УДК 621.833.07

<u>А.Г. ПРИЙМАКОВ</u>, к.т.н., проф., доцент каф. ОТО АСР НУГЗУ, Харьков; **М.В. МАРГУЛИС**, д.т.н., профессор каф. ТМ ГВУЗ ПГТУ, Мариуполь; **И.А. КИРИЧЕНКО**, д.т.н., профессор каф. метрологии и приборов ВНУ им. В. Даля, Северодонецк;

А.В. УСТИНЕНКО, к.т.н., с.н.с., доцент каф. ТММ и САПР НТУ "ХПИ"; *А.А. ГРЯЗЕВ*, аспирант каф. метрологии и приборов ВНУ имени В.Даля

РАЗМЕРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ СИЛОВЫХ ТРЕХВОЛНОВЫХ ЗУБЧАТЫХ ПЕРЕДАЧ

В статье на основе анализа специфики функционирования волновой зубчатой передачи под нагрузкой выявлено исходное (замыкающее) звено совокупности основных звеньев в плоскости волнового зацепления (генератор – волновое зацепление). Получены зависимости для расчёта составляющих его элементов, предельных значений и допуска. Определена радиальная осадка полимерного слоя МГК под нагрузкой. Полученные практические рекомендации могут быть применены в процессе проектирования новых конструкций волновых передач.

Ключевые слова: волновая зубчатая передача, волновое зацепление, размерно-функциональный анализ, боковой зазор в зацеплении, расчёт бокового зазора, осадка полимерного слоя.

Постановка проблемы. Силовые трехволновые зубчатые передачи (СВЗП) с металлополимерными гибкими колесами (МГК) – современная тенденция в отечественном и мировом машиностроении [1-8]. При этом размернофункциональный анализ СВЗП и их массогабаритных параметров, необходи-

мой точности их изготовления позволяет минимизировать себестоимость машиностроительных изделий [5-8]. Отсюда – актуальность и практическая целесообразность данной научно-технической проблемы.

Анализ последних исследований и публикаций. Из литературы известны лишь работы авторов этой статьи, посвященные подобному анализу для двухволновых передач. Для трехволновых силовых передач размерно-функциональный анализ выполняется впервые.

Цель статьи – выявление замыкающего звена в совокупности основных звеньев в плоскости генератора волн и расчет необходимой точности волнового зацепления с помощью скоростной киносъемки.

мыкающего звена в совокупности Рисунок 1 – Общий вид трехволновой зубчатой пеосновных звеньев в плоскости гене- редачи с металлополимерным гибким колесом:

Изложение основного материала. Важным этапом проектирования основных несущих звеньев передаточных механизмов является размерно-функциональный анализ [1, 2]. Он позволяет на стадии разработки оценить рацио-

© А.Г. Приймаков, М.В. Маргулис, И.А. Кириченко, А.В. Устиненко, А.А. Грязев, 2015

ISSN 2079-0791.	Вісник НТУ "ХПІ".	<i>2015. № 35 (1144)</i> 11	13

нальность принятой конструкции и назначить функционально необходимую точность основных звеньев ВЗП. Это в свою очередь минимизирует себестоимость изготовления этих звеньев и изделия в целом. При составлении размерной цепи рассматриваемых звеньев ответственным элементом является выявление исходного (замыкающего) звена. Его величина и предельные размеры (допуск размера) практически определяют необходимую точность изготовления всех составляющих звеньев и себестоимость их изготовления.

На рисунке 1 представлен общий вид силовой трехволновой зубчатой пере-

Рисунок 2 – Регулируемый трехволновой дисковый генератор: 1 – эксцентриковый входной вал; 2 – шпонка; 3 – эксцентрик; 4 – обойма; 5 – специальный подшипник качения; 6 – наружный диск; 7 – регулировочный винт

ои трехволновои зуочатои передачи с металлополимерным гибким колесом, которая служит объектом исследования.

Для экспериментального регулирования величины эксцентриситета е и, следовательно, начальной радиальной деформации W₀ целесообразно [6-8] использовать регулируемый трехдисковый генератор волн (полупринулительная деформация), конструкция которого представлена на рисунке 2, а конструкция опытного силового трехволнового зубчатого редуктора с МГК представлена на рисунке 3. Выполнение скоростной киносъемки трехволнового зацепления обеспечивало специальное окошко, выполненное из органического стекла.

