УДК 621.833; 62.652

С.С. ГУТИРЯ, д.т.н., професор каф. М і ДМ ОНПУ, Одеса; *В.П. ЯГЛІНСЬКИЙ*, д.т.н., професор каф. М і ДМ ОНПУ; *А.М. ЧАНЧИН*, магістр, аспірант каф. М і ДМ ОНПУ

ФОРМИ І КРИТЕРІЙ ПОВ'ЯЗАНОСТІ КОЛИВАНЬ ПЛАНЕТАРНОГО КОЛІСНОГО РЕДУКТОРА

На основі розробленої моделі визначення спектру головних частот планетарного колісного редуктора (ПКР) визначено форми коливань, досліджено пружні зв'язки між парціальними системами. Встановлено суттєве зниження перших двох головних частот при збільшенні числа сателітів, а також за наявності тріщини в епіциклі. Вищі частоти практично не змінюються. Підвищення жорсткості опор сателітів зменшує критерій пов'язаності коливань поступальних парціальних системи сателітів з обертальними удвічі, що сприяє послабленню пружних зв'язків коливальної системи ПКР. Аналогічний, але значно менший, ефект спричиняє зниження куту зачеплення.

Ключові слова: модель коливальної системи, спектр головних частот, парціальні системи, енергія коливань

Вступ. Актуальність задачі. Дослідження механічних коливань планетарних зубчастих передач є складною науковою задачею, перманентно актуальною внаслідок бурхливого зростання питомої потужності машин (на одиницю маси або об'єму) та швидкодії складових передаточних механізмів, а також через жорсткі вимоги споживачів щодо рівня вібрацій та шуму, надійності, стійкості функціонування та керованості всіх об'єктів нової техніки.

Актуальною також є задача вібраційної безрозбірної діагностики технічного стану планетарних колісних редукторів (ПКР) у складі трансмісії автобусів, тролейбусів, кар'єрних самоскидів, позашляховиків, військової техніки та ін. транспортних засобів, рішення якої потребує моделюванні динаміки коливальної системи із врахуванням особливостей прояву типових ушкоджень [1, 2].

Аналіз відомих досліджень. Одними з самих найменш надійних елементів силової трансмісії тролейбусів є планетарні зубчасті редуктори у складі тихохідних провідних мостів, що навантажені крутним моментом, значно перевищуючим момент тягового двигуна. Вплив окремих параметрів розрахункової моделі планетарної передачі на власні частоти крутних та поперечних коливань зубчастих коліс розглянуто у низці сучасних досліджень [3-5]. Розроблені як циклічно симетричні, так і асиметричні динамічні моделі, що враховують змінну жорсткість зубчастих зачеплень, усереднену жорсткість підшипників, нерівномірне колове розташування сателітів та ін. параметри пружної системи. Однак отримані результати та рекомендації безпосередньо не застосовні для цілей вібраційної діагностики технічного стану ПКР, оскільки не враховують елементи самовстановлення конструкції, а також системний вплив змінної жорсткості епіциклу при виникненні втомної тріщини.

Постановка завдання. Метою дослідження є формування математичної моделі коливань системи ПКР з "плаваючою" конструкцією сонячної шестерні, опорами якої є сателіти, з урахуванням поперечних і крутних коливань шестерні, водила, епіциклу і сателітів. Основними завданнями дослідження є визначення спектру головних частот ПКР з урахуванням впливу змінної колової жорсткості епіциклу за наявності пошкоджень, форм коливань та пов'язаності коливань основних парціальних систем.

© С.С. Гутиря, В.П. Яглінський, А.М. Чанчин, 2015

Визначення спектру головних частот ПКР. Залежно від конструкції передачі та мети дослідження розрахункова динамічна модель коливальної системи ПКР може враховувати як пружні так і демпферні властивості складових елементів та мати від 10 до 20, або більше степенів вільності. Розглянуто узагальнену динамічну модель ПКР, кожна з основних ланок якої має дві поступальні та одну обертальну рухливості (рисунок 1).

