УДК 669.5.017.11:546.74'56'83

Древаль Л. А., Агравал П. Г., Турчанин М. А.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭНТАЛЬПИИ СМЕШЕНИЯ ЖИДКИХ СПЛАВОВ СИСТЕМЫ Со-Cu-Zr

Интерес к сплавам на основе системы Co–Cu–Zr связан с возможностью получения на их базе объемных аморфных композиционных материалов [1]. Создание подобных композиционных материалов, представляющих собой кристаллическую фазу с эффектом памяти формы, заключенную в аморфную матрицу, связано с необходимостью уменьшения хрупкости, характерной для аморфных материалов [2]. Прогнозирование концентрационных областей получения объемных аморфных сплавов, а также моделирование фазовых превращений в системе требуют наличия информации о термодинамических свойствах фаз системы. Для рассматриваемой нами трехкомпонентной системы такого рода экспериментальная информация отсутствует.

Целью настоящей работы стало калориметрическое исследование энтальпий смешения жидких сплавов системы Co–Cu–Zr.

Парциальные энтальпии смешения циркония в трехкомпонентных расплавах были изучены с использованием высокотемпературного изопериболического калориметра. Конструкция установки, методики проведения эксперимента и обработки его результатов были описаны ранее в [3, 4]. При проведении экспериментов были использованы материалы следующих марок: кобальт марки K-1 (99,98 % (мас.)), электролитическая медь (99,99 % (мас.)), иодидный цирконий (99,96 % (мас.)) и вольфрам марки А-2 (99,96 % (мас.)) в качестве калибровочного материала. Все калориметрические исследования проводились в защитной атмосфере спектрально-чистого аргона (99,997 об. %). Тигли были выполнены из стабилизированного диоксида циркония. Исследования были выполнены вдоль трех разрезов с постоянным соотношением $x_{Co}/x_{Cu} = 3$, 1 и 1/3 в области составов $x_{7r} = 0-0.55$ при температуре 1873 К. Начальная навеска металла-растворителя в тигле составляла 0,8-1,3 г. Всего в ходе выполнения эксперимента в тигель вводилось до 68 образцов металлов-добавок, взаимодействие которых с расплавом сопровождалось тепловыми эффектами, регистрируемыми дифференциальной батареей термопар в виде кривых теплообмена. Для определения константы калориметра и ее зависимости от массы сплава в тигле проводилась калибровка прибора в начале и в конце эксперимента. В начале опыта калибровка осуществлялась путем введения в тигель добавок металла-растворителя, в конце эксперимента – введением образцов вольфрама. В качестве металла-растворителя использовались кобальт (разрез $x_{C0}/x_{Cu} = 3$) и медь (разрезы $x_{Co}/x_{Cu} = 1, 1/3$). Для получения двойного расплава заданного состава в тигель с металлом-растворителем вводились добавки второго компонента (меди или кобальта). Парциальная энтальпия смешения циркония ΔH_{Zr} в трехкомпонентных расплавах была рассчитана согласно методике, подробно описанной в работе [4]. При расчете ΔH_{zr} в качестве стандартного состояния для кобальта и меди были приняты чистые жидкие металлы, для циркония – чистый жидкий переохлажденный до температуры опыта металл.

Экспериментальные значения функции ΔH_{Zr} вдоль соответствующих разрезов показаны на рис. 1 символами. Концентрационная зависимость данной функции смешения вдоль каждого разреза была описана следующими уравнениями:

paspes $x_{\rm Co}/x_{\rm Cu} = 3$

$$\Delta \overline{H}_{Zr} = (1 - x_{Zr})^2 (-137,9 - 619,9x_{Zr} + 370,8x_{Zr}^2 - 432,9x_{Zr}^3)$$
 кДж/моль, (1) разрез $x_{Co}/x_{Cu} = 1$

$$\Delta \overline{H}_{Zr} = (1 - x_{Zr})^2 (-155, 1 + 250, 9x_{Zr})$$
кДж/моль, (2)

Рис. 1. Парциальная энтальпия смешения циркония ΔH_{Zr} в жидких сплавах системы Co–Cu–Zr вдоль исследованных разрезов при 1873 К: a – $x_{Co}/x_{Cu} = 3$; б – $x_{Co}/x_{Cu} = 1$; в – $x_{Co}/x_{Cu} = 1/3$

разрез
$$x_{Co}/x_{Cu} = 1/3$$

 $\Delta \overline{H}_{zr} = (1 - x_{Zr})^2 (-130, 4 + 167, 6x_{Zr})$ кДж/моль. (3)

Значения функции $\Delta \overline{H}_{Zr}$, рассчитанные для соотвествующих разрезов согласно уравнениям (1)-(3), приведены в табл. 1 и показаны на рис. 1 сплошными линиями. В табл. 1 значения функции приведены совместно с доверительными интервалами, равными двум среднеквадратичным отклонениям аппроксимирующей функции. Парциальная энтальпия смешения циркония демонстрирует значительные отрицательные отклонения от идеальности. Вдоль сечений $x_{Co}/x_{Cu} = 1$, 1/3 значения данной функции возрастают с увеличением содержания циркония в жидком расплаве. На изотерме парциальной энтальпии смешения цир $x_{\rm Co}/x_{\rm Cu} = 3$ кония разреза который можно отметить минимум, составляет $\Delta \overline{H}_{Zr} = -145 \pm 10$ кДж/моль при $x_{Zr} = 0.04$.

