УДК 539.3/.6

Холодняк Ю. С., Подлесный С. В., Капорович С. В.

УПРОЩЁННАЯ МЕТОДИКА СИЛОВОГО РАСЧЁТА ПЛОСКИХ РАМ В УСЛОВИЯХ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Научно-технический прогресс требует от проектантов применения всё более совершенных расчётных методов, касающихся прочностных и энергосиловых параметров проектируемых изделий. Особо актуальны такие требования для конструкций, подверженных колебаниям под действием периодически изменяющихся во времени внешних нагрузок, создающих в конструкциях значительные усилия и напряжения. Адекватная оценка этих внутренних силовых факторов является основой обеспечения надёжности и долговечности создаваемой продукции.

В машиностроении и в строительстве значительно распространены стержневые конструкции – балки и плоские рамы, работающие в условиях вынужденных колебаний. Методики силового расчёта таких конструкций изложены в целом ряде публикаций, большинство из которых касается балок.

Так, в учебно-методической литературе по сопротивлению материалов рассматриваются, как правило, вынужденные колебания невесомой балки с закреплённой на ней точечной массой [1–3 и др.]. Такая модель колеблющейся системы, несмотря на свою простоту, даёт обычно приемлемую точность силовых расчётов. Именно поэтому она и является наиболее распространённой на практике.

Наряду с этим в университетских курсах сопротивления материалов и строительной механики анализируются также случаи вынужденных колебаний балок с распределёнными или несколькими дискретными массами [4–6 и др.]. Предлагаемые при этом методики расчёта для широкого практического применения достаточно сложны, поскольку требуют углублённой математической подготовки и сложных вычислительных средств.

Подобные (уточнённые) методики расчёта, касающиеся вынужденных колебаний плоских рам [7–9 и др.], рассматриваются обычно в университетских курсах строительной механики. В своей основе они имеют сложные двухмерные математические модели и для применения на практике также довольно сложны. Менее сложных методик силового расчёта колеблющихся рам не существует. Известна лишь сомнительная попытка использовать для них такие же методические подходы, как и для балок [10]. Для широкой инженерной практики необходимы более простые и обоснованные методики расчёта.

Целью настоящей работы является разработка упрощённой двухмерной математической модели вынужденных колебаний плоских рам с последующим использованием этой модели в их силовых расчётах.

Для реализации указанной цели возьмём простейшую Г-образную раму (рис. 1) и проанализируем её деформацию.

Пусть в произвольный момент времени на колеблющуюся массу *m* действуют некие силы P_1 и P_2 , создавая её смещения Δ_1 и Δ_2 (см. рис. 1):

$$\Delta_1 = P_1 \cdot \delta_{11} + P_2 \cdot \delta_{12} \,, \tag{1}$$

$$\Delta_2 = P_2 \cdot \delta_{22} + P_1 \cdot \delta_{21},\tag{2}$$

где δ_{11} , δ_{12} , δ_{22} , δ_{21} – смещения колеблющейся массы под действием единичных сил $P_I = 1$ и $P_2 = 1$, определяемые с помощью эпюр изгибающих моментов от этих сил – \overline{M}_1 и \overline{M}_2 [4]. Колебания массы происходят относительно положения статического равновесия (точ-ка 0 на рис. 1). В этом положении:

$$P_1^{\rm cr} = mg , \qquad (3)$$

$$P_2^{\rm cr} = 0.$$
 (4)

Рис. 1. Схема рамы

Тогда в соответствии с (1) и (2) имеем:

$$\Delta_1^{\rm cr} = P_1^{\rm cr} \cdot \delta_{11} = mg \cdot \delta_{11}, \qquad (5)$$

$$\Delta_2^{\rm cr} = P_1^{\rm cr} \cdot \delta_{21} = mg \cdot \delta_{21} \,. \tag{6}$$

В процессе колебаний (см. рис. 1):

$$\Delta_1 = \Delta_1^{\rm cr} + y = mg \cdot \delta_{11} + y , \qquad (7)$$

$$\Delta_2 = \Delta_2^{\rm cr} + z = mg \cdot \delta_{21} + z \,. \tag{8}$$

Подставим выражения (7) и (8) в формулы (1) и (2), получим:

$$\begin{cases} mg \cdot \delta_{11} + y = P_1 \cdot \delta_{11} + P_2 \cdot \delta_{12}, \\ mg \cdot \delta_{21} + z = P_2 \cdot \delta_{22} + P_1 \cdot \delta_{21}. \end{cases}$$
(9)

