СІЛЬСЬКОГОСПОДАРСЬКА ЕКОЛОГІЯ. РОСЛИННИЦТВО. ЗЕМЛЕРОБСТВО. СЕЛЕКЦІЯ

УДК 633.16"321":631.524.822 © 2014

В.В. ВАЩЕНКО,

доктор сельскохозяйственных наук

А.А. ШЕВЧЕНКО,

кандидат

сельскохозяйственных наук

ДИФФЕРЕНЦИРУЮЩАЯ СПОСОБНОСТЬ СРЕД ПО ПРИЗНАКУ ОБЩАЯ КУСТИСТОСТЬ СОРТОВ ЯЧМЕНЯ ЯРОВОГО

Днепропетровский государственный аграрно-экономический университет

Аналіз чинників, що визначають специфічність поведінки генотипів в екології (реакцію на середовище, взаємодію з нею), є необхідною передумовою виведення сортів, що поєднують високу продуктивність і її стабільність у різноманітних умовах середовища. Наведено теоретичне узагальнення і вирішення важливої наукової проблеми — встановлення селекційно-генетичних особливостей адаптивної селекції ячменю ярого в умовах недостатнього зволоження. Встановлено селекційно-генетичні особливості мінливості, рівня прояву, залежності від генотипу і гідротермічних умов, комбінаційної здатності, генетичного контролю успадковування ознак продуктивності за використання одинадцяти сортів ячменю ярого. Розкрито особливості параметрів середовищ різних сортів як фону для відбору за ознаками.

Ключові слова: ячмінь ярий, сорт, диференціююча здатність середовища, загальна кущистість, ефекти середовища, коефіцієнт лінійності, коефіцієнт компенсації.

Низкая реализация потенциала новых сортов приводит к снижению их адаптивности, способности обеспечивать высокую и устойчивую продуктивность в различных условиях среды. Если сорт не обладает генетической "гибкостью" к широкому спектру почвенно-климатических условий, то есть соответствующей нормой реакции, то он не может противостоять действию различных биотических и абиотических стрессов. Адаптивный сорт экологически пластичен, приспособлен ко всем внешним факторам среды [1]. Создание таких агроэкологических сортов – важнейшая задача селекции [2].

Анализ последних достижений и публикаций. Общепринятым критерием адаптивности отбираемых генотипов в селекционном процессе считают величину их урожайности в различных по времени и месту условиях среды. Однако иногда он не дает однозначной оценки и требует дополнительных характеристик. Например, если высокая

средняя урожайность — результат благоприятных условий, то такой сорт будет хуже адаптированного к неблагоприятным факторам [3]. Практика показывает, что при равной урожайности преимущество нужно отдавать сорту с максимальной экологической приспособленностью [4]. Отобрать такие специфически адаптивные генотипы можно лишь в условиях, максимально сходных с теми, в которых будут выращивать сорт [5]. Этот принцип селекции достаточно хорошо апробирован в Международном селекционном центре ICARDA [6].

Увеличение урожайности новых сортов связано с повышением их устойчивости к стрессовым факторам, а также резистентностью к болезням и вредителям [7]. В этой связи важна адаптация сортов к конкретным агроэкологическим условиям для максимальной реализации генетического потенциала, а производителям зерна, применяющим интенсивные технологии, — чтобы получать

СІЛЬСЬКОГОСПОДАРСЬКА ЕКОЛОГІЯ. РОСЛИННИЦТВО. ЗЕМЛЕРОБСТВО. СЕЛЕКЦІЯ

Дифференцирующая способность сред по признаку общая кустистость сортов ячменя ярового

наиболее высокие доходы от их внедрения в производство [3, 8].

Линейная связь между урожайностью и экологическими условиями позволяет прогнозировать поведение сортов с разной нормой реакции в определенных условиях среды.

В целях уменьшения экологической зависимости сортов особый приоритет должна получить целенаправленная селекция на адаптивность к контрастным и, прежде всего, к экстремальным погодным условиям. Это важно, поскольку условия чаще бывают неблагоприятными, что ведет к недобору урожая и более весомым экономическим потерям, чем доход от высокого урожая в благоприятные годы.

В этом случае выбор сорта должны определять лимитирующие факторы того региона, в котором его будут выращивать. В таких же условиях на ранних этапах селекции нужно отбирать и исходный материал. Критерием отбора должна быть специфическая адаптация к стрессовым условиям и в первую очередь к региональному типу засухи [9].

Экологически устойчивые сорта — это формы средней интенсивности, способные давать не очень высокую, но стабильную урожайность в любых условиях. Они будут пользоваться наибольшим спросом хозяйств, неспособных, в силу экономического состояния, возделывать их на высоком агрофоне. Экономически рентабельные хозяйства будут нуждаться в более интенсивных сортах.

Добиться сочетания в одном сорте многих желаемых признаков только методами селекции очень трудно из-за присутствия отрицательных генетических корреляций. Поэтому в решении проблемы экологической устойчивости важная роль отводится сортовой агротехнике, задача которой состоит в максимальном удовлетворении специфических потребностей сорта.

