

УДК 666.974.2

А. Н. ЕФРЕМОВ, Т. П. КИЦЕНКО

Донбасская национальная академия строительства и архитектуры

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ПОВЫШЕНИЯ ТЕРМОМЕХАНИЧЕСКИХ СВОЙСТВ ОГНЕУПОРНЫХ ВЯЖУЩИХ И БЕТОНОВ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

Проведен теоретический анализ возможных путей повышения термомеханических свойств гидравлических щелочных вяжущих и бетонов на их основе. Сформулированы основные методологические принципы повышения огнеупорности, температуры деформации под нагрузкой и прочности огнеупорных бетонов на вяжущих, основой которых является жидкое стекло или его аналоги.

огнеупорность, вяжущие, бетоны, жидкое стекло

В процессе нагрева камень вяжущих гидратационного твердения претерпевает ряд физико-химических и структурно-фазовых изменений. Эти изменения связаны с удалением свободной воды при сушке и адсорбированной воды при температуре 110...500 °C. В температурном интервале 500–800 °C происходит удаление химически связанной воды и перекристаллизация гидратных образований в безводные минералы.

Испарение свободной воды при сушке сопровождается уплотнением и существенным упрочнением камня всех минеральных вяжущих. Удаление адсорбированной воды, как правило, не вызывает существенных изменений структуры и свойств камня затвердевших и высушенных вяжущих. Бетоны претерпевают незначительные усадку и разупрочнение (реже – упрочнение) [1, 2].

Более существенное влияние на бетон оказывают дегидратация и перекристаллизация гидратных соединений в безводные минералы, сопровождающиеся чаще всего потерей прочности вяжущей матрицы. При этом для гидросиликатов характерна общая тенденция — при увеличении степени полимеризации кремнекислородных молекул перестройка структуры сопровождается меньшей деструкцией безводных силикатов, относительная прочность камня вяжущих (R_{800} / R_{110}) растет. Для гидросиликатов кальция это установлено в работе Л. Геллер [3]. На общую тенденцию минимизации дегидратационной деструкции минералов при переходе от островных к каркасным силикатам указывал академик Н. В. Белов [4]. Этим объяснена высокая остаточная прочность шлакощелочных вяжущих с добавкой шамота [5]. На кристаллохимическое подобие гидросиликатов и продуктов их дегидратации как одного из основных факторов получения высокой прочности дегидратированных щелочных жаростойких бетонов указано в работах П. В. Кривенко [6].

При более высоких температурах появляются эвтектические расплавы, низкотемпературные минералы перекристаллизовываются в высокотемпературные модификации в неравновесных системах за счет твердофазовых реакций, а чаще через расплав образуются новые минералы. Это сопровождается растворением и рекристаллизационными процессами переноса вещества от наиболее дисперсных минералов и реликтовых зерен вяжущего к более крупным кристаллитам. При соответствующем вещественном составе неравновесной системы температура плавления эвтектических расплавов может повышаться (или наоборот). Образуется новая керамическая связка, которая и определяет эксплуатационные свойства огнеупорного бетона. Понятно, что знание закономерностей этих процессов позволяет управлять структурой и фазовым составом вяжущей матрицы, а значит и эксплуатационными свойствами бетона.

При высоких температурах только кристаллические образования способны сопротивляться термическим и механическим напряжениям. Ввиду низкой огнеупорности и неизбежности образования легкоплавких эвтектик при температурах выше 1 000...1 100 °C, щелочные каркасные, цеолитоподобные минералы не могут выполнять роль связки для огнеупорных бетонов. Для таких бетонов необходима керамическая связка, образованная в результате кристаллизации и рекристаллизации огнеупорных минералов за счет соответствующих добавок наполнителей.

Образованию огнеупорных минералов в камне щелочных вяжущих при средних температурах, до появления критического количества расплава, должен способствовать ряд факторов. Во-первых, структура новобразования щелочных вяжущих, твердеющих при атмосферном давлении, отличается высокой степенью аморфизации [7, 8] и подобна стеклу.