Решая систему уравнений (9), получим зависимости P_1 и P_2 от текущих координат колеблющейся массы:

$$P_{1} = f_{1}(y,z) = mg + \frac{z}{\delta_{21}} - \frac{y \cdot \delta_{21} - z \cdot \delta_{11}}{\delta_{21}^{2} - \delta_{22} \cdot \delta_{11}} \cdot \frac{\delta_{22}}{\delta_{21}},$$
(10)

$$P_2 = f_2(y, z) = \frac{y \cdot \delta_{21} - z \cdot \delta_{11}}{\delta_{21}^2 - \delta_{22} \cdot \delta_{11}}.$$
 (11)

Учтём, что \overline{P}_1 и \overline{P}_2 – силы, деформирующие раму. Тогда соответствующие реакции рамы будут равны этим силам:

$$R_1 = P_1 = f_1(y, z), \tag{12}$$

$$R_2 = P_2 = f_2(y, z). \tag{13}$$

Конкретизируем решаемую задачу. В качестве колеблющейся массы примем, как это делают авторы ряда работ [1, 10, 11 и др.], электродвигатель со статически неотбалансированным ротором. Его угловая скорость – ω , модуль создаваемой им возмущающей силы – H.

Приложим к указанной массе силу тяжести – $m\overline{g}$, реакции рамы – \overline{R}_1 и \overline{R}_2 , возмущающую силу – \overline{H} , силы инерции – $\overline{\Phi}_1$ и $\overline{\Phi}_2$, силы сопротивления среды – \overline{F}_1 и \overline{F}_2 (рис. 2). Под действием этих сил масса т будет находиться в положении кинетостатического равновесия:

$$m\overline{g} + \overline{R}_1 + \overline{R}_2 + \overline{H} + \overline{\Phi}_1 + \overline{\Phi}_2 + \overline{F}_1 + \overline{F}_2 = 0.$$
(14)

Рис. 2. Схема нагружения колеблющейся массы

Спроецируем векторное уравнение (14) на оси у и z, получим:

$$(y): mg + R_1^y + H \cdot \cos \omega t + \Phi_1^y + F_1^y = mg - f_1(y, z) + H \cdot \cos \omega t - m \cdot \ddot{y} - \mu \cdot \dot{y} = 0; (15)$$

$$(z): R_2^z + H \cdot \sin \omega t + \Phi_2^y + F_2^y = -f_2(y, z) + H \cdot \sin \omega t - m \cdot \ddot{z} - \mu \cdot \dot{z} = 0.$$
(16)

После преобразований (15) и (16) имеем окончательную форму дифференциальных уравнений движения массы *m*:

$$m \cdot \ddot{y} + \mu \cdot \dot{y} + f_1(y, z) = mg + H \cdot \cos\omega t , \qquad (17)$$

$$m \cdot \ddot{z} + \mu \cdot \dot{z} + f_2(y, z) = H \cdot \sin \omega t, \qquad (18)$$

где *ÿ*, *z* – проекции на оси координат ускорения колеблющейся массы;

ý, *ż* – проекции на оси координат скорости этой массы;

µ – коэффициент сопротивления среды;

t – время, отсчитываемое от начала движения (выхода массы *m* из положения статического равновесия).

Следует отметить, что уравнения (17) и (18) являются универсальными, не зависящими напрямую от геометрических параметров рамы: эти параметры связаны лишь с величинами δ_{11} , δ_{22} , $\delta_{12} = \delta_{21}$. Для рамы, изображённой на рис. 1, их значения легко вычислить с помощью правила Верещагина путём «перемножения» эпюр \overline{M}_1 и \overline{M}_2 (рис. 3, 4).

Рис. 3. Эпюра \overline{M}_1

Рис. 4. Эпюра \overline{M}_2

$$\delta_{11} = \overline{M}_1 \times \overline{M}_1 = \frac{1}{E \cdot J_x} \cdot (\frac{1}{2} \cdot l_2 \cdot l_2 \cdot \frac{2}{3} \cdot l_2 + l_1 \cdot l_2 \cdot l_2) = \frac{1}{E \cdot J_x} \cdot (\frac{1}{3} \cdot l_2^3 + l_1 \cdot l_2^2), \quad (19)$$

$$\delta_{22} = \overline{M}_2 \times \overline{M}_2 = \frac{1}{E \cdot J_x} \cdot \frac{1}{2} \cdot l_1 \cdot l_1 \cdot \frac{2}{3} \cdot l_1 = \frac{l_1^3}{3E \cdot J_x}, \qquad (20)$$

$$\delta_{12} = \delta_{21} = \overline{M}_1 \times \overline{M}_2 = \frac{1}{E \cdot J_x} \cdot l_1 \cdot l_2 \cdot \frac{1}{2} \cdot l_1 = \frac{l_1^2 \cdot l_2}{2E \cdot J_x}, \tag{21}$$

где $E \cdot J_x$ – жёсткость сечения стержней рамы.