Значения интегральной энтальпии смешения, ΔH , полученные в настоящей работе, представлены в табл. 1 и показаны на рис. 2 символами. Для каждого из исследованных сечений функция демонстрирует небольшие положительные отклонения от идеальности вблизи двойной системы Со–Си, которые постепенно переходят в отрицательные отклонения

с увеличением концентрации циркония. Для каждого из исследованных разрезов на изотерме функции ΔH можно отметить минимум, который составляет: $\Delta H = -28 \pm 3$ кДж/моль при $x_{Zr} = 0,38$ (разрез $x_{Co}/x_{Cu} = 3$), $\Delta H = -21 \pm 2$ кДж/моль при $x_{Zr} = 0,39$ (разрез $x_{Co}/x_{Cu} = 1$) и $\Delta H = -20 \pm 3$ кДж/моль при $x_{Zr} = 0,40$ (разрез $x_{Co}/x_{Cu} = 1/3$).

Таблица 1

Парциальная энтальпия смешения циркония и интегральная энтальпия смешения в системе Со-Си-Zr при 1873 К, кДж/моль

$x_{\rm Zr}$	$\Delta \overline{H}_{\rm Zr} \pm 2\sigma$	$\Delta H \pm 2\sigma$	$\Delta \overline{H}_{\rm Zr} \pm 2\sigma$	$\Delta H \pm 2\sigma$	$\Delta \overline{H}_{\rm Zr} \pm 2\sigma$	$\Delta H \pm 2\sigma$
Pa3pe3 $x_{Co}/x_{Cu} = 3$		Paspes $x_{Co}/x_{Cu} = 1$		$x_{\rm Co}/x_{\rm Cu} = 1/3$		
0	-138 ± 18	6 ± 1	-155 ± 10	7 ± 1	-130 ± 22	6 ± 1
0.10	-135 ± 7	-9 ± 1	-105 ± 6	-7 ± 2	-92 ± 13	-6 ± 2
0.20	-95 ± 5	-21 ± 2	-67 ± 3	-15 ± 2	-62 ± 8	-14 ± 2
0.30	-52 ± 4	-27 ± 2	-39 ± 2	-20 ± 2	-39 ± 5	-18 ± 3
0.40	-25 ± 3	-28 ± 3	-20 ± 2	-21 ± 2	-23 ± 5	-20 ± 4
0.50	-16 ± 5	-27 ± 6	-7 ± 2	-20 ± 3	-12 ± 4	-19 ± 5
0.55	-16 ± 7	-26 ± 9	-3 ± 2	-18 ± 3	-8 ± 4	-18 ± 5

Рис. 2. Интегральная энтальпия смешения ΔH жидких сплавов системы Co–Cu–Zr вдоль исследованных разрезов при 1873 К: a – $x_{Co}/x_{Cu} = 3$; б – $x_{Co}/x_{Cu} = 1$; в – $x_{Co}/x_{Cu} = 1/3$.

Описание интегральной энтальпии смешения жидких трехкомпонентных сплавов было выполнено с использованием уравнения Муджиану–Редлиха–Кистера [5]:

$$\Delta H(x_{\rm Co}, x_{\rm Cu}, x_{\rm Zr}) = x_{\rm Co} x_{\rm Cu} \sum_{i=0}^{i} {}^{i} L_{\rm Co-Cu}^{\phi} (x_{\rm Co} - x_{\rm Cu})^{i} + x_{\rm Co} x_{\rm Zr} \sum_{i=0}^{i} {}^{i} L_{\rm Co-Zr}^{\phi} (x_{\rm Co} - x_{\rm Zr})^{i} + x_{\rm Cu} x_{\rm Zr} \sum_{i=0}^{\nu} {}^{i} L_{\rm Cu-Zr}^{\phi} (x_{\rm Cu} - x_{\rm Zr})^{i} + x_{\rm Co} x_{\rm Cu} x_{\rm Zr} (x_{\rm Co} {}^{0} L_{\rm Co-Cu-Zr}^{\phi} + x_{\rm Cu} {}^{1} L_{\rm Co-Cu-Zr}^{\phi} + x_{\rm Zr} {}^{2} L_{\rm Co-Cu-Zr}^{\phi}), \quad (4)$$