X

Рисунок 1 – Узагальнена схема розрахункової моделі ПКР: 1 – сонячна шестерня; 2 – водило; 3 – сателіти; 4 – епіцикл

Прийнято наступні позначення: *s* – (*sun*) сонячна шестерня; *c* – (*carrier*) водило; *r* – (*ring*) епіцикл; *p* – (*planet*) сателіт; *u* – колова (зведена крутна) деформація; *sp* і *rp* – пружні з'єднання (зачеплення) сонячної шестерні (*s*) і епіциклу (*r*) з сателітами (*p*); *x_s*, *y_s*, *x_c*, *y_c*, *x_r*, *y_r*, *n_i*, τ_i (*i*=1...*N*) – поперечні зміщення осей шестерні, водила, епіциклу та сателітів внаслідок пружних деформацій; *N* – число сателітів; *r_s*, *r_c*, *r_r*, *r_p* – радіуси основних кіл шестерні, водила, епіциклу та сателітів відповідно; *c_c*, *c_r*, *c_p* – коефіцієнти жорсткості підшипників опор водила, епіциклу та сателітів; *c_{sp}*, *c_{rp}* – коефіцієнти жорсткості зачеплень сонячної шестерні та епіциклу з сателітами; *C_{su}*, *C_{cu}*, *C_{ru}* – коефіцієнти зведених крутних жорсткостей шестерні, водила та епіциклу; λ_c , λ_r , $\lambda_{p,i}$ – поперечні деформації осей водила, епіциклу та сателітів; $\lambda_{sp,i}$, $\lambda_{rp,i}$ – деформації зачеплення сателітів з шестернею та епіциклом; *u_s*, *u_c*, *u_r*, *u_i* – пружні переміщення за дугами основних кіл шестерні, водила, епіциклом; асателітів.

Використовуючи розрахункові схеми пружних переміщень, визначено деформації елементів ПКР у вигляді

$$\lambda_{p,i}^{2} = \left(y_{c}\sin\theta_{i} + x_{c}\cos\theta_{i} - n_{i}\right)^{2} + \left(y_{c}\cos\theta_{i} - x_{c}\sin\theta_{i} - \tau_{i} + u_{c}\right)^{2};$$

$$\lambda_{sp,i} = x_{s}\sin\left(\theta_{i} - \alpha_{W}\right) - y_{s}\cos\left(\theta_{i} - \alpha_{W}\right) - u_{s} - u_{i} + \tau_{i}\cos\alpha_{W} + n_{i}\sin\alpha_{W};$$

$$\lambda_{rp,i} = x_{r}\sin\left(\theta_{i} + \alpha_{W}\right) - y_{r}\cos\left(\theta_{i} + \alpha_{W}\right) + u_{i} - u_{r} + \tau_{i}\cos\alpha_{W} - n_{i}\sin\alpha_{W};$$

$$\lambda_{c}^{2} = x_{c}^{2} + y_{c}^{2}; \quad \lambda_{r}^{2} = x_{r}^{2} + y_{r}^{2}; \quad \theta_{i} = \theta_{1} + (i - 1)2\pi/N; \quad i = 1...N,$$
(1)

де θ_1 та θ_i – кутова орієнтація осі першого та *i*-го сателітів відносно осі *x*; α_w – кут зачеплення.

48

У подальшому для узагальнених координат коливальної системи ПКР використано наступні позначення:

Підстановкою (1) і (2) у вираз для потенціальної енергії коливань, отримано квадратичну форму у вигляді $\Pi = \frac{1}{2} \sum_{i=1}^{9+3 \cdot N} \sum_{i=1}^{9+3 \cdot N} c_{i,j} q_i q_j$, де узагальнені коефіцієнти жорсткості системи $c_{i,j}$ визначено за формулами

$$\begin{array}{l} c_{1,10} = c_{sp}k_w s_{3,1}; \ c_{1,11} = c_{sp}s_w s_{3,1}; \ c_{1,12} = -c_{sp}s_{3,1}; \ c_{1,13} = c_{sp}k_w s_{3,2}; \\ c_{1,14} = c_{sp}s_w s_{3,2}; \ c_{1,15} = -c_{sp}s_{3,2}; \ c_{1,16} = c_{sp}k_w s_{3,3}; \ c_{1,17} = c_{sp}s_w s_{3,3}; \ c_{1,18} = -c_{sp}s_{3,3}; \\ c_{2,10} = -c_{sp}k_w k_{3,1}; \ c_{2,11} = -c_{sp}s_w k_{3,1}; \ c_{2,12} = c_{sp}k_{3,1}; \ c_{2,13} = -c_{sp}k_w k_{3,2}; \\ c_{2,14} = -c_{sp}s_w k_{3,2}; \ c_{2,15} = c_{sp}k_{3,2}; \ c_{2,16} = -c_{sp}k_w k_{3,3}; \ c_{2,17} = -c_{sp}s_w k_{3,3}; \\ c_{2,18} = c_{sp}k_{3,3}; \ c_{3,10} = c_{p}s_{2,1}; \ c_{3,11} = -c_{p}k_{2,1}; \ c_{3,13} = c_{p}s_{2,2}; \ c_{3,14} = -c_{p}k_{2,2}; \\ c_{3,16} = c_{p}s_{2,3}; \ c_{3,17} = -c_{p}k_{2,3}; \ c_{4,10} = -c_{p}k_{2,1}; \ c_{4,11} = -c_{p}s_{2,1}; \\ c_{4,13} = -c_{p}k_{2,2}; \ c_{4,14} = -c_{p}s_{2,2}; \ c_{4,16} = -c_{p}k_{2,3}; \ c_{4,17} = -c_{p}s_{2,3}, \\ c_{1,1} = 0,5Nc_{sp}; \ c_{2,2} = c_{1,1}; \ c_{3,3} = c_{c} + Nc_{p}; \ c_{4,4} = c_{3,3}; \ c_{5,5} = c_{r}; \ c_{6,6} = c_{5,5}; \end{array} \right]$$