При экспериментальных стендовых исследованиях основных характеристик ряда высокомоментных ВЗП посредством скоростной киносъёмки [3] нами было установлено следующее. В начальный момент работы ВЗП под нагрузкой, в связи с овалообразной формой генератора волн (ГВ), деформирующего гибкое зубчатое колесо (ГЗК), зубья последнего входят в зубья жёсткого зубчатого колеса (ЖЗК) в районе большой полуоси (см. рисунок 1) и начинают передавать вращающий момент 20-25% парами зубьев. Затем в течение трёх-четырёх минут за счёт депланации ГЗК число пар зубьев увеличивается до 42-45% от всего их количества. То есть, в начальный момент работы часть пар зубьев ГЗК, лимитирующего ВЗП по прочности, работают в тяжёлых условиях, что должно учитываться при их разработке. Это может привести к трещинообразованию из-за больших изгибных напряжений во впадинах зубьев ГЗК, а также к большим контактным напряжениям на их рабочих поверхностях. Необходимо отметить, что кинематика волнового зацепления (ВЗ) отлична от неволнового, так как она характеризуется не перекатыванием зубьев со скольжением, а последовательным входом и выходом зубьев ГЗК в (из) зубьев ЖЗК (после их контакта).

Таким образом, для исключения трещинообразования во впадинах и пластического деформирования ВЗ необходимо минимизировать боковой зазор в ВЗ и тем самым время его выбора с целью обеспечения максимального числа одновременно контактирующих пар зубьев, передающих нагрузку.

На рисунке 1 показан разрез ВЗП в плоскости ГВ-ВЗ и ожидаемый боковой зазор после сборки ВЗП *j*_{on} определяемый как:

$$j_{on} = \omega_{\Delta} \sin \alpha , \qquad (1)$$

где ω_{Δ} – действительная радиальная деформация ГЗК; α – угол профиля исходного контура зубьев.

При размерном анализе в плоскости ГВ-ВЗ в качестве исходного (замыкающего) звена будет параметр j_{on} , а для линейной размерной цепи соответственно – величина ω_{Δ} (1). Из изложенного следует, что величина j_{on} должна быть минимально возможной после сборки ВЗП, обеспечивающей нормальное функционирование ВЗ. Минимальный ожидаемый боковой зазор $j_{\min}{}^{0}{}_{on}$ включает в себя следующие составляющие элементы:

$$j_{\min^0 on} = j_{nm} + j_{ncm} + j_{nec} + j_{n\omega l}$$
, (2)

где j_{nm} – составляющая $j_{\min^0 on}$, компенсирующая температурную деформацию зубчатых венцов ГЗК и ЖЗК, исключающую интерференцию головок зубьев при входе в ВЗ; j_{ncc} – составляющая $j_{\min^0 on}$, обеспечивающая размещение масляной плёнки в ВЗ, рекомендуемая как [4]; j_{nee} – составляющая $j_{\min^0 on}$, компенсирующая погрешности изготовления и сборки звеньев ВЗП в плоскости ГВ-ВЗ; j_{nol} – составляющая $j_{\min^0 on}$, компенсирующая радиальную деформацию и перекос образующей ГЗК при сборке ВЗП.

$$j_{nm} = \omega_e \left[\alpha_{p1} \left(t_1 - 20^{\circ} C \right) - \alpha_{p2} \left(t_2 - 20^{\circ} C \right) 2 \sin \alpha \right],$$
(3)

где ω_e – принятая радиальная деформация ГЗК; α_{p1} и α_{p2} – коэффициенты линейного расширения материалов ГЗК, ЖЗК и корпуса ВЗП; t_1 и t_2 – предельные температуры нагрева ГЗК, ЖЗК и корпуса ВЗП;

где *m* – модуль ВЗ;

$$j_{nec} = \sqrt{2(f_{PB})^2 + 2(F_{\beta})^2 + (f_x \sin \alpha)^2 + (f_y \cos \alpha)^2} , \qquad (4)$$

ISSN 2079-0791. Вісник НТУ "ХПІ". 2015. № 35 (1144)

где f_{PB} и f_{β} – верхнее предельное отклонение основного шага ВЗ и допуск на направление зубьев на ГЗК и ЖЗК, принимаемые по ГОСТ 1643-81; f_x и f_y – допуски на непараллельность и перекос осей сопрягаемых ГЗК-ЖЗК три сборке ВЗП, принимаемые по ГОСТ 1643-81;

$$j_{n\omega 1} = \Delta \omega'_e \sin \alpha + (f_{xq} \cos \alpha), \qquad (5)$$