где ${}^{i}L^{\varphi}_{Co-Cu}$, ${}^{i}L^{\varphi}_{Cu-Zr}$, ${}^{i}L^{\varphi}_{Cu-Zr}$ – параметры уравнения, учитывающие двойные взаимодействия в соответствующих бинарных системах; v – степень полинома Редлиха–Кистера; ${}^{0}L^{\varphi}_{Co-Cu-Zr}$, ${}^{1}L^{\varphi}_{Co-Cu-Zr}$, ${}^{2}L^{\varphi}_{Co-Cu-Zr}$ – коэффициенты уравнения, учитывающие тройное взаимодействие в системе. Параметры моделей ${}^{i}L^{\varphi}_{Co-Cu}$, ${}^{i}L^{\varphi}_{Cu-Zr}$, были приняты согласно [6] для системы Со–Си, [7] для системы Со–Zr и [8] для системы Си–Zr. Коэффициенты ${}^{0}L^{\varphi}_{Co-Cu-Zr}$, ${}^{1}L^{\varphi}_{Co-Cu-Zr}$, ${}^{2}L^{\varphi}_{Co-Cu-Zr}$ находили по методу наименьших квадратов с использованием калориметрических данных, полученных в настоящей работе. Оптимизация этих параметров была выполнена с использованием программы «Thermo–Calc». Значения параметров уравнения, учитывающих двойные и тройное взаимодействия в системах, приведены в табл. 2.

Таблица 2

Система	Коэффициент	Источник
Co–Cu	${}^{0}L_{\text{Co-Cu}} = 34709,9$ ${}^{1}L_{\text{Co-Cu}} = -1164,90$ ${}^{2}L_{\text{Co-Cu}} = 9639,00$	[6]
Co–Zr	${}^{0}L_{\text{Co-Zr}} = -145330$ ${}^{1}L_{\text{Co-Zr}} = 47190$ ${}^{2}L_{\text{Co-Zr}} = -72680$ ${}^{3}L_{\text{Co-Zr}} = 21070$	[7]
Cu–Zr	${}^{0}L_{Cu-Zr} = -69220$ ${}^{1}L_{Cu-Zr} = -5075$ ${}^{2}L_{Cu-Zr} = 12820$	[8]
Co–Cu–Zr	${}^{0}L_{\text{Co-Cu-Zr}} = -239249$ ${}^{1}L_{\text{Co-Cu-Zr}} = -187104$ ${}^{2}L_{\text{Co-Cu-Zr}} = 357057$	Настоящая работа

Коэффициенты уравнения (4), описывающего интегральную энтальпию смешения ΔH (Дж/моль) в двухкомпонентных системах Co–Cu, Co–Zr, Cu–Zr и трехкомпонентной системе Со–Cu–Zr

Интегральная энтальпия смешения тройных расплавов, рассчитанная вдоль исследованных разрезов с использованием уравнения (4), на рис. 2 показана сплошными линиями. Рассчитанные значения ΔH хорошо согласуются с экспериментально установленными величинами. Изотерма интегральной энтальпии при 1873 К, рассчитанная согласно (4), показана на рис. 3,а в виде набора изоэнтальпийных линий. Как следует из данного рисунка, в большей части концентрационного треугольника функция ΔH демонстрирует отрицательные отклонения от идеальности. Подобный характер концентрационной зависимости данной функции смешения обусловлен сильными репульсивными парными взаимодействиями между кобальтом и цирконием, и медью и цирконием. Область положительных значений функции ΔH вблизи бинарной системы Со–Си обусловлена сильным межчастичным отталкиванием между медью и кобальтом. Минимум функции соответствует бинарной системе Co–Zr и составляет – 38 кДж/моль при $x_{Co} = 0,36$. Максимум данной функции смешения наблюдается в системе Co–Cu и составляет 9 кДж/моль при $x_{Co} = 0,49$.