При иной форме рамы формулы для вычисления указанных величин будут иными, однако процедура их определения останется прежней.

Следует обратить внимание на направление силы $P_2 = 1$. В соответствии с рис. 1 она должна быть направлена в сторону горизонтального смещения массы *m* под действием её силы тяжести $m\overline{g} - \Delta_{r}$. При таком направлении силы $P_2 = 1$ величина Δ_{r} должна быть положительной, т. е.:

$$\Delta_{\Gamma} > 0. \tag{22}$$

Но

$$\Delta_{r} = M_{p} \times \overline{M}_{2}, \qquad (23)$$

где M_p – эпюра изгибающих моментов от силы $m\overline{g}$:

$$M_p = mg \cdot \overline{M}_1. \tag{24}$$

С учётом этого условие (22) приобретает вид:

$$\Delta_{\Gamma} = mg \cdot \overline{M}_1 \times \overline{M}_2 = mg \cdot \delta_{12} > 0, \qquad (25)$$

или

$$\delta_{12} > 0. \tag{26}$$

Таким образом, при «правильном» направлении силы $P_2 = 1$ величина δ_{12} должна быть положительной.

Найденные значения перемещений δ_{11} , δ_{22} и δ_{12} позволяют определить также резонансные частоты колебаний системы.

В основу этого определения положим формулу для определения резонансных частот колебаний рамы с двумя закреплёнными на ней точечными массами m_1 и m_2 , каждая из которых может перемещаться в одном направлении [12]. Эта формула имеет вид:

$$\omega_{1,2} = \frac{\sqrt{2}}{\sqrt{(m_1 \cdot \delta_{11} + m_2 \cdot \delta_{22}) \pm \sqrt{(m_1 \cdot \delta_{11} + m_2 \cdot \delta_{22})^2 - 4 \cdot m_1 \cdot m_2 \cdot (\delta_{11} \cdot \delta_{22} - \delta_{12}^2)}} .$$
 (27)

В нашем случае на раме закреплена одна масса *m*, но она перемещается в двух направлениях – вертикальном и горизонтальном. Чтобы учесть это обстоятельство, положим в формуле (27):

$$m_1 = m_2 = m$$
. (28)

Тогда, после несложных преобразований, формула (27) примет вид:

$$\omega_{1,2} = \frac{\sqrt{2}}{\sqrt{m \cdot (\delta_{11} + \delta_{22}) \pm m \cdot \sqrt{(\delta_{11} + \delta_{22})^2 - 4 \cdot (\delta_{11} \cdot \delta_{22} - \delta_{12}^2)}}}$$
(29)

или

$$\omega_{1,2} = \frac{\sqrt{2}}{\sqrt{m} \cdot \sqrt{(\delta_{11} + \delta_{22}) \pm \sqrt{(\delta_{11} - \delta_{22})^2 + 4 \cdot \delta_{12}^2}}}.$$
(30)

Для оценки адекватности предлагаемой модели проводилось сравнение получаемых с её помощью результатов с таковыми, опубликованными в работе [13], где на основе использования классической модели вынужденных колебаний системы с одной степенью свободы определены параметры вертикальных колебаний невесомой консольной балки (двутавр 20, l = 3 м) с установленным на ней электродвигателем (m = 1000 кг, n = 1000 об/мин) со статически неотбалансированным ротором, создающим возмущающую силу H = 0,3mg. В этой работе круговая частота собственных колебаний системы оказалась равной $\kappa = 20,220$ с⁻¹, а максимальные нормальные напряжения в балке составили $\sigma_{max} = 171$ МПа. В расчёте принято $\mu = 0$.

Альтернативный расчёт по предлагаемой методике выполнялся в среде Mathcad 15 [14, 15] применительно к схеме рамы, изображённой на рис. 1, но с максимальным её приближением по форме и размерам к вышеупомянутой балке: $l_1 = 0,1$ м, $l_2 = 3$ м. Остальные параметры системы – такие же, как и в работе [13]. Результаты этого расчёта представлены на рис. 5.