где $\Delta \omega'_e$ – верхнее предельное отклонение принятой радиальной деформации МГЗК при сборке для рассматриваемых силовых ВЗП (с учётом их эксплуатационных исследований рекомендуется значение $\Delta \omega'_e$ принимать в пределах: $\Delta \omega'_e = (0,08...0,1)m$ при $m \approx (1,0...3,0)$ мм); f_{xq} – допуск на перекос образующей ГЗК при принятом значении ω_e для сборки ВЗП, определяемый как

$$f_{xq} = \frac{b_q}{2l_g} \omega_e \,, \tag{6}$$

где b_q и l_g – ширина зуба венца и длина ГЗК.

Величина максимального ожидаемого бокового зазора в ВЗ – $J_{max}{}^{0}$ при передаче предельно допустимой нагрузки T_{max} определяется с учётом уменьшения глубины захода зубьев ГЗК ВВЗ, определяемой составляющей j_{no2} , включающей и окружное закручивание (перекос) зубьев ГЗК. Составляющая j_{no2} определяется как

$$j_{n\omega2} = \Delta \omega_e'' \sin \alpha + \frac{f_{yq}}{\cos \alpha}, \qquad (7)$$

где $\Delta \omega_e''$ – допуск на увеличение принятой радиальной податливости ВЗП в плоскости ГВ-ВЗ при T_{max} , определяемый как

$$\Delta \omega_e'' = F_{r\max} \left(\omega_k + \omega_{\Gamma B} \right); \quad F_{r\max} = 0.182 \, \frac{T_{\max}}{R_b}, \tag{8}$$

где R_b – радиус делительной окружности ЖЗК; ω_k и $\omega_{\Gamma B}$ – радиальные податливости корпуса и генератора ВЗП при T_{max} , определяемые по [4] (рекомендуемые значения $\Delta \omega_e'' = (0,06...1,2)m$ при $m \approx (1,0...3,0)$ мм); f_{yq} – допуск на окружной перекос зубьев ГЗК при T_{max} , определяемый как

$$f_{yq} = \frac{T_{\max} b_q}{2 \pi G R_q^3 t_{np}},$$

где R_q , G и t_{np} – соответственно радиус срединной поверхности ГЗК, модуль упругости второго рода и приведенная толщина зуба венца ГЗК.

С учётом изложенного величина $J_{\max^0 on}$ определяется как

$$j_{\max^{0}n} = j_{\min^{0}n} + (j_{n\omega 2} - j_{n\omega 1}) + (T_{H1} + T_{H2}) 2\sin\alpha, \qquad (9)$$

где T_{H1} и T_{H2} – допуски на дополнительные смещения исходных контуров (режущих инструментов) E_{HS} и E_{Hi} , соответственно при нарезании зубьев ГЗК (наружных) и ЖЗК (внутренних), определяемых по ГОСТ.

Тогда допуск на исходное (замыкающее) звено – ожидаемый боковой зазор T_{jon} определяется как

$$T_{jon} = j_{\max^{0}n} - j_{\min^{0}n} = (j_{n\omega 2} - j_{n\omega 1}) + (T_{H1} + T_{H2}) 2\sin\alpha.$$
(10)

ISSN 2079-0791. Вісник НТУ "ХПІ". 2015. № 35 (1144)

116

115

Величина *T*_{ion} фактически определяет значения допусков размеров основных звеньев силовых ВЗП при их размерно-функциональном анализе, что было подтверждено при создании ряда высокомоментных тяжелонагруженных ВЗП для приводов конвертора, миксера, роторного экскаватора и других [5].

Для вновь разрабатываемых волновых передач с промежуточными телами качения целесообразно выполнить размерно-функциональный анализ с учётом специфики их функционирования.

Необходимо выполнить оценку контактных деформаций полимерного слоя (ПС), которые влияют на глубину захода зубьев в зацеплении гибкого колеса с жестким под нагрузкой и, следовательно, на величину предельного момента, при котором наступает явление "прощелкивания".

Определение радиальной осадки полимерного кольца под действием нормальной нагрузки задача достаточно сложная, но при известных допущениях имеющая готовое решение.