Реализация возможностей создания новых сортов ячменя ярового с учетом возможных изменений климата требует усиления и расширения адаптивного принципа в выборе селекционных целей и методов, а также обеспечения функциональной связи селекционного сортоиспытательного, семеноводческого и агротехнического этапов. При этом адаптивная система селекции рассматривается в качестве

важнейшего фактора реализации стратегии адаптивной интенсификации растениеводства и основного средства биологизации и экологизации интенсификационных процессов. Адаптивная ориентация целей селекции предусматривает также выделение таких ее специальных направлений, как экологическое, фитоценотическое, преадаптивное и др. Все возрастающие требования к новым сортам в отношении их устойчивости к стрессовым факторам и предопределяют все большую адаптивную направленность селекционного и сортоиспытательного процессов [10].

Высокая вариабельность количественных и качественных признаков в годы с контрастной влагообеспеченностью растений, нестабильные продуктивность и уровень развития признаков и свойств у одних и тех же селектируемых форм в зоне недостаточного увлажнения обусловливают необходимость планирования параметров новых сортов в двух вариантах, с учетом лимитов факторов, определяющих их развитие: в острозасушливые годы и в годы с хорошей влагообеспеченностью растений. При этом предусматривается не только дальнейшее повышение потенциальной продуктивности сорта в оптимальных условиях, но и повышение его нижнего порога урожайности в экстремальных условиях, примерно с равной напряженностью по сравнению с фактической урожайностью культуры в данной экологической зоне. Такой подход позволит эффективнее использовать экологические факторы среды в качестве дифференцированных фонов для отбора и оценки селекционного материала.

Цель наших исследований — определение эффектов дифференцирующей способности среды, особенностей параметров сред по годам исследований как фона для отбора по признаку общая кустистость.

Материалы и методы исследований. Каждый из 11 сортов ячменя ярового не менее 7 лет выращивался в Степи Украины. В схеме использовали сорта Прерия, Донецкий 12, Донецкий 14, Донецкий 15, Партнер, Галактик, Вакула, Гетьман, Сталкер, Феникс, Адапт. Для учетов элементов продуктивности ее структуру проводили с площадок 1 м² в 3-кратной повторности по 25 растений в каждой.

ВІСНИК ДНІПРОПЕТРОВСЬКОГО ДЕРЖАВНОГО АГРАРНО-ЕКОНОМІЧНОГО УНІВЕРСИТЕТУ

СІЛЬСЬКОГОСПОДАРСЬКА ЕКОЛОГІЯ. РОСЛИННИЦТВО. ЗЕМЛЕРОБСТВО. СЕЛЕКЦІЯ

Дифференцирующая способность сред по признаку общая кустистость сортов ячменя ярового

1. Эффекты дифференцирующей способности среды по признаку общая кустистость

Сорт	2008 г.	2009 г.	2010 г.	2011 г.	2012 г.				
Прерия	-0,26*	0,52*	-0,03	0,37*	0,68*				
Донецкий 12	-0,06	-0,01	-0,10	0,10	0,21*				
Донецкий 14	0,74*	-0,21*	0,63*	0,50*	-0,26*				
Донецкий 15	-0,13	-0,24*	0,10	0,04	0,34*				
Партнер	-0,23	-0,08	-0,13	0,04	-0,46*				
Галактик	-0,06	0,72*	-0,10	0,44*	0,54*				
Вакула	0,41*	-0,71*	-0,01	-0,83*	-1,19*				
Гетьман	0,07	0,19	-0,01	0,07	0,01				
Сталкер	-0,36	0,09	-0,23*	-0,20*	0,34*				
Феникс	0,04	0,06	-0,07	-0,03	0,68*				
Адапт	-0,16	-0,34*	-0,07	-0,50	-0,89*				
* Эффекты достоверны на 5%-ном удовне									

^{*} Эффекты достоверны на 5%-ном уровне.

Параметры адаптивной способности, стабильности генотипов: среды как фона для отбора по признакам структуры признаков рассчитывали с использованием методики А.В. Кильчевского, Л.В. Хотылевой и программы "OSGE EliitSystems gr.".

С целью комплексной оценки среды как фона для отбора применен метод, основанный на статистической модели количественного признака, который предполагает испытание п генотипов в т средах и с повторностями. Первым этапом комплексной оценки среды является двухфакторный дисперсионный анализ. Установление достоверных различий между эффектами сред, а также эффектами взаимодействия генотип × среда позволяет перейти к оценке параметров фона. Основными параметрами, характеризующими пригодность среды как фона, являются следующие: типичность среды; способность среды выявлять изменчивость в селектируемой популяции (дифференцирующая способность); продуктивность среды; повторяемость вышеперечисленных параметров среды по годам и при изменении набора генотипов.

Взаимодействие генотипа и среды, достоверность влияния отдельных факторов на урожайность определяли методом дисперсионного анализа.