При нагревании силикатных стекол до температур около 550...600 °C наблюдаются аномальные изменения, связанные со скачкообразным ростом электропроводности и снижением вязкости стекла за счет дифузии катионов натрия [9, 10]. В работе [5] установлено, что аналогично обычному стеклу деформированные, ослабленные связи Na-O-Si-, слабая ионная связь мостиковых анионов кислорода с катионами натрия [4, 9, 10] влечет скачкообразный рост подвижности катионов натрия (электропроводности) в аморфизированных продуктах твердения шлакощелочных вяжущих при температуре выше 550...600 °C.

Если допустить по аналогии со стеклом, что катионы натрия в аморфных продуктах твердения типа $\mathrm{Na_2O\text{-}CaO\text{-}SiO_2\text{-}H_2O}$ и $\mathrm{Na_2O\text{-}Al_2O_3\text{-}SiO_2\text{-}H_2O}$ сконцетрированы в пустотах силикатной сетки или каркаса, то резкое увеличение их подвижности будет вести к переводу натрия в более устойчивую связь с немостиковым кислородом и распаду сложных силикатных анионов [10]. При этом должна увеличиться подвижность, гибкость и способность силикатных анионов к перестройке структуры [4, 9], в том числе под действием более сильных в ионном отношении катионов металлов с большей валентностью [4, 11].

Продукты твердения щелочных вяжущих при температуре выше 550...600 °C должны проявлять высокую химическую активность по отношению к наполнителям, инертным к ним при более низких температурах. Это предположение подтверждается данными, приведенными в работе [12], в которой показано, что в щелочносиликатной жидкой фазе даже очень стабильный корунд начинает растворяться при температуре около 650 °C.

В той же работе [5] нами показано, что введение наполнителей, активных по отношению к щелочи, и изотермический прогрев при температуре выше 550 °C в значительной степени снижает электропроводность, например, камня алюмосиликатных вяжущих. Причиной этого является более прочное связывание катионов натрия в структуры, подобные альбиту и нефелину, кристаллизация которых, согласно П. В. Кривенко [6], начинается при температуре 600 °C, но наиболее полно идет при 800...900 °C [6, 13, 14].

Таким образом, интервал температур 600...900 °C, «опасный» с точки зрения дегидратации и разупрочнения продуктов твердения, одновременно является потенциально реакционноблагоприятным не только для образования щелочных алюмосиликатов, но и замены ослабленных, деформированных связей Na-O-Si- на более сильные, например Mg-O-Si-. Введение в щелочные вяжущие соответствующих огнеупорных наполнителей, особенно аморфизированных, уже при этих средних температурах должно способствовать упорядочению структуры щелочных алюмосиликатов и щелочно-щелочеземельных силикатов, образованию керамической связки за счет кристаллизации более огнеупорных фаз. Последнее особенно важно, т.к. при температурах 1 000–1 300 °C можно ожидать полный переход силикатов систем Na₂O-Al₂O₃-SiO₂ и Na₂O-CaO-SiO₂ в расплав [15].

При прогнозировании количества и состава щелочносиликатного расплава можно интенсифицировать процессы образования огнеупорных кристаллических фаз. Появление небольшого количества эвтектических расплавов будет способствовать перекристаллизации неравновесных кристаллических фаз наполнителей, рекристаллизации и спеканию его наиболее дисперсных зерен. На это указывают работы Г. В. Куколева с сотрудниками [16–18], в которых установлено, что введение до 1,5 % Na₂O улучшает спекание алюмосиликатной и корундовой керамики, хотя для последней щелочные минерализаторы не являются лучшими [16, 19]. Использование большего количества добавок щелочного оксида ведет к переводу значительного количества кремнезема в расплав и распаду муллита на корунд [20, 21].