Учитывая, что модуль упругости полимерного слоя на 2...3 порядка меньше модуля упругости основания, т.е. стального гибкого колеса, а также тот факт, что толщина слоя в десятки раз меньше радиуса его кривизны, полимерное кольцо можно считать упругой балкой, лежащей на жестком основании.

Принятое допущение справедливо, по крайней мере, для зоны наибольших удельных давлений со стороны диска, практически совпадающей с зоной беззазорного зацепления гибкого и жесткого колес. В этой зоне гибкое колесо подкрепляется опиранием на жесткое. При таком подходе обычно используется модель Винклера [6], приводящая к постоянству напряжений сжатия в радиальном направлении по толщине и отсутствию других составляющих напряжений.

При этом получается простейшая зависимость перемещений от удельных давлений на поверхности упругого слоя [6, 7]

$$U_{\varphi} = \frac{q_{\varphi} h_2}{E_2},\tag{11}$$

где q_{0} – нормальное поверхностное давление (см. рисунок 4).

К аналогичному решению можно прийти на основании известного решения для тонкой балки, нагруженной по плоскостям двумя противоположно направленными симметричными нагрузками, что соответствует нагружению гибкой балки на жестком основании нормальной нагрузкой [1, 3, 6].

В.З. Власов и Н.И. Леонтьев в работах [1, 6] подвергли критике модель Винклера, однако привели график, из которого следует, что при определении осадки поверхности применение этой модели приводит к незначительным погрешностям.

Д.С. Коднир, используя интегральное преобразование Фурье, получил более общее решение [4, 6]:

$$U_{\varphi} = \frac{2\left(1-v^2\right)}{\pi E_2} P \Phi\left[\frac{\varepsilon-x}{2h}\right],$$

где Р – сосредоточенная нормальная нагрузка, Ф – интегральная функция, для которой в упомянутой работе приводится таблица численных значений.

Расчетная схема для определения радиальной осадки полимерного слоя МГК в условиях контактного деформирования со стороны генератора волн и в плоскости генератора волн представлена на рисунке 4.

Переходя от сосредоточенной нагрузки к распределенной, авторы работ [4, 6] получили следующие выражения для определения радиальной осадки:

а) для случая, когда материал слоя может свободно растекаться:

$$U_{\varphi} = \frac{q_{\varphi} h_2}{E_2} \left(1 - v_2^2 \right),$$

б) для случая, когда перемещения материала вдоль слоя отсутствуют:

$$U_{\varphi} = \frac{q_{\varphi} h_2}{E_2} \frac{(1-2v_2)(1+v_2)}{1-v_2}.$$

Рисунок 4 - Расчетная схема для определения радиальной осадки полимерного кольца МГК

Анализируя кольцевое упругое покрытие рабочей поверхности подшипника скольжения под радиальным давлением с

произвольным центральным углом зоны его действия, Д.С. Кондир предполагает, что в действительности имеет место промежуточный случай, т.е. можно принять:

$$U_{\varphi} = \frac{q_{\varphi} h_2}{E_2} \frac{2(1-v_2^2)}{\pi}.$$

Значительные трудности возникают и при определении распределения давлений по площадке контакта диска с полимерным слоем. В первом приближении можно считать, что по ширине диска давления постоянны, а по дуге соприкосновения закон косинусоидальный, т.е. $q_K = q_0 \cos(K \phi)$, где $K = \pi/(2 \Phi)$ и q₀ – давление в центре площадки контакта.

Принятый закон справедлив в случае абсолютно жесткого диска и податливого полимерного слоя. В нашем случае, учитывая, что модуль упругости полимерного слоя в десятки раз меньше модуля упругости стального диска, такое допущение вносит минимальные погрешности.

Величина максимального давления q0 определится из следующего выражения:

$$F_r = 2rbq_0 \int_0^{\Phi} \cos\varphi \cos K \varphi d\varphi,$$

где *F_r* – радиальное усилие, передаваемое диском генератора на полимерный слой;

$$F_r = \frac{2M\operatorname{tg}(\alpha_W + \rho')}{d\,n}$$

b – ширина диска, r – радиус диска, M – момент нагрузки на гибком колесе, n– число волн, деформации, α_W – угол зацепления, ρ' – угол трения ($\rho' \approx 5^\circ$).