$$c_{7,7} = c_{su} + Nc_{sp}; \ c_{8,8} = c_{cu} + Nc_{p}; \ c_{9,9} = c_{ru} + Nc_{rp}; \ c_{10,10} = c_{p} + (c_{sp} + c_{rp})k_{w}^{2};$$

$$c_{11,11} = c_{p} + (c_{sp} + c_{rp})s_{w}^{2}; \ c_{12,12} = c_{sp} + c_{rp}; \ c_{13,13} = c_{10,10}; \ c_{14,14} = c_{11,11};$$

$$c_{15,15} = c_{12,12}; \ c_{16,16} = c_{10,10}; \ c_{17,17} = c_{11,11}; \ c_{18,18} = c_{12,12},$$

$$\begin{array}{l} c_{5,10}=c_{rp}k_{w}s_{4,1}; c_{5,11}=-c_{rp}s_{w}s_{4,1}; c_{5,12}=c_{rp}s_{4,1}; c_{5,13}=c_{rp}k_{w}s_{4,2}; c_{5,14}=-c_{rp}s_{w}s_{4,2}; \\ c_{5,15}=c_{rp}s_{4,2}; c_{5,16}=c_{rp}k_{w}s_{4,3}; c_{5,17}=-c_{rp}s_{w}s_{4,3}; c_{5,18}=c_{rp}s_{4,3}; c_{6,10}=-c_{rp}k_{w}k_{4,1}; \\ c_{6,11}=c_{rp}s_{w}k_{4,1}; c_{6,12}=-c_{rp}k_{4,1}; c_{6,13}=-c_{rp}k_{w}k_{4,2}; c_{6,14}=c_{rp}s_{w}k_{4,2}; c_{6,15}=-c_{rp}k_{4,2}; \\ c_{6,16}=-c_{rp}k_{w}k_{4,3}; c_{6,17}=c_{rp}s_{w}k_{4,3}; c_{6,18}=-c_{rp}k_{4,3}; c_{7,10}=-c_{sp}k_{w}; c_{7,11}=-c_{sp}s_{w}; \\ c_{7,12}=c_{sp}; c_{7,13}=c_{7,10}; c_{7,14}=c_{7,11}; c_{7,15}=c_{7,12}; c_{7,16}=c_{7,10}; c_{7,17}=c_{7,11}; c_{7,18}=c_{7,12}; \\ c_{8,10}=-c_{p}; c_{8,13}=c_{8,10}; c_{8,16}=c_{8,10}; c_{9,10}=-c_{rp}k_{w}; c_{9,11}=c_{rp}s_{w}; c_{9,12}=-c_{rp}; \\ c_{9,13}=c_{9,10}; c_{9,14}=c_{9,11}; c_{9,15}=c_{9,12}; c_{9,16}=c_{9,10}; c_{9,17}=c_{9,11}; c_{9,18}=c_{9,12}; \\ c_{10,11}=s_{w}k_{w}\left(c_{sp}-c_{rp}\right); c_{10,12}=-k_{w}\left(c_{sp}-c_{rp}\right); c_{11,12}=-s_{w}\left(c_{sp}+c_{rp}\right); c_{13,14}=c_{10,11}; \\ c_{13,15}=c_{10,12}; c_{14,15}=c_{11,2}; c_{16,17}=c_{10,11}; c_{16,18}=c_{10,12}; c_{17,18}=c_{1,12}. \end{array} \right\}$$

Для спрощення подальших перетворень у формули (2) i (5) додатково уведено наступні умовні позначення:

ISSN 2079-0791. Вісник НТУ "ХПІ". 2015. № 35 (1144)