Рис. 3. Изотерма интегральной энтальпии смешения жидких сплавов системы Со-Си-Zr и вклад тройного взаимодействия в интегральную энтальпию смешения при 1873 К:

а – функция ΔH , кДж/моль; б – функция $\Delta H^{\text{тр}}$, кДж/моль

В тоже время, некоторые особенности концентрационного хода интегральной энтальпии смешения определяются вкладом от тройного взаимодействия компонентов $\Delta H^{\text{тр}}$. Результаты расчета данной функции согласно уравнению (4), представлены на рис. 3, б. Вклад тройного взаимодействия в интегральную энтальпию смешения является знакопеременным и небольшим по абсолютной величине. Максимальное значение $\Delta H^{\text{тр}}$ составило ~3,1 кДж/моль для сплава $\text{Co}_{0,20}\text{Cu}_{0,18}\text{Zr}_{0,62}$. Для тройных жидких сплавов с содержанием циркония $x_{Zr} < 0,4$ функция $\Delta H^{\text{тр}}$ принимает отрицательные значения. Минимум $\Delta H^{\text{тр}}$ составил ~(-3,4) кДж/моль для сплава $\text{Co}_{0,45}\text{Cu}_{0,40}\text{Zr}_{0,15}$. Следует отметить, что в широкой концентрационной области вклад тройного взаимодействия невелик по сравнению с вкладами, вносимыми парными взаимодействиями Co–Zr и Cu–Zr. К такому выводу можно прийти, сопоставляя значений функций ΔH и $\Delta H^{\text{тр}}$. Вместе тем учет вклада тройного взаимодействия необходим для точного описания концентрационной зависимости интегральной энтальпии смешения. В целом, отсутствие заметного положительного тройного вклада в интегральную энтальпию смешения можно рассматривать как общее свойство для жидких сплавов аморфоообразующих систем, что подтверждается результатами калориметрических исследований, выполненных для систем Cu–Ni–Zr [9], Cu–Ni–Ti [4] и Cu–Ti–Zr [10].

выводы

Парциальная энтальпия смешения циркония в жидких сплавах системы Co–Cu–Zr исследована калориметрическим методом при 1873 К в интервале составов $x_{Zr} = 0-0,55$. Функция $\Delta \overline{H}_{Zr}$ является отрицательной вдоль всех исследованных разрезов во всем интервале составов. Интегральная энтальпия смешения компонентов в исследованной области составов является знакопеременной.

Интегральная энтальпия смешения расплавов системы Co–Cu–Zr рассчитана во всей концентрационной области при 1873 К с использованием уравнения Муджиану–Редлиха–Кистера.

Для энтальпии смешения тройной системы диапазон значений и характер отклонений от идеальности определяется парными взаимодействиями компонентов граничных бинарных систем. Вклад тройного взаимодействия компонентов в энтальпию смешения является знакопеременным и небольшим по сравнению с вкладами от парных взаимодействий.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Predicted glass-forming ability of Cu–Zr–Co alloys and their crystallization behavior / K. Kosiba, P. Gargarella, S. Pauly, U. Kühn, J. Eckert // J. Appl. Phys. –2013. – V. 113. – P. 123505-1–123505-4.

2. Bulk metallic glass composites with transformation-mediated work-hardening and ductility / Y. Wu, Y. Xiao, G. Chen, C. T. Liu, Z. Lu // Adv. Mater. – 2010. – V. 22. – P. 2770–2773.

3. Turchanin M. A. Enthalpies of Formation of Liquid (Copper + Manganese) Alloys / M. A. Turchanin, I. V. Nikolaenko // Metall. Mater. Trans. B. – 1997. – V. 28B, No. 3. – P. 473–478.

4. Энтальпия смешения жидких сплавов Си–Ni–Ti при 1873 К / М. А. Турчанин, А. Р. Абдулов, П. Г. Агравал, Л. А. Древаль // Металлы. – 2006. – № 6. – С. 16–21.

5. Muggianu Y. M. Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723 K. Choice of an analytical representation of integral and partial excess functions of mixing/ Y. M. Muggianu, M. Gambino, J. P. Bros // J. Chimie Phys. – 1975. – V. 72, No. 1. – P. 83–88.

6. Турчанин М.А. Фазовые равновесия и термодинамика систем меди с 3d-металлами: Часть 5. Система медь–кобальт / М. А. Турчанин, П. Г. Агравал // Порошковая металлургия. – 2007. – № 1/2. – С. 45–57.

7. Турчанин М. А. Энтальпии смешения жидких сплавов титана, циркония и гафния с кобальтом / М. А. Турчанин, П. Г. Агравал // Расплавы. – 2002. – № 2. – С.8–16.

8. Turchanin A. A. Enthalpies of formation of liquid and amorphous Cu–Zr alloys. / A. A. Turchanin, I. A. Tomilin, M. A. Turchanin et al. // J. Non-crystalline Solids. — 1999. — Vol. 250. — P. 582–585.

9. Witusiewicz V. T. Enthalpy of mixing of liquid Ni–Zr and Cu–Ni–Zr alloys / V. T. Witusiewicz, F. Sommer // Metall. Mater. Trans. B – 2000. – V. 31B. – P. 277–284.

10. Энтальпия смешения жидких сплавов системы Си–Ті–Zr / А. Р. Абдулов, М. А. Турчанин, П. Г. Агравал, А. А. Солорев // Металлы. – 2007. – № 1. – С. 28–34.