После интегрирования и, решая равенство относительно *q*₀ получаем:

$$q_0 = \frac{F_r(K-1)}{2 \cdot r \cdot b \cdot K \cdot \cos \Phi}$$

Подставляя значение q_{0} в выражение для U_{0} получаем при $\phi=0$ и $K=\pi/(2\Phi)$ максимальное значение радиальной деформации полимерного слоя в центре площадки контакта U₀:

$$U_0 = \frac{F_r \left(K^2 - 1\right) \cdot h_2 \left(1 - v_2^2\right)}{r \cdot b \cdot K \cdot E_2 \cdot \cos \Phi \pi}.$$

117

118

Как известно [3, 7], с уменьшением глубины захода зубьев Δh_q уменьшается нагрузочная способность волновых передач, уже при уменьшении Δh_q на величину 0,2*m* (*m* – модуль зацепления) нагрузочная способность, определяемая отношением момента, вызывающего "прощелкивание" зубьев, к номинальному моменту, падает [6, 7].

В металлополимерных гибких колесах максимальная величина упругой осадки полимера U_0 должна быть включена в размерную цепь "вал генератора – корпус жесткого колеса" в направлении, снижающем Δh_q . Для обеспечения достаточной глубины захода зубьев должно выполняться неравенство:

$$\delta_{\Sigma} + U_0 < 0,2m$$
 или $\delta_{\Sigma} < 0,2m - U_0$,

где δ_Σ – суммарный зазор (натяг) размерной цепи "вал генератора – корпус жесткого колеса", определяемый одним из методов, изложенных в ГОСТ 16320-70 "Цепи размерные. Методы расчета плоских цепей".

В качестве материала полимерного слоя следует избегать применения материалов с модулем упругости, меньшим 3000МПа, т.к. в противном случае резко возрастает радиальная осадка слоя, приводящая к уменьшению глубины захода зубьев и, следовательно, к снижению величины момента, вызывающего "прощелкивание" передачи. По этой же причине при назначении толщины полимерного слоя, по-видимому, нецелесообразно применять $\alpha' = h_2/h_1 < 2,5$. Следует отметить, что определенная нами осадка полимерного слоя составляет 8...10% от общей осадки за счет выборки зазоров и упругой деформации деталей, подсчитанной по методике [1, 2, 4].

Величина радиальной осадки полимерного слоя, определенная вышеописанным способом, учитывает осадку, вызванную радиальной нагрузкой от воздействия момента нагрузки *M*. К этой деформации следовало бы добавить осадку, возникающую при деформировании гибкого колеса генератором в процессе сборки передачи, т.е. установки генератора в гибкое колесо. Однако, силы, необходимые для деформирования гибкого колеса, на порядок меньше сил, возникающих под действием рабочей нагрузки. Следует ожидать, что и осадка при этом будет значительно меньше определенной нами. Учитывая небольшую величину осадки от рабочей нагрузки, измеряемой несколькими микрометрами, осадкой от деформирования гибкого колеса, по-видимому, можно пренебречь.

Выводы:

1. Приведён методический подход к выявлению исходного (замыкающего) звена при размерно-функциональном анализе силовых ВЗП.

2. Получены расчётные зависимости для определения предельных значений и допуска исходного (замыкающего) звена совокупности основных звеньев ВЗП, определяющих необходимую точность и трудоёмкость их изготовления.

3. При применении в качестве неметаллического слоя МГК пластмасс с модулем упругости $E_2 < 25 \times 10^3$ МПа коэффициент безопасности полимерного слоя по пределу выносливости при изгибе оказывается больше, чем у металлического слоя и долговечность гибкого колеса определяется долговечностью металлического слоя.

4. При увеличении модуля упругости пластмассы свыше 25×10³МПа может оказаться, что долговечность гибкого колеса будет лимитироваться долговечностью полимерного слоя. 5. Во избежание ощутимого уменьшения глубины захода зубьев и снижения момента, вызывающего "прощелкивание" зубьев, материал полимерного слоя должен иметь модуль упругости не ниже 3000МПа, а отношение толщины полимерного слоя к толщине металлического не должно превышать 2,5.