(4)

)

 $s_{w} = \sin \alpha_{w}; \quad k_{w} = \cos \alpha_{w}; \quad s_{2,i} = \sin \theta_{i}; \quad k_{2,i} = \cos \theta_{i}; \quad s_{3,i} = \sin (\theta_{i} - \alpha_{w});$ $k_{3i} = \cos(\theta_i - \alpha_w); \quad s_{4i} = \sin(\theta_i + \alpha_w); \quad k_{4i} = \cos(\theta_i + \alpha_w).$

Значення інших елементів матриці узагальнених коефіцієнтів жорсткості $C(c_{i,i})$, що не входять до (3), (4) і (5), дорівнюють нулю.

Елементи діагональної матриці $A(a_{i,j})$ узагальнених коефіцієнтів інерції, що входять до виразу кінетичної енергії системи $T = \frac{1}{2} \sum_{i=1}^{9+3 \cdot N} \sum_{i=1}^{9+3 \cdot N} a_{i,j} \dot{q}_i \dot{q}_j$, визначено так

 $a_{11} = m_s; a_{22} = m_s; a_{33} = m_c; a_{44} = m_c; a_{55} = m_r; a_{66} = m_r; a_{77} = J_s/r_s^2;$ $a_{8,8} = J_c / r_c^2; a_{9,9} = J_r / r_r^2; a_{10,10} = m_p; a_{11,11} = m_p; a_{12,12} = J_p / r_p^2; a_{13,13} = m_p;$ (6) $a_{14,14} = m_p; a_{15,15} = a_{12,12}; a_{16,16} = m_p; a_{17,17} = m_p; a_{18,18} = a_{12,12}; a_{i,j} = 0, i \neq j,$

де \dot{q}_i, \dot{q}_i – узагальнені швидкості відповідно до (2); m_s, m_c, m_r, m_p і J_s, J_c, J_r, J_p – відповідно маси і осьові моменти інерції шестерні, водила, епіциклу та сателітів.

Наведений спектр головних частот, (с⁻¹), системи ПКР визначено як корені частотного рівняння $|C - \omega^2 A| = 0$ з урахуванням формул (3)-(6) та певних параметрів моделі ПКР типу *RABA* 118/77 (таблиця 1):

$$\begin{split} & \omega_1 = 337; \quad \omega_2 = 537; \quad \omega_3 = 1907; \quad \omega_4 = 1907; \quad \omega_5 = 3371; \quad \omega_6 = 3371; \\ & \omega_7 = 5860; \quad \omega_8 = 5860; \quad \omega_9 = 8090; \quad \omega_{10} = 10441; \quad \omega_{11} = 10922; \quad \omega_{12} = 10922; \\ & \omega_{13} = 28625; \quad \omega_{14} = 28625; \quad \omega_{15} = 31760; \quad \omega_{16} = 38128; \quad \omega_{17} = 38128; \quad \omega_{18} = 43336. \end{split} \right\} . (7)$$

Таблица 1. Параметри елементір лицамінцої моледі ПКР

Форми ерій пов'я-

зв'язаність

таолиця і пар								
		Елемент моделі				критерій	пов'	я-
Параметр	Позначення	Сонячна	Епіцикл	Водило	Сателіт	заності	кол	И-
		шестерня (s)	(r)	(c)	(p)	вань П	КР. Е	3i-
Маса, кг	т	1,9	6,8	13,8	0,85	домо, що	на ек	œ-
Зведена маса, кг	I/r^2	1,16	5,36	13,88	0,52	плуатацій	іні нав	3a-
Основний діаметр, мм	d	79,404	195,45	157,5	58,026	нтаження	багат	0-
Жорсткість зубців, Н/м	$c_{sp} = c_{rp}$	$3,0.10^{8}$				ланкової	констр	y-
Жорсткість опор, Н/м	$c_p = c_r = c_c$	10^{8}			кції мех	анічно	го	
Зведена крутна	Cru	106				приводу	CVTTE	во
жорсткість, Н/м						впливає	линам	лi-
Кут зачеплення, град	α_w	25,28				чна зв	'язаніс	ть