Расхождение результатов по $\sigma_{\text{мах}}$, действующих в жёстких заделках рамы и балки:

$$\Delta(\sigma_{\max}) = \frac{167,416 - 171}{171} \cdot 100 = -2,096\%$$

по резонансной частоте (ω_1 и κ):

$$\Delta(\omega_1) = \frac{19,28 - 20,22}{20,22} \cdot 100 = -4,649 \%.$$

Как видно, результаты обоих расчётов достаточно близки.

Для дальнейшей апробации предлагаемой методики проведена серия аналогичных расчётов для такой же Г-образной рамы, но с $l_1 = 3$ м, $l_2 = 2$ м и варьированием значений ω в диапазоне от 3 с⁻¹ до 300 с⁻¹ (табл. 1); остальные исходные данные – те же.

Рис. 5. Расчёт по предлагаемой методике

$$\begin{split} \text{M1}(t) &= \left(\text{m} \cdot \text{g} + \frac{x(t)}{\delta 21} - \frac{x(t) \cdot \delta 21 - x(t) \cdot \delta 11}{\delta 21^2 - \delta 22 \cdot \delta 11} \frac{\delta 22}{\delta 21} \right) \cdot 12 \\ \text{M2}(t) &= \text{M2}(t) := \left(\frac{x(t) \cdot \delta 21 - x(t) \cdot \delta 11}{\delta 21^2 - \delta 22 \cdot \delta 11} \right) \cdot 11 \\ \text{M1}(t) &:= \text{M1}(t) + \text{M2}(t) \\ \hline \\ \hline \\ \hline \\ \text{ORDEDN} := 1 \\ \text{i} := 1 \dots 4000 \\ \text{i}_{1} := 0 + \frac{i}{1000} \\ \text{MM}_{1} := \text{M1}(t_{1}) \\ \text{M1}(t_{1}) \\ \text{2.9x10}^{4} \\ \text{2.9x10}^{4} \\ \text{2.9x10}^{4} \\ \text{2.9x10}^{4} \\ \text{M1}(t_{1}) \\ \text{2.9x10}^{4} \\ \text{2.9x10}^{4} \\ \text{M1}(t_{1}) \\ \text{M2}(t_{1}) \\$$

Рис. 5. Лист 2

Координаты точек графиков $M_{max}(\omega)$ и $\sigma_{max}(\omega)$												
ω, c^{-1}	3	5	10	11	12	13	13,05					
М _{мах} , Н∙м	$3,929 \cdot 10^4$	$4,089 \cdot 10^4$	$6,296 \cdot 10^4$	$8,334 \cdot 10^4$	$1,369 \cdot 10^5$	$2,841 \cdot 10^5$	$2,89 \cdot 10^5$					
$\sigma_{\rm мах},$ МПа	213,554	222,249	342,162	452,934	743,955	$1,544 \cdot 10^3$	$1,571 \cdot 10^3$					
ω, c^{-1}	13,1	13,115	13,13	13,15	13,154	13,16	13,2					
М _{мах} , Н∙м	$2,904 \cdot 10^{5}$	$2,9044 \cdot 10^{5}$	$2,904 \cdot 10^{5}$	$2,90062 \cdot 10^{5}$	$2,9.10^{5}$	$2,89835 \cdot 10^{5}$	$2,886 \cdot 10^{5}$					
σ _{мах} , МПа	$1,578 \cdot 10^3$	$1,578 \cdot 10^3$	$1,578 \cdot 10^3$	$1,576 \cdot 10^3$	$1,576 \cdot 10^3$	$1,575 \cdot 10^3$	$1,568 \cdot 10^3$					
_1							• •					
ω, c ⁻¹	13,5	14	15	16	17	20	30					
М _{мах} , Н∙м	$2,595 \cdot 10^5$	$1,7213 \cdot 10^5$	$8,629 \cdot 10^4$	$6,39.10^4$	$5,203 \cdot 10^4$	$3,795 \cdot 10^4$	$3,796 \cdot 10^4$					
$\sigma_{\rm мах},$ МПа	$1,41 \cdot 10^3$	935,491	468,958	347,304	282,789	206,263	206,307					
_1					2.6		•					
ω, c '	32	33	34	35	36	37	38					
М _{мах} , Н∙м	$4,197 \cdot 10^4$	$4,518 \cdot 10^4$	$5,002 \cdot 10^4$	$5,546 \cdot 10^4$	$6,625 \cdot 10^4$	$8,657 \cdot 10^4$	$1,426 \cdot 10^5$					
$\sigma_{\rm мах},$ МПа	228,074	245,559	271,856	301,428	360,044	470,509	775,21					
$(0, \mathbf{C}^{-1})$	39	39,1	39,16	39,1675	39,175	39,18	39,2					
М _{мах} , Н∙м	$2,98 \cdot 10^5$	$3,022 \cdot 10^5$	$3,03 \cdot 10^5$	$3,02994 \cdot 10^5$	$3,03 \cdot 10^5$	$3,029 \cdot 10^5$	$3,027 \cdot 10^5$					
$\sigma_{\rm мах},$ МПа	$1,62 \cdot 10^3$	$1,642 \cdot 10^3$	$1,647 \cdot 10^3$	$1,647 \cdot 10^3$	$1,647 \cdot 10^3$	$1,646 \cdot 10^3$	$1,645 \cdot 10^3$					
1	1	1	1	1	1	1	1					
ω, c^{-1}	39,5	40	41	50	70	80	100					
М _{мах} , Н∙м	$2,83 \cdot 10^5$	$1,939 \cdot 10^5$	$9,787 \cdot 10^4$	$3,365 \cdot 10^4$	$2,493 \cdot 10^4$	$2,362 \cdot 10^4$	$2,241 \cdot 10^4$					
$\sigma_{\rm мах},$ МПа	$1,538 \cdot 10^3$	$1,054 \cdot 10^3$	531,916	182,869	135,489	128,351	121,771					
(ω, c^{-1})	104,7	140	160	180	220	260	300					
М _{мах} , Н∙м	$2,219 \cdot 10^4$	$2,135 \cdot 10^4$	$2,104 \cdot 10^4$	$2,086 \cdot 10^4$	$2,057 \cdot 10^4$	$2,039 \cdot 10^4$	$2,029 \cdot 10^4$					
$\sigma_{\rm мах},$ МПа	120,619	116,052	114,371	113,356	111,818	110,824	110,292					