Результаты исследования и их обсуждение. Достоверные положительные эффекты дифференцирующей способности среды в 2008 г. были у сортов Донецкий 14 и Вакула, отрицательные – у сорта Прерия, все остальные сорта имели недостоверные эффекты дифференцирующей способности среды. В 2009 г. положительные эффекты были у сортов Прерия, Галактик, а достоверные отрицательные у сортов Донецкий 14, Донецкий 15, Вакула и Адапт. В 2010 г. достоверными были эффекты только у сортов Донецкий 14 и Сталкер (табл. 1).

В 2011 году достоверные положительные эффекты зарегестрированы у сортов Прерия, Донецкий 14, Галактик и достоверные отрицательные по сортам Вакула и Сталкер. В 2012 г. по всем сортам были отмечены достоверные эффекты дифференцирующей способности среды кроме сорта Гетьман.

По параметру среды, как фона для отбора по признаку общая кустистость, варианса взаимодействия генотипа и среды в 2008 и 2012 годах была одинаковая, а варианса дифференцирующей способности среды была одинакова в 2009 и 2011 годах (табл. 2).

Дифференцирующая способность среды колебалась от 0,20 в 2010 году до 0,62 в 2012. Коэффициент нелинейности выше

СІЛЬСЬКОГОСПОДАРСЬКА ЕКОЛОГІЯ. РОСЛИННИЦТВО. ЗЕМЛЕРОБСТВО. СЕЛЕКЦІЯ

Дифференцирующая способность сред по признаку общая кустистость сортов ячменя ярового

2. Параметры среды как фона для отбора по признаку общая кустистость

Год	d_k	$\delta^2_{(G \times E)ek}$	$\delta^2_{ extit{ iny JCCk}}$	$\delta_{ extit{ ilde{ ilde{J}}CCk}}$	l_{ek}	S_{ek}	K_{ek}
2008	0,08	0,15	0,09	0,30	1,61	12,6	1,63
2009	0,13	0,06	0,15	0,38	0,40	15,7	2,63
2010	0,12	0,07	0,04	0,20	1,75	8,2	0,72
2011	-0,35	0,02	0,15	0,38	0,15	19,5	2,63
2012	0,01	0,19	0,39	0,62	0,49	26,7	6,94
Среднее	0,00	0,10	0,16	0,38	0,88	16,5	2,91

единицы был в 2008 и 2010 годах. Относительная дифференцирующая способность среды самая низкая наблюдалась в 2010

году, что указывает на стабилизирующий фон; в 2008, 2009, 2011 и 2012 годах он был анализирующим.

Выводы

Установлены особенности параметров сред по годам исследований как фона для отбора по признаку общая кустистость.

По признаку общая кустистость условия вегетации в 2009 г. стабилизирующим фоном, 2008, 2010, 2011 и 2012 годы — анализирующими фонами.

Оценка селекционных фонов и их классификация на анализирующие, которые способствуют проявлению изменчивости, стабилизирующие — закрепляют достигнутые параметры признаков. Нивелирующие — убирают разницу между ними, обеспечивают экологическое направление селекции и способствуют направленному отбору продуктивных и адаптивных генотипов ячменя ярового. Отбор на анализирующем фоне по общей кустистости предпочтителен в сочетании с признаками колоса.

Библиография

- 1. Жученко А.А. Адаптивный потенциал культурных растений / А.А. Жученко. Кишинев: Штиинца, 1988. 400 с.
- 2. Жученко А.А. Стратегия адаптивной интенсификации сельского хозяйства (концепция) / А.А. Жученко. Пущино, 1994. 148 с.
- 3. Yau S.K. Variance of relative yield sa an agronomic type of stability measure / S.K. Yau // Proceeding of the eight Meeting EUCARPIA Section, Biometrics on Plant Breeding. 1–6 Juli 1991. Brno. Czechoslovakia. P. 100–111.
- 4. Неттевич Э.Д. Проблемы селекции зерновых культур в Нечерноземной зоне РСФСР в связи с интенсификацией земледелия / Э.Д. Неттевич // Сельскохозяйственная биология. 1979. № 5. С. 33–36.
- 5. Ceccarellis S. Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotupes / S. Cec-

- carellis, E. Avecedo, J. Hamblin // Euphutica. 1991. P. 40–44.
- 6. *Duvick D.N.* Plant breeding: past achievemeters and expectations for the future / *D.N. Duvick* // Econ. Bot. 1986. 40, № 3. P. 40–44.
- 7. *Simmonds N.W.* Selection for local adaption in a plant breeding programme / *N.W. Simmonds* // Theor. and Appl. Genet. 1991. 83, № 3. P. 83–88.
- 8. Алтухов А.И. Повышению качества зерна комплексное решение / А.И. Алтухов // Зерновое хозяйство. 2004. № 7. С. 29—33.
- 9. Whalley D.B. Seedling vigor and the early nonphotosynthetic stage of seedling growth in grass / D.B. Whalley, Mc.C.M. Kell, L.R. Green // Crop. Sci. 1966. 6. P. 147–150.
- 10. Жученко A.A. Ресурсный потенциал производства зерна в России / A.A. Жученко. М.: ООО "Изд-во Агрорус", 2004. 1109 с.

Рецензент – доктор сельскохозяйственных наук, профессор **О.П. Якунин**

80