коливань рухомих ланок, тобто степінь взаємного впливу коливань одних мас на коливання інших. На етапі проектування уявляється ефективним знизити динамічні навантаження трансмісії за рахунок цільового формування сукупності пружно-інерційних параметрів її елементів, що визначає характер поширення крутильних коливань уздовж трансмісії. Для цього побудовано динамічну модель силової передачі ПКР, визначено пружні та інерційні параметри її ланок та спектр головних частот. Кожній головній (власній) частоті ші відповідає вектор υ, що характеризує форму коливань системи ПКР з цією головною частотою. Вектори $\upsilon_1, \upsilon_2 ... \upsilon_N$ формують власні форми коливань ПКР. Число форм коливань дорівнює числу степенів вільності коливальної системи. Спектр головних частот розробленої моделі ПКР з трьома сателітами має 12 різних значень (співпадають – 3 і 4; 5 і 6; 9 і 10; 11 і 12; 13 і 14; 16 і 17) головних частот (7), тому система ПКР має 12 незалежних власних форм коливань, які визначаються з точністю до константи. Форми коливань відрізняються тим, що частина координат змінюється в одній фазі, а друга частина у протифазі. Наприклад, перша форма: координати $(u_1, \tau_1, n_1, u_2, \tau_2, n_2, u_3, \tau_3, n_3, u_s, u_c, u_r, x_s, y_s)$ змінюються в одній фазі (рисунок 2,*a*). Друга форма: координати (u_1, τ_1, n_1) змінюються у протифазі до координат (u_2, τ_2, n_2) (рисунок 2,*б*), і так далі.

Система ПКР типу *RABA* 318/78 з 5-ма сателітами має 24 степені вільності (*N*=24), через це до узагальнених коефіцієнтів жорсткості (3)-(5) додаються наступні складові:

$$c_{19,19} = c_{11,11}; c_{20,20} = c_{11,11}; c_{21,21} = c_{12,12}; c_{22,22} = c_{10,10}; c_{23,23} = c_{11,11}; c_{24,24} = c_{12,12}, (8)$$

$$c_{1,19} = c_{sp}k_{w}s_{3,4}; c_{1,20} = c_{sp}s_{w}s_{3,4}; c_{1,21} = -c_{sp}s_{3,4}; c_{1,22} = c_{sp}k_{w}s_{3,5}; c_{1,23} = c_{sp}s_{w}s_{3,5}; c_{1,24} = -c_{sp}s_{3,5}; c_{2,19} = -c_{sp}k_{w}k_{3,4}; c_{2,20} = -c_{sp}s_{w}k_{3,4}; c_{2,21} = c_{sp}k_{3,4}; c_{2,22} = -c_{sp}k_{w}k_{3,5}; c_{2,23} = -c_{sp}s_{w}k_{3,5}; c_{2,24} = c_{sp}k_{3,5}; c_{3,19} = c_{p}s_{2,4}; c_{3,20} = -c_{p}k_{2,4}; c_{3,22} = c_{p}s_{2,5}; c_{4,10} = -c_{p}k_{2,1}; c_{4,11} = -c_{p}s_{2,1}; c_{4,19} = -c_{p}k_{2,4}; c_{4,20} = -c_{p}s_{2,4}; c_{4,22} = -c_{p}k_{2,5}; c_{4,23} = -c_{p}s_{2,5}, c_{5,23} = -c_{rp}s_{w}s_{4,4}; c_{5,21} = c_{rp}s_{4,4}; c_{5,22} = c_{rp}s_{w}k_{4,4}; c_{6,20} = c_{rp}s_{w}k_{4,4}; c_{6,21} = -c_{rp}k_{w}s_{4,5}; c_{5,23} = -c_{rp}s_{w}k_{4,5}; c_{6,23} = c_{rp}s_{w}k_{4,5}; c_{6,24} = -c_{rp}k_{4,5}; c_{6,21} = -c_{rp}k_{4,4}; c_{6,22} = -c_{rp}k_{w}k_{4,5}; c_{6,23} = c_{rp}s_{w}k_{4,5}; c_{6,24} = -c_{rp}k_{4,5}; c_{7,19} = c_{7,10}; c_{7,20} = c_{7,11}; c_{7,21} = c_{7,12}; c_{7,22} = c_{7,10}; c_{7,23} = c_{7,11}; c_{7,24} = c_{7,12}; c_{8,19} = c_{8,10}; c_{8,22} = c_{8,10}; c_{9,19} = c_{9,10}; c_{9,20} = c_{9,11}; c_{9,21} = c_{10,12}; c_{20,21} = c_{11,12}; c_{22,23} = c_{10,11}; c_{22,24} = c_{10,12}; c_{23,24} = c_{11,12}.$$
(10)
$$C_{10,12} = c_{10,12}; c_{20,21} = c_{11,12}; c_{22,23} = c_{10,11}; c_{22,24} = c_{10,12}; c_{23,24} = c_{11,12}.$$