Таблица 1

По результатам этих расчётов построены графики зависимостей М_{мах} и σ_{мах} от ω (рис. 6), экспериментально подтверждающие наличие у каждого из них двух резонансных пиков. Для уточнения координат их наивысших точек дополнительно построены детальные графики указанных зависимостей вблизи резонансных частот ω_1 и ω_2 (рис. 7, 8). Трассировкой этих графиков определены экспериментальные значения резонансных частот:

$$\omega'_1 = 13,115 \,\mathrm{c}^{-1};$$

 $\omega'_2 = 39,168 \,\mathrm{c}^{-1}.$

Расчётные значения резонансных частот составили: $\omega_1 = 13,154 \text{ c}^{-1}, \omega_2 = 39,175 \text{ c}^{-1}.$

Сравнение экспериментальных и расчётных значений резонансных частот показывает их практически полную идентичность:

$$\Delta(\omega_1) = \frac{\omega_1 - \omega_1'}{\omega_1} \cdot 100 = \frac{13,154 - 13,115}{13,154} \cdot 100 = 0,296\%;$$

$$\Delta(\omega_2) = \frac{\omega_2 - \omega_2'}{\omega_2} \cdot 100 = \frac{39,175 - 39,168}{39,175} \cdot 100 = 0,018\%.$$

Такой результат свидетельствует о приемлемости предлагаемой методики расчёта для практических целей, прежде всего учебных, поскольку она не только достаточно точно определяет значения ω_1 и ω_2 , но и даёт надёжные силовые результаты, подтверждающие эту точность.

$$\begin{split} MMaxlin &:= linterp(\omega, momMax, \omega) \\ MMaxlsp &:= interp(lspline(\omega, momMax), \omega, momMax, \omega) \\ MMaxpsp &:= interp(pspline(\omega, momMax), \omega, momMax, \omega) \end{split}$$

MMaxcsp := interp(cspline(ω , momMax), ω , momMax, ω)

Рис. 6. Графики зависимостей $M_{max}(\omega)$ и $\sigma_{max}(\omega)$

MMaxlin := linterp(ω , momMax, ω)

MMaxlsp := interp(lspline(ω , momMax), ω , momMax, ω)

MMaxpsp := interp(pspline(ω , momMax), ω , momMax, ω)

MMaxcsp := interp(cspline(ω , momMax), ω , momMax, ω)

Рис. 7. Графики $M_{max}(\omega)$ и $\sigma_{max}(\omega)$ в окрестности первой резонансной частоты

MMaxlin := linterp(ω , momMax, ω)

MMaxlsp := interp(lspline(ω , momMax), ω , momMax, ω)

MMaxpsp := interp(pspline(ω , momMax), ω , momMax, ω)

MMaxcsp := interp(cspline(ω , momMax), ω , momMax, ω)

Рис. 8. Графики $M_{max}(\omega)$ и $\sigma_{max}(\omega)$ в окрестности второй резонансной частоты

Оценим теперь погрешность силового расчёта рам, в котором не учитываются (как и при расчёте балок) их горизонтальные колебания, неизбежно возникающие даже в случае отсутствия возмущающих сил горизонтального направления.

