка новых волновых прецессионных передач с телами качения / М.В. Маргулис, Я.О. Гордиенко // Вестник Приазовского гос. техн. ун-та. Серия: Техн. науки. – 2013. – Вып. 26. – С. 161-168. 3. Маргулис М.В. Разработка рациональной конструкции одноступенчатой волновой передачи с телами качения / М.В. Маргулис, Я.О. Гордиенко // Защита металлургических машин от поломок: сборник научных работ / ПГТУ. – Мариуполь, 2013. – Вып. 15. – С. 114-117. 4. Маргулис М.В. Корригирование профиля поперечного сечения периодических дорожек качения волновых прецессионных передач с телами качения / М.В. Маргулис, *В.О. Гордиенко //* Вісник Національного Технічного Університету "ХПІ". Серія: Пооблеми механі-чного приводу. – 2014. – Вип.31. – С.104-111. **5.** Пат. 2267673 RU, МПК F16H25/06. Передающий узел с качающейся шайбой (варианты) и дифференциальный преобразователь скорости на его основе (варианты) / Становской В.В., Ремнева Т.А.; заявитель и патентообладатель Закрытое акционерное общество "Томские трансмиссионные системы"; заявл. 13.11.2001; опубл. 22.05.2003. 6. Бостан И.А. Зацепление для прецессионных передач / И.А. Бостан. - Кишинев: Штиинца, 1988. -132с. 7. Корн Г.А. Справочник по математике (для научных работников и инжинеров) / Г.А. Корн, Т.М. Корн. - М., 1974. - 832с. 8. Маргулис М.В. Методика определения основных параметров силовой волновой передачи с промежуточными телами качения / М.В. Маргулис, А.С. Шайда // Вестник Приазовского гос. техн. ун-та. Серия: Техн. науки. – 2008. – Вып. 18. – С. 130-134. 9. Маргулис М.В. Анализ напряженно-деформированного состояния основных звеньев волновых прецессионных передач с телами качения в процессе передачи рабочих нагрузок / М.В. Маргулис, Я.О. Гордиенко // Вестник Приазовского гос. техн. ун-та. Серия: Техн. науки. - 2013. - Вып. 27. - С. 148-158.

Bibliography (transliterated): 1. Margulis M.V. Puti sovershenstvovanija privodov mashin razlichnogo naznachenija / M.V. Margulis // Vestnik Priazovskogo gos. tehn. un-ta. Serija: Tehn. nauki. - 2000. -Vol.10. – P.133-138. 2. Margulis M.V. Razrabotka novyh volnovyh precessionnyh peredach s telami kachenija / M.V. Margulis, Ja.O. Gordienko // Vestnik Priazovskogo gos. tehn. un-ta. Serija: Tehn. nauki. -2013. - Vol.26. - P.161-168. 3. Margulis M.V. Razrabotka racional'noj konstrukcii odnostupenchatoj volnovoj peredachi s telami kachenija / M.V. Margulis, Ja.O. Gordienko // Zashhita metallurgicheskih mashin of polomok: sbornik nauchnyh rabot / PGTU. – Mariupol', 2013. – Vol.15. – P.114-117. 4. Margulis M.V. Korrigirovanie profilja poperechnogo sechenija periodicheskih dorozhek kachenija volnovyh precessionnyh peredach s telami kachenija / M.V. Margulis, Ja.O. Gordienko // Visnik Nacional'nogo Tehnichnogo Universitetu "KhPI". Serija: Problemi mehanichnogo privodu. - 2014. - Vol.31. - P.104-111. 5. Pat. 2267673 RU, MPK F16H25/06. Peredajushhij uzel s kachaju-shhejsja shajboj (varianty) i differencial'nyj preobrazovatel' skorosti na ego osnove (varianty) / Stanovskoj V.V., Remneva T.A.; zajavitel' i patentoobladatel' Zakrytoe akcionernoe obshhestvo "Tomskie transmissionnye sistemy"; zajavl. 13.11.2001; opubl. 22.05.2003. 6. Bostan I.A. Zaceplenie dlja precessionnyh peredach / I.A. Bostan. -Kishinev: Shtiinca, 1988. - 132p. 7. Korn G.A. Spravochnik po matematike (dlja nauchnyh rabotnikov i inzhinerov) / G.A. Korn, T.M. Korn. - Moscow, 1974. - 832p. 8. Margulis M.V. Metodika opredelenija osnovnyh parametrov silovoj volnovoj peredachi s promezhutochnymi telami kachenija / M.V. Margulis, A.S. Shajda // Vestnik Priazovskogo gos. tehn. un-ta. Serija: Tehn. nauki. - 2008. - Vol.18. - P.130-134. 9. Margulis M.V. Analiz naprjazhenno-deformirovannogo sostojanija osnovnyh zven'ev volnovyh precessionnyh peredach s telami kachenija v processe peredachi rabochih nagruzok / M.V. Margulis, Ja.O. Gordienko // Vestnik Priazovskogo gos. tehn. un-ta. Serija: Tehn. nauki. - 2013. - Vol.27. - P.148-158.

Поступила (received) 18.04.2015