Благоприятное влияние небольшого количества расплава (стекла) на огнеупорные футеровки связано еще с тем, что тонкие структурированные прослойки между кристаллами основных фаз диспергируют кристаллические образования, практически не ослабляя связь между ними. В этом

случае релаксируются межкристаллитные напряжения, возрастает механическая прочность и термостойкость материала [22]. Существенное влияние на повышение термостойкости алюмосиликатов должно оказывать и то, что высоковязкие [23, 24] расплавы системы $Na_2O-Al_2O_3-SiO_2$ способны к значительному переохлаждению [25] и способствуют релаксации температурных напряжений при резком охлаждении в широком температурном интервале.

В заключение следует указать еще на один важный аспект повышения термомеханических свойств огнеупорных бетонов — соотношение между компонентами. Скорость нагрева, принятая при определении огнеупорности, должна обеспечить полное химическое взаимодействие между зернами компонентов, имеющих размер менее 0,2 мм. В этом случае для перераспределения плавней между большим количеством реакционного материала необходимо использовать как можно более тонкозернистые заполнители и увеличить расход тонкомолотых составляющих вяжущего. Это можно делать в ущерб исходной прочности бетона, тем более, что футеровка многих теплоагрегатов в металлургии, коксохимии перед пуском в эксплуатацию прогревается до температуры 800 °С и выше. Бетоны таких футеровок до сушки могут иметь невысокий предел прочности при сжатии — до 3...5 МПа, что достаточно для транспортирования изделий, распалубки монолитных футеровок, сопротивления бетона температурным и усадочным напряжениям.

Таким образом, можно сформулировать следующие основные методологические принципы повышения термомеханических свойств огнеупорных щелочных вяжущих и бетонов:

- для растворов щелочных силикатных и алюминатных компонентов применять отвердители, не содержащие плавни по отношению к оксидам, определяющим огневые свойства конкретной огнеупорной системы;
- вводить в состав вяжущего наполнители, способные образовывать с остальными компонентами огнеупорные кристаллические соединения при средних температурах 600...900 °C до появления равновесных эвтектических расплавов;
- количество эвтектических расплавов должно обеспечить последовательное растворение и рекристаллизацию наполнителей, но не должно превышать критического значения, при котором может произойти деформация бетона под стандартной нагрузкой 0,2 МПа;
- при назначении состава бетона руководствоваться необходимостью расхода отвердителей, наполнителей и мелкого заполнителя с максимальным содержанием частиц размером менее 0,2 мм при условии получения бетона с исходной прочностью не менее 3...5 МПа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Некрасов, К. Д. Жароупорный бетон [Текст] / К. Д. Некрасов. М.: Промстройиздат, 1957. 283 с.
- 2. Тарасова, А. П. Жаростойкие вяжущие на жидком стекле и бетоны на их основе [Текст] / А. П. Тарасова. М.: Стройиздат, 1982. 132 с.
- 3. Геллер, Л. Термическое разложение гидросиликатов кальция [Текст] / Л. Геллер // Третий международный конгресс по химии цемента / Под ред. Ю. М. Бутта, С. М. Рояка. М.: Госстройиздат, 1958. С. 157–162.
- 4. Белов Н. В. Кристаллохимии силикатов с крупными катионами [Текст] / Н. В. Белов. М. : АН СССР, 1961. $68\ c$
- 5. Ефремов, А. Н. Шлакощелочные вяжущие и бетоны с повышенными жаростойкими свойствами [Текст] : автореф. дис. ... канд. техн. наук : 05.23.05 / Ефремов А. Н. ; Киевский инж.-строит. ин-т. К., 1981. 22 с.
- 6. Кривенко, П. В. Кислотостойкие материалы на основе щелочных алюмосиликатных связок [Текст] : автореф. дис. ... канд. техн. наук : 05.484 / Кривенко П. В. ; Киевский инж.-строит. ин-т. К., 1971. 22 с.
- 7. Krivenko, P. Hydration-Dehydration Structure Formation Processes in Geo-cements [Tekct] / P. Krivenko, G. Kovalchuk // Geopolymer Binders Interdependence of composition, structure and properties. Workshop Proceedings, 18–19.09.2006, Weimar / Anja Buchwald, Katja Dombrowski, Marcel Weil (Eds.). Aachen: Shaker Verlag, 2007. P. 97–118.
- 8. Progress on Research and Commercialisation of Geopolymers [Tekct] / J. S. J. Van Deventer, J. L. Provis, C. A. Rees [et al.] // 2007 International Conference «Alkali Activated Materials Research, Production and Utilization»: Proceedings / Zeithamlova Milena (editor). Praha: Czech development Agency, 2007. P. 725–734.
- 9. Белов, Н. В. Строение стекла в свете кристаллохимии силикатов [Текст] / Н. В. Белов // Стеклообразное состояние / Под ред. А. И. Августинник, В. П. Барзаковский и др. М.; Л.: Изд. АН СССР, 1960. С. 91–98.
- 10. Аппен, А. А. Химия стекла [Текст] / А. А. Аппен. Л. : Химия, 1970. 351 с.
- 11. Ферсман, А. Е. Избранные труды [Текст]. Т. 2 / А. Е. Ферсман. М.: АН СССР, 1953. 768 с.
- 12. Филоненко, Н. Е. Контактное минералообразование в корундовом абразивном черепке [Текст] / Н. Е. Филоненко // Труды Четвертого Совещания по экспериментальной минералогии и петрографии [Текст]. Вып. 1: [Предварительные сообщения] / [Глав. ред. акад. Д. С. Белянкин]; Акад. наук СССР. Ин-т геол. наук. М.: АН СССР, 1951. С. 123–128.