Для этого выполним, используя разработанную методику, расчёт рамы (рис. 9), изготовленной из двутавра 27 ($J_x = 5010 \text{ см}^4$, $W_x = 371 \text{ см}^3$), при следующих исходных данных: m = 2000 кг, n = 300 об/мин, H = 0.3mg = 5886 H, $\mu \approx 0$. Расчёт такой рамы в одномерном варианте (т. е. с учетом только вертикальных колебаний) приведен в работе [10].

Рис. 9. Схема рамы

δ

Сперва определим опорные реакции рамы от действия единичных сил $P_1 = 1$ и $P_2 = 1$ и построим соответствующие эпюры изгибающих моментов (рис. 10, 11). Используя эти эпюры, вычислим с помощью правила Верещагина значения δ_{11} , δ_{22} , δ_{12} и δ_{21} :

$$\begin{split} \delta_{11} &= \overline{M}_1 \times \overline{M}_1 = \frac{1,98}{E \cdot J_x} = \frac{1,98}{2 \cdot 10^{11} \cdot 5010 \cdot 10^{-8}} = 1,976 \cdot 10^{-7} \frac{M}{H}, \\ \delta_{22} &= \overline{M}_2 \times \overline{M}_2 = \frac{0,936}{E \cdot J_x} = \frac{0,936}{2 \cdot 10^{11} \cdot 5010 \cdot 10^{-8}} = 0,934 \cdot 10^{-7} \frac{M}{H}, \\ \iota_2 &= \delta_{21} = \overline{M}_1 \times \overline{M}_2 = \frac{0,918}{E \cdot J_x} = \frac{0,918}{2 \cdot 10^{11} \cdot 5010 \cdot 10^{-8}} = 0,916 \cdot 10^{-7} \frac{M}{H} \end{split}$$

Поскольку $\delta_{12} > 0$, направление силы $P_2 = 1$ выбрано правильно.

Теперь установим потенциально опасные сечения рамы и выражения для возникающих в них изгибающих моментов M(t).

Из эпюр \overline{M}_1 и \overline{M}_2 следует, что наиболее нагруженными в процессе колебаний (т. е. опасными) могут стать сечения А или В (см. рис. 9), в которых изгибающие моменты M(t) связаны с силами $P_1(t)$ и $P_2(t)$ соответствующими зависимостями:

$$M(t) = P_1(t) \cdot 1, 2 + P_2(t) \cdot 0, 6;$$
(31)

$$M(t) = P_1(t) \cdot 0.9 + P_2(t) \cdot 1.2.$$
(32)

Рис. 10. Эпюра \overline{M}_1 , м

Рис. 11. Эпюра \overline{M}_2 , м

Поскольку соотношения между $P_1(t)$ и $P_2(t)$ априори не известны, установить заранее наиболее нагруженное из означенных сечений невозможно. Поэтому расчёты проводились по каждому из них.

По сечению A, в котором изгибающий момент задавался зависимостью (31), получены следующие результаты: $M_{max} = 5,380 \text{ H·m}$; $\sigma_{max} = 145,011 \text{ MIIa}$; $\omega_1 = 44,643 \text{ c}^{-1}$; $\omega_2 = 111,636 \text{ c}^{-1}$. В сечении B, где использовалась зависимость (32), результаты по M_{max} и σ_{max} оказались несколько ниже: $M_{max} = 5,120 \text{ H·m}$; $\sigma_{max} = 137,993 \text{ MIIa}$.

Таким образом, опасным оказалось сечение А, которое в процессе колебаний испытывает большие нагрузки.

Сравним теперь результаты проведенного расчёта с таковыми, опубликованными в работе [10] и учитывающими только вертикальные колебания. Они таковы: $\sigma_{\text{мах}} = 94,84$ МПа; $\omega_{\text{рез}} = 50,25$ с.⁻¹.

Как видно из сравнения, расчёт без учета горизонтальных колебаний сильно занижает значения возникающих в раме напряжений и даёт значительные искажения по резонансной частоте. Это делает его непригодным для серьёзного практического применения.

Реализованный расчёт рамы по сути является проверочным, при котором все параметры системы известны, а задача состоит в проверке условия прочности:

$$\sigma_{\max} \le [\sigma], \tag{33}$$

где [σ] – допускаемое напряжение для материала рамы.