До узагальнених коефіцієнтів інерції (6) також додаються складові

$$a_{19,19} = m_p; a_{20,20} = m_p; a_{21,21} = J_p / r_p^2; a_{22,22} = m_p; a_{23,23} = m_p; a_{24,24} = J_p / r_p^2; a_{i,j} = 0, i \neq j.$$
(11)

Визначено спектр головних частот для моделі ПКР з 5-ма сателітами:

$$\begin{array}{l} \omega_{1} = 325; \quad \omega_{2} = 500; \quad \omega_{3} = 1860; \quad \omega_{4} = 2122; \quad \omega_{5} = 3327; \quad \omega_{6} = 3397; \\ \omega_{7} = 6929; \quad \omega_{8} = 6991; \quad \omega_{9} = 9565; \quad \omega_{10} = 10237; \quad \omega_{11} = 10237; \quad \omega_{12} = 10582; \\ \omega_{13} = 11307; \quad \omega_{14} = 11409; \quad \omega_{15} = 26359; \quad \omega_{16} = 26359; \quad \omega_{17} = 29842; \quad \omega_{18} = 29843; \\ \omega_{19} = 33987; \quad \omega_{20} = 35992; \quad \omega_{21} = 35992; \quad \omega_{22} = 39685; \quad \omega_{23} = 39685; \quad \omega_{24} = 48437. \end{array}$$

При зменшенні колової жорсткості епіциклу, зокрема, при появі втомної тріщини, друга та особливо перша головні частоти зменшуються (рисунок 3).

52

Рисунок 2 – Схеми реалізації форм коливань системи, що відповідають: *а* – першій головній частоті ПКР; *б* – другій головній частоті ПКР

Між парціальними системами (ПС) існує постійний взаємозв'язок у формі обміну кінетичною енергією коливань. Вирізнено та розглянуто три характерні ПС

(для сонячної шестерні, водила і епіциклу), що здійснюють 6 поступальних рухів координатами за $x_s, y_s, x_c, y_c, x_r, y_r$ Ta 3 обертальних рухи за координатами u_s, u_c, u_r . Також необхідно враховувати ПС кожного з сателітів, що здійснює 3 рухи за координатами τ_i, n_i, u_i . За певних початкових умов у початковий момент часу кінетична енергія коливань є зосерелженою в одній або декількох ПС. Коли-

вання початково збурених ПС відіграють роль зовнішніх сил для інших парціальних систем. Під дією таких сил амплітуди коливань інших ПС можуть зростати, що призводить до зменшення амплітуди коливань у початково збурених ПС. Таким чином ініціюється періодичний процес обміну енергією між різними ПС. Для коливальної системи ПКР матриця узагальнених коефіцієнтів інерції $A(a_{i,j})$ є діагональною, через що відсутня інерційна пов'язаність коливань ПС. Отже параметри коливального процесу залежить від взаємної пов'язаності параметрів жорсткості системи. Для запису матриці узагальнених коефіцієнтів жорсткості $C(c_{i,j})$ запропоновано наступну структуру:

де прийнято наступні позначення субматриць узагальнених коефіцієнтів жорсткості: C_T – поступальної ПС (*Translation*); C_R – обертальної (*Rotation*); C_{P1} , C_{P2} , C_{P3} – сателітів (*Planeten*); $C_{T,P1}$, $C_{T,P2}$, $C_{T,P3}$ – пружного зв'язку між поступальними і сателітними ПС; $C_{R,P1}$, $C_{R,P2}$, $C_{R,P3}$ – між обертальними і сателітними ПС.

Нульові елементи в структурі (13) вказують на відсутність пружного зв'язку між поступальними та обертальними ПС, а також між планетарними ПС. Розмірність матриць вказана у дужках: для $C_T \rightarrow (6 \times 6)$; $C_R \rightarrow (3 \times 3)$; $C_{T,P1}, C_{T,P2}, C_{T,P3} \rightarrow (6 \times 3)$; $C_{R,P1}, C_{R,P2}, C_{R,P3} \rightarrow (3 \times 3)$.