- 13. Глуховський, В. Д. Про кристалізацію карнегіїту [Текст] / В. Д. Глуховський, І. Ю. Петренко, Ж. В. Скурчинська // Доп. АН УРСР. Сер. Б. 1969. № 9. С. 822-823.
- 14. Глуховский, В. Д. Исследование силикатообразования в смесях глин, кварцевого песка и соды [Текст] / В. Д. Глуховский, Е. А. Старчевская, П. В. Кривенко // Украинский химический журнал. 1969. Т. 35, Вып. 4. С. 433–435.
- 15. Бережной, А. С. Многокомпонентные щелочные оксидные системы [Текст] / А. С. Бережной. К. : Наукова думка, 1988. 200 с.
- 16. Куколев, Г. В. Исследование процесса спекания глинозема в различных системах [Текст] / Г. В. Куколев, Е. Н. Леве // Журнал прикладной химии. 1955. Т. XXVIII. С. 807–816.
- 17. Куколев, Г. В. К вопросу о процессах спекания в различных трехкомпонентных диаграммах состояния смесей, богатых глиноземом и кремнеземом [Текст] / Г. В. Куколев, К. В. Михайлова // Сб. науч. тр. Украинского НИИ огнеупоров. Харьков: Металлургиздат, 1962. Вып. 6. С. 81–90.
- 18. Куколев, Г. В. Физико-химические методы ускорения спекания каолинов при обжиге [Текст] / Г. В. Куколев, К. В. Михайлова // Сб. науч. тр. Украинского НИИ огнеупоров. Харьков : Металлургиздат, 1960. Вып. 3. С. 50–69.
- 19. Лукин, Е. С. Особенности выбора добавок в технологии корундовой керамики с пониженной температурой спекания [Текст] / Е. С. Лукин, Н. А. Макаров // Огнеупоры и техническая керамика. 1999. № 9. С. 10—13.
- 20. Кащеев, И. Д. Коррозия муллитовой керамики натрийсодержащими силикатными расплавами [Текст] / И. Д. Кащеев, П. С. Мамыкин, М. Бартушка // Огнеупоры. 1975. № 11. С. 39–43.
- 21. Устиченко, В. А. Влияние TiO, FeO и NaO на структурные изменения плавленного муллита [Текст] / В. А. Устиченко, С. В. Лысак, З. Д. Жукова // Огнеупоры. 1983. № 10. С. 3–8.
- 22. Павлушкин, Н. М. Основы технологии ситаллов [Текст] / Н. М. Павлушкин. М.: Стройиздат, 1970. 352 с.
- 23. Роусон, Г. Неорганические стеклообразующие системы [Текст] / Г. Роусон. М.: Мир, 1970. 312 с.
- 24. Ермолаева, Е. В. Смачивание твердых фаз огнеупорных окислов равновесными трехкомпонентными расплавами [Текст] / Е. В. Ермолаева, М. М. Миракьян // Сб. научн. тр. Вып. 4(LI) / Украинский НИИ огнеупоров. Харьков: Металлургиздат, 1960. С. 318–331.
- 25. Зависимость свойств шамота от режима обжига брикета [Текст] / Н. В. Питак, Р. М. Федорук, Т. П. Хмеленко [и др.] // Огнеупоры. 1982. № 3. С. 22-26.