Предлагаемая методика пригодна и для проектного расчёта, когда необходимо подобрать сечение стержней рамы, обеспечивающее выполнение условия прочности (33). Приведём пример такого расчёта.

Расчёт выполним применительно к уже задействованной схеме рамы (см. рис. 9) при таких исходных данных: m = 2000 кг; n = 300 об/мин ($\omega = 31,4$ c⁻¹); H = 0,3mg; $\mu \approx 0$; $[\sigma] = 160$ МПа; $M(t) = P_1(t) \cdot 1, 2 + P_2(t) \cdot 0, 6$.

Сперва построим эпюры \overline{M}_1 и \overline{M}_2 (см. рис. 10, 11) и определим с их помощью перемещения рамы от действия единичных сил: $\delta_{11} = \frac{1.98}{E \cdot J_x}$, $\delta_{22} = \frac{0.936}{E \cdot J_x}$, $\delta_{12} = \delta_{21} = \frac{0.918}{E \cdot J_x}$.

После этого определим номер двутавра, обеспечивающий выполнение условия прочности (33) при отсутствии колебаний рамы:

$$W_x \ge \frac{M_{\rm cr}^{\rm max}}{\left[\sigma\right]} = \frac{mg \cdot \overline{M}_1^{\rm max}}{\left[\sigma\right]} = \frac{2000 \cdot 9,81 \cdot 1,2}{160 \cdot 10^6} = 147,15 \cdot 10^{-6} \,\,{\rm m}^3 = 147,15 \,\,{\rm cm}^3 \,\,.$$

Здесь M_{cr}^{max} – максимальный изгибающий момент от статически приложенного к раме веса электродвигателя – *mg*;

 $\overline{M}_1^{\text{max}}$ – максимальное значение изгибающего момента на эпюре \overline{M}_1 (см. рис. 10).

Из таблицы сортамента [16] выбираем двутавр 18а, у которого $W_x = 159 \text{ см}^3$, $J_x = 1430 \text{ см}^4$, и рассчитываем для него значения перемещений от единичных сил: $\delta_{11} = 6,923 \cdot 10^{-7} \text{ м/H}$, $\delta_{22} = 3,273 \cdot 10^{-7} \text{ м/H}$, $\delta_{12} = \delta_{21} = 3,210 \cdot 10^{-7} \text{ м/H}$.

Выполнив расчет для этого двутавра, получаем: $M_{\text{max}} = 4,634 \text{ H·m}; \sigma_{\text{max}} = 291,447 \text{ MIa}; \omega_1 = 23,850 \text{ c}^{-1}; \omega_2 = 59,645 \text{ c}^{-1}.$

Поскольку у двутавра 18а $\sigma_{\text{мах}} > [\sigma]$, переходим к следующему двутавру 20 и расчёт продолжаем. И так, пока не получим выполнение условия прочности (33).

Результаты такого расчёта представлены в табл. 2, из которой видно, что указанное условие выполняется только у двутавра 27.

В заключение отметим, что возможности разработанной методики не ограничиваются только означенными типами расчётных задач. Но для её развития необходимы дальнейшие исследования, нацеленные на углубление теоретических представлений о процессе и поиск более совершенных расчётных методов и средств.

Таблица 2

Номер	L	M II.	W as ³	- МП-	Резонансные частоты, с ⁻¹	
двутавра	J_X , M	$M_{max}, \mathbf{H}^{\cdot}\mathbf{M}$	<i>W_x</i> , M	$\sigma_{\rm Max}$, IVII Ia	ω_1	ω_2
18a	1430·10 ⁻⁸	$4,634 \cdot 10^4$	159·10 ⁻⁶	291,447	23,850	59,645
20	$1840 \cdot 10^{-8}$	6,971·10 ⁴	$184 \cdot 10^{-6}$	378,852	27,053	67,657
20a	2030·10 ⁻⁸	$9,598 \cdot 10^4$	203.10-6	472,785	28,416	71,065
22	2550·10 ⁻⁸	$4,509 \cdot 10^5$	$232 \cdot 10^{-6}$	1943,540	31,848	79,648
22a	2790·10 ⁻⁸	$1,641 \cdot 10^5$	$254 \cdot 10^{-6}$	645,962	33,313	83,312
24	3460·10 ⁻⁸	$7,810 \cdot 10^4$	$289 \cdot 10^{-6}$	270,234	37,098	92,778
24a	3800·10 ⁻⁸	6,816·10 ⁴	317.10-6	215,029	38,878	97,229
27	5010·10 ⁻⁸	$5,380.10^4$	371.10-6	145,011	44,643	111,636

Результаты подбора сечения стержней рамы

ВЫВОДЫ

Разработана новая, упрощённая методика силового расчёта плоских рам в условиях вынужденных колебаний, позволяющая вычислять величины максимальных нормальных напряжений, возникающих в рамах, и определять их резонансные частоты.