Рівень взаємного впливу коливань ПС запропоновано оцінювати за критерієм $\gamma_{i,i}$, що залежить від жорсткості основних елементів системи ПКР, та має вигляд

$$\gamma_{i,j} = \frac{c_{i,j}^2}{c_{i,i}c_{j,j}}, \quad i, j = 1...(N+9).$$
(14)

Критерій (14) набуває значень в межах від 0 до 1,0. Якщо його значення близьке до одиниці, то динамічна пов'язаність коливань ланок ПКР є "сильною", тобто, коливання однієї ланки суттєво впливають на коливання інших ланок. Якщо ж критерій $\gamma_{i,j}$ близький до нуля, то динамічна пов'язаність коливань ланок ПКР є "слабкою", тобто кожна ланка здійснює коливання так ніби вона не має зв'язків з іншими ланками. Такі системи ($\gamma_{i,j} \sim 0$) уявляються ідеальними з точки зору ізоляції поширення коливань уздовж силової трансмісії, а також зниження динамічного навантаження усіх ланок і кінематичних пар.

Для певної конструкції ПКР (див. таблицю 1) розрахунками встановлено максимальні значення критерію пов'язаності коливань поступальних ПС $(x_s, y_s, x_c, y_c, x_r, y_r)$ з сателітними (τ_i, n_i, u_i) , а також обертальних ПС (u_s, u_c, u_r) з сателітними ПС (τ_i, n_i, u_i) (таблиця 2).

Розрахункові значення коефіцієнтів пов'язаності визначаються складовими елементами структури (13): $C_{T,P1}, C_{T,P2}, C_{T,P3}$ та $C_{R,P1}, C_{R,P2}, C_{R,P3}$.

Таблиця 2 – Максимальні значення критерію $\gamma_{i,j}$												
пов'язаності коливань ПС												
<i>i</i> =1,2,3	x_{s}, y_{s}	$x_{c, y_{c}}$	x_{r, y_r}	u_s	u_c	u_r	u_i					
τ_i	0,277	0,0423	0,2265	0,1383	0,0563	0,1383	0					
ni	0,174	0,1194	0,1425	0,0870	0	0,0870	0,52					
u_i	0,333	0	0,2727	0,1665	0	0,1665	0					

Аналіз результатів розрахунків свідчить, що коефіцієнти пружної пов'язаності колової координати епіциклу $(q_9 = u_r)$ (див. таб-

лицю 2 передостанній стовпець) з коловими координатами сателітів (τ_i , n_i , u_i) не перевищують значення 0,17. Найбільш значна передача енергії пружних коливань ($\gamma_{11,12} = 0,52$) для дослідженого ПКР здійснюється через пов'язаність коливань поступальних ПС кожного із сателітів (за координатами n_i) з обертальними (за координатами u_i). Аналіз діаграми пов'язаності коливань ПС (рисунок 4) вказує, що значення критерію $\gamma_{11,12}$ для поступальних і обертальних ПС усіх сателітів є практично однаковим.

Рисунок 4 – Діаграма пов'язаності коливань парціальних систем ПКР: (стовбці з цифрами 1, 2, 3 відповідають сателітним ПС за координатами τ_i, n_i, u_i)

3 урахуванням формул (3) і (5) критерій (14) отримав наступний вираз:

$$\gamma_{11,12} = \frac{c_{11,12}^2}{c_{11,11} \cdot c_{12,12}} = \frac{\left[-s_w (c_{sp} + c_{rp})\right]^2}{\left[c_p + (c_{sp} + c_{cp})s_w^2\right] \cdot (c_{sp} + c_{rp})} = \frac{1}{1 + \frac{c_p}{\left(c_{sp} + c_{rp})s_w^2}}.$$
 (15)

Послабленню пружного зв'язку між ПС за критерієм (15) сприяє підвищення жорсткості опор сателітів, зменшення жорсткості усіх зубчастих зачеплень, а також зменшення кута зачеплення α_w (рисунок 5).

Висновки:

1. Збільшення числа сателітів від 3 до 5 (за умови незмінності інших параметрів коливальної системи ПКР) зменшує перші дві головні частоти на 11%. Інші частоти залишаються практично незмінними.

2. Зниження крутної жорсткості епіциклу у діапазоні значень (10⁶...10⁵)Н/м внаслідок розвитку утомної тріщини спричиняє зниження першої головної частоти ПКР вдвічі (з 380 до 190)с⁻¹. Вищі частоти практично не змінюються.

3. Підвищення жорсткості опор сателітів у ліапазоні значень $(10^8 \dots 3 \cdot 10^8)$ H/m змекритерій ншу€ пов'язаності коливань поступальних ПС сателітів з обертальними $(\gamma_{1112} = 0.52)$ удвічі, що сприяє послабленню пружних зв'язків коливальної системи ПКР. Аналогічний, але значно менший. ефект спричиняє ЗНИження куту зачеплення а....