Получено 01.03.2016

О. М. ЄФРЕМОВ, Т. П. КІЦЕНКО МЕТОДОЛОГІЧНІ ОСНОВИ ПІДВИЩЕННЯ ТЕРМОМЕХАНІЧНИХ ВЛАСТИВОСТЕЙ ВОГНЕТРИВКИХ В'ЯЖУЧИХ ТА БЕТОНІВ НА ОСНОВІ РІДКОГО СКЛА

Донбаська національна академія будівництва і архітектури

Проведено теоретичний аналіз можливих шляхів підвищення термомеханічних властивостей гідравлічних лужних в'яжучих та бетонів на їх основі. Сформульовано основні методологічні принципи підвищення вогнетривкості, температури деформації під навантаженням і міцності вогнетривких бетонів на в'яжучих, основою яких є рідке скло або його аналоги.

вогнестійкість, в'яжучі, бетони, рідке скло

OLEXANDER YEFREMOV, TATYANA KITSENKO METHODOLOGICAL BASIS FOR THE IMPROVEMENT OF THERMOMECHANICAL PROPERTIES OF REFRACTORY BINDERS AND CONCRETES BASED ON LIQUID GLASS

Donbas National Academy of Civil Engineering and Architecture

A theoretical analysis of possible ways of improving thermomechanical properties of alkali hydraulic binders and concretes on their basis has been carried out. Basic methodological principles of increase of heat-resistance, temperatures of deformation on-loading and durability of heat-resistant concretes, are set forth on astringent one, basis of that is liquid glass or his analogues.

refractoriness, binders, concretes, liquid glass

Єфремов Олександр Миколайович — д. т. н., професор кафедри технологій будівельних конструкцій, виробів і матеріалів Донбаської національної академії будівництва і архітектури. Наукові інтереси: в'яжучі і бетони на основі промислових відходів; жаростійкі і вогнетривкі бетони.

Кіценко Тетяна Петрівна – к. т. н., доцент кафедри технологій будівельних конструкцій, виробів і матеріалів Донбаської національної академії будівництва і архітектури. Наукові інтереси: вогнетривкі в'яжучі та бетони.

Ефремов Александр Николаевич – д. т. н., профессор кафедры технологий строительных конструкций, изделий и материалов Донбасской национальной академии строительства и архитектуры. Научные интересы: вяжущие и бетоны на основе промышленных отходов; жаростойкие и огнеупорные бетоны.

Киценко Татьяна Петровна – к. т. н., доцент кафедры технологий строительных конструкций, изделий и материалов Донбасской национальной академии строительства и архитектуры. Научные интересы: огнеупорные вяжущие и бетоны.

Yefremov Olexander – D.Sc. (Eng.), Professor, Technologies of Building Structures, Products and Materials Department, Donbas National Academy of Civil Engineering and Architecture. Scientific interests: binders and concretes on the basis of industrial waste; heat-resistant concretes.

Kitsenko Tatyana – Ph.D. (Eng.), Assistant Professor, Technologies of Building Structures, Products and Materials Department, Donbas National Academy of Civil Engineering and Architecture. Scientific interests: fire-resistant binders and concretes.