Методика реализована в среде Mathcad 15 и прошла масштабную апробацию при решении учебных задач как проверочного, так и проектного расчётов.

С помощью предложенной методики показана неприемлемость силовых расчетов рам, в которых не учитываются горизонтальные колебания. Такие расчёты существенно занижают величины напряжений, возникающих в рамах, и довольно грубы в определении их резонансных частот.

Выполненная разработка может быть полезна студентам и преподавателям ВУЗов, а также практическим специалистам, выполняющим силовые расчёты.

Дальнейшие исследования в направлении развития выполненной разработки представляются актуальными и имеющими определённый научный интерес. Их результаты будут способствовать углублению теоретических представлений о процессе колебаний рам и созданию более совершенных методов и средств их силовых расчётов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Ковтун В. В. Опір матеріалів. Розрахункові роботи : навч. посіб. / В. В. Ковтун. – Львів : Афіша, 2002. – 280 с.

2. Ицкович Г. М. Сопротивление материалов : учеб. для сред. спец. учеб. заведений / Г. М. Ицкович. – М. : Высш. шк., 2001. – 368 с.

3. Дарков А. В. Сопротивление материалов : учеб. для техн. ВУЗов / А. В. Дарков, Г. С. Шпиро. – М. : Высш. шк., 1989. – 624 с.

4. Писаренко Г. С. Опір матеріалів : підр. для техн. ВНЗ / Г. С. Писаренко, О. Л. Квітка, Е. С. Уманський. – К. : Вища шк., 2004. – 655 с.

5. Шевченко Ф. Л. Курс опору матеріалів. Порада до вивчення теорії та розв'язання задач : навч. посіб. / Ф. Л. Шевченко. – Донецьк : ДонНТУ, 2013. – 260 с.

6. Ламси Б. Б. Сборник задач и упражнений по динамике стержневых систем : учеб. пособ. / Б. Б. Ламси и др. – Н. Новгород : ННГАСУ, 2016. – 96 с.

7. Довнар Е. П. Расчет рам на статические и динамические нагрузки : учеб. пособ. / Е. П. Довнар, Л. Б. Климова. – Минск : БНТУ, 2004. – 186 с.

8. Поляков А. А. Строительная механика: учеб. пособ. / А. А. Поляков, Ф. Г. Лялина, Р. Г. Игнатов. – Екатеринбург : УрФУ, 2014. – 424 с.

9. Гайджуров П. П. Расчет стержневых систем на устойчивость и колебания: учеб. пособ. / П. П. Гайджуров. – Новочеркасск : ЮРГТУ, 2009. – 195 с.

10. Кутовий Л. В. Збірник розрахунково-графічних завдань з курсу "Опір матеріалів" (для студентів всіх механічних спеціальностей денної форми навчання) / Л. В. Кутовий та ін. – Краматорськ ДДМА, 2007. – 220 с.

11. Кочетов В. Т. Сопротивление материалов : учеб. пособие / В. Т. Кочетов. – Ростов-на-Дону, Феникс, 2001. – 368 с.

12. Старцева Л. В. Строительная механика в примерах и задачах: учеб. пособ. / Л. В. Стацева, В. Г. Архипов, А. А. Семенов. – М. : Изд-во АСВ, 2013. – 224 с.

13. Холодняк Ю. С. Особенности прочностных расчетов стержневых конструкций, подверженных вынужденным колебаниям / Ю. С. Холодняк, А. В. Периг, И. А. Матвеев // Вісник Донбаської державної машинобудівної академії : зб. наук. праць. – Краматорськ : ДДМА, 2015. – № 1(34). – С. 96–102.

14. Макаров Е. Г. Инженерные расчеты в Mathcad 15: учеб. курс / Е. Г. Макаров. – СПб. : Питер, 2011. – 400 с.

15. Макаров Е. Г. Сопротивление материалов на базе Mathcad / Е. Г. Макаров. – СПб. : БХВ – Петербург, 2004. – 512 с.

16. Писаренко Г. С. Справочник по сопротивлению материалов / Г. С. Писаренко и др. – К. : Наук. думка, 1988. – 704 с.

Статья поступила в редакцию 09.04.2018 г.