Список літератури: 1. *Gutyrya, S.* Diagnostics of damages in trolleybus wheel reduction gears / *S. Gutyrya D. Bordeniuk* // Motrol, Tom 10a. – Lublin, 2008. – Р.65-71. 2. *Борденюк Д.М.* Стенд для вібродіагностики планетарних колісних редукторів / *Д.М. Борденюк* // Серія Механіка, енергетика, екологія: Збірник наукових праць. – Севастополь: СевНТУ. – Вип.120. – 2011. – С. 322-328. 3. Samue D. Paul. Planetary Transmission Diagnostics / Paul D. Samue, Joseph K. Conroy, Darryll J. Pines // Glenn Research Center, NASA/CR – 2004-213068 82, 2004. – 83р. 4. Ambarisha, Vijaya Kumar. Non-linear dynamics of planetary gears using analytical and finite elements models / Vijaya Kumar Ambarisha, Robert G. Parker // Journal of sound and vibration. – 302(2007). – Р.577-595. 5. Гумиря, С.С. Частотні характеристики планетарних колісних редукторів тролейбусів / С.С. Гумиря, В.П. Яглінський, А.М. Чанчін // Вісник СевНТУ. Серія Механіка, енергетика, екологія: Збірник наукових праць. – Севастополь: СевНТУ. – Вип.133. – 2012. – С.340-345. 6. Гутиря, В.П. Яглінський, А.М. Чанчін // Вісник Транстор колісного редуктора / С.С. Гутира, В.П. Яглінський, А.М. Чанчін // Вісник тарактеристики планетарного колісного редуктора / С.С. Гутира, В.П. Яглінський, А.М. Чанчін // Вісник тарактеристик планетарного колісного редуктора / С.С. Гутира, В.П. Яглінський, А.М. Чанчін // Вісник тарактеристики планетарного колісного редуктора / С.С. Гутира, В.П. Яглінський, А.М. Чанчін // Вісник тарактеристики планетарного колісного редуктора / С.С. Гутира, В.П. Яглінський, А.М. Чанчін // Вісник тарактеристики планетарного університету "ХІІІ". Збірник наукових праць. Серія: Машинознавство та САПР. – Х.: НТУ "ХІІІ", 2013. – №1(975). – С.35-43.

Bibliography (transliterated): 1. Gutyrya, S. Diagnostics of damages in trolleybus wheel reduction gears / S. Gutyrya, D. Bordeniuk // Motrol, Tom 10a. – Lublin, 2008. – P.65-71. 2. Bordenyuk, D.M. Stend dly vibrodiagnostiki planetarnyh kolesnyh reduktorov / D.M. Bordenyuk // Seria Mechanika, energetica, ekologiya, Zbirnyk naukovyh pratch. – Sevastopol, SevNTU. – No120. – 2011. – P.322-328. 3. Samue, D. Pau1. Planetary Transmission Diagnostics / Pau1 D. Samue, Joseph K. Conroy, Darryll J. Pines // Glenn Research Center, NASA/CR – 2004-213068 82, 2004, 83p. 4. Ambarisha, Vijaya Kumar. Nonlinear dynamics of planetary gears using analytical and finite elements models / Vijaya Kumar Ambarisha, Robert G. Parker // Journal of sound and vibration. – 302(2007). – P.577-595. 5. Gutyrya, S.S. Chastotni characteristyky planetarnyh kolesnyh reduktoriv trolleibysiv / S.S. Gutyrya, V.P. Yaglinsky, A.M. Chanchin // SevNTU. Seria Mechanika, energetica, ekologiya: Zbirnyk naukovyh pratch. – Sevastopol, SevNTU. – No133. – 2012. – P.340-345. 6. Gutyrya, S.S. Modeliuvannya chastotnyh characteristyk planetarnyh kolesnyh reduktoriv, S.S. Modeliuvannya chastotnyh characteristyk planetarnyh kolesnyh reduktoriv / S.S. Modeliuvannya chastotnyh characteristyk planetarnyh kolesnyh reduktoriv / S.S. Modeliuvannya chastotnyh characteristyk planetarnyh kolesnyh reduktoriv / S.S. Gutyrya, S.S. Modeliuvannya chastotnyh characteristyk planetarnyh kolesnyh reduktoriv / S.S. Gutyrya, V.P. Yaglinsky, A.M. Chanchin // Visnyk Nationalnogo Technichnogo Universitetu "KhPI". Zbirnyk naukovyh pratch. Seriya: Mashynoznavstvo y CAD. – Kharkiv: NTU "KhPI". – 2013. – No1(975). – P.35-43.

Надійшла (received) 20.05.2015