Список литературы: 1. Маргулис М.В. Размерно-функциональный анализ тяжелонагруженных высокомоментных зубчатых передач // Вестник машиностроения. – 1985. – Вып.8. – С.11-15. 2. Исследование основных характеристик приводов с волновыми передачами конвертора и миксера. Отчёт о НИР // Ждановский металлургический институт / Руков. М.В. Маргулис. № 29079824. – Жданов, 1982. – 115с. 3. Маргулис М.В. Создание и исследование механизма поворота с волновой зубчатой передачей для мощных роторных экскаваторов и отвалообразователей: Дисс... канд.техн.наук. – М., 1972. – 167с. 4. Маргулис М.В. Основы расчёта и методология создания высокомоментных волновых зубчатых передач для приводов тяжёлых машин: Дисс... докт. техн.наук. – Ленинград, 1991. – 435с. 5. Маргулис М.В. Пути совершенствования приводов машин различного назначения // Вестник Приазов. гос. техн. ун-та: Сб. науч. тр. – Мариуполь, 2004. – Вып. 10. – С. 133-138. 6. Приймаков А.Г., Воробъев Ю.С., Приймаков Г.А. Теория и конструирование силовых волновых зубчатых передач / Монография. – Харьков: "Оберіг", 2010. – 382с. 7. Приймаков А.Г., Приймаков Г.А., Швырёв Н.П. Расчет и проектирование герметичных силовых волновых зубчатых передач / Монография. – Харьков: "Оберіг", 2010. – 112с. 8. Приймаков А.Г., Градьский Ю.А., Приймаков Г.А., Расчет и проектирование силовых волновых волновых волновых волновых волновых волновых волновых волновых волновых оберіг", 2010. – 112с. 8. Приймаков А.Г., Градьский И.А., Приймаков Г.А., Расчет и проектирование силовых волновых зубчатых передач и моектирование силовых волновых вонски в силовах волновых волновых волновых волновых волновых волн

Bibliography (transliterated): 1. Margulis M.V. size-functional analysis of tyazhelonagruzhennykh of the vysokomomentnykh gearings // Announcer of engineer. – 1985. – Vol.8. – P.11-15. 2. Research of basic descriptions of drives with the wave transmissions of converter and mixer. Report on NIR of // the Zhdanovskiy metallurgical institute / Rukov. M.V. Margulis. No29079824. – Zhdanov, 1982. – 115p. 3. Margulis M.V. Creation and research of mechanism of turn with the wave gearing for powerful rotor power-shovels and otvaloobrazovateley: Diss... kand tekhn.sciences. – Moscow, 1972. – 167p. 4. Margulis M.V. Bases of calculation and methodology of creation of the vysokomomentnykh wave gearings for the drives of heavy machines: Diss... dokt. tekhn.sciences. – Leningrad, 1991. – 435p. 5. Margulis M.V. Ways of perfection of drives of machines of the different setting // Announcer Priazov. gos. tekhn. un-that: Sb. nauch. tr. – Mariupol, 2004. – No10. – P.133-138. 6. Priymakov A.G., Vorob'ev Yu.S., Priymakov G.A. Theory and constructing of the power wave gearings / Monograph. – Kharkov: "Oberig", 2010. – 382p. 7. Priymakov A.G., Priymakov G.A., Shvyrev N.P. Calculation and planning of the impermeable power wave gearings / Monograph. – Kharkov: "Oberig", 2010. – 112p. 8. Priymakov A.G., Gradyskiy Yu.A., Priymakov G.A. Calculation and planning of power wave mechanisms from position of tribofatiki / Monograph. – Kharkov: "Oberig", 2012. – 302p.

Поступила (received) 15.05.2015

УДК 621.01(833)

120

Х.С. САМИДОВ, д.т.н., профессор АзАСУ, Баку, Азербайджан; *А.Ф. ГАСЫМОВ*, к.т.н., доцент АзАСУ

ОПТИМИЗАЦИЯ ДИНАМИЧЕСКИХ ПРОЦЕССОВ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРИВОДОВ МАШИН ПО КОЭФФИЦИЕНТУ ДИНАМИЧНОСТИ

Работа посвящена оптимизации параметров динамической системы технологических машин. Базируясь на методах оптимизации по коэффициенту динамичности разработаны и реализованы методики оптимизации динамических процессов технологических машин. Разработанные методики оптимизации динамических процессов машин позволяют: при помощи несложных аналитических выражений установить связь между конструктивными, эксплуатационными параметрами и динамическими характеристиками проектируемой машины, прогнозировать ожидаемый уровень вибрации, проводить синтез машины по заданным динамическими характеристиками и создать машины с наименьшими коэффициентами динамичности.

Ключевые слова: оптимальное проектирование, динамические процессы, технологические машины, вибрации.

© Х.С. Самидов, А.Ф. Гасымов, 2015

119