УДК 546(786 + 544 + 342)

Е. Ю. Пойманова, Г. М. Розанцев, Е. Е. Белоусова, Е. С. Чунтук

СОСТОЯНИЕ ИЗОПОЛИВОЛЬФРАМАТ-АНИОНОВ В ВОДНО-АЦЕТОНИТРИЛЬНОЙ СРЕДЕ

Методами pH-потенциометрического титрования, математического моделирования (программа CLINP 2.1) и электронной спектроскопии изучен процесс образования изополивольфрамат-анионов (ИПВА) в подкисленных водно-ацетонитрильных растворах с $C_W = 0,01$ M, рассчитаны концентрационные константы образования ИПВА. В системах $Na_2WO_4 - HCl - NaCl - CH_3CN - H_2O$ при концентрации $CH_3CN > 30\%$ (v/v) устойчив гептавольфрамат-анион, наибольшая доля декавольфрамат-аниона образуется при $CH_3CN 20\%$ (v/v), при $CH_3CN > 30\%$ (v/v) в системе образуется гесавольфрамат-анион со структурой Линдквиста ($W_6O_{19}^{-2}$).

Ключевые слова: pH-потенциометрия, моделирование, равновесие, водно-ацетонитрильная среда, изополивольфрамат-анионы

Введение. Известно, что условия образования ИПВА существенно зависят от pH, исходной концентрации вольфрама (C_W), температуры, природы растворителя. Поведение в водных растворах изополивольфрамат-анионов, таких как $[W_7O_{24}]^{6-}$ (паравольфрамат A), $[H_2W_{12}O_{42}]^{10-}$ (паравольфрамат B), $[W_{10}O_{32}]^{4-}$ (поливольфрамат Y), α - $[H_2W_{12}O_{40}]^{6-}$ (ψ -метавольфрамат), β - $[H_2W_{12}O_{40}]^{6-}$ и $[H_4W_{11}O_{38}]^{6-}$, достаточно детально описано в литературе как наиболее стабильных [1-7]. В то же время известно, что в водно-органических системах в отличие от водной среды намного более стабильны ИПВА $[W_6O_{19}]^{2-}$ и $[W_{10}O_{32}]^{4-}$ [1, 6, 8, 9]. В рамках систематического исследования подкисленных водно-органических растворов натрия вольфрамата имеет смысл расширить круг исследуемых растворителей, изучить в первую очередь влияние таких, которые наиболее часто используются при органических синтезах, в которых полиоксометаллаты (ПОМ) используют в качестве катализаторов. Об одном из таких растворителей – ацетонитриле (CH₃CN) и пойдет речь далее.

Общее уравнение образования ИПВА при подкислении раствора можно представить в виде:

$$nWO_4^{2-}+mH^+ \cong [H_{m-2k}W_nO_{4n-k}]^{(2n-m)-}+kH_2O,$$

где в зависимости от мольного соотношения между H^+ и WO_4^{2-} (кислотность $Z = v(H^+) / v(WO_4^{2-})$) возможно образование различных по составу частиц:

$4 \operatorname{WO_4}^{2-} + 2 \operatorname{H^+} \leftrightarrows \operatorname{W_4O_{14}(OH)_2}^{6-}$	Z = 2/4 = 0,50
$6 \operatorname{WO_4}^{2-} + 6 \operatorname{H^+} \leftrightarrows \operatorname{W_6O_{20}(OH)_2}^{6-} + 2 \operatorname{H_2O}$	Z = 6/6 = 1,00
$7 \text{ WO}_4^{2-} + 8 \text{ H}^+ \leftrightarrows \text{W}_7 \text{O}_{24}^{6-} + 4 \text{ H}_2 \text{O}$	Z = 8/7 = 1,14
$6 \operatorname{WO_4}^{2-} + 7 \operatorname{H^+} \leftrightarrows \operatorname{HW_6O_{21}}^{5-} + 3 \operatorname{H_2O}$	Z = 7/6 = 1,17
$12 \text{ WO}_4^{2-} + 14 \text{ H}^+ \leftrightarrows \text{W}_{12}\text{O}_{40}(\text{OH})_2^{10-} + 6 \text{ H}_2\text{O}$	Z = 14/12 = 1,17
$12 \text{ WO}_4^{2-} + 15 \text{ H}^+ \leftrightarrows \text{HW}_{12}\text{O}_{40}(\text{OH})_2^{9-} + 6 \text{ H}_2\text{O}$	Z = 15/12 = 1,25
$7 \operatorname{WO_4}^{2-} + 9 \operatorname{H^+} \leftrightarrows \operatorname{HW_7O_24}^{5-} + 4 \operatorname{H_2O}$	Z = 9/7 = 1,29
$12 \text{ WO}_4^{2-} + 16 \text{ H}^+ \leftrightarrows \text{H}_2\text{W}_{12}\text{O}_{40}(\text{OH})_2^{8-} + 6 \text{ H}_2\text{O}$	Z = 16/12 = 1,33
$12 \text{ WO}_4^{2-} + 17 \text{ H}^+ \leftrightarrows \text{H}_3 \text{W}_{12} \text{O}_{40} (\text{OH})_2^{7-} + 6 \text{ H}_2 \text{O}$	Z = 17/12 = 1,42
$12 \text{ WO}_4^{2-} + 18 \text{ H}^+ \leftrightarrows \text{W}_{12}\text{O}_{38}(\text{OH})_2^{6-} + 8 \text{ H}_2\text{O}$	Z = 18/12 = 1,50
$10 \text{ WO}_4^{2-} + 16 \text{ H}^+ \leftrightarrows \text{W}_{10}\text{O}_{32}^{4-} + 8 \text{ H}_2\text{O}$	Z = 16/10 = 1,60
$6 \text{ WO}_4^{2-} + 10 \text{ H}^+ \leftrightarrows \text{W}_6 \text{O}_{19}^{2-} + 5 \text{ H}_2 \text{O}$	Z = 10/6 = 1,67
$10 \text{ WO}_4^{2-} + 17 \text{ H}^+ \leftrightarrows \text{HW}_{10}\text{O}_{32}^{3-} + 8 \text{ H}_2\text{O}$	Z = 17/10 = 1,70
$10 \text{ WO}_4^{2-} + 18 \text{ H}^+ \leftrightarrows \text{H}_2\text{W}_{10}\text{O}_{32}^{2-} + 8 \text{ H}_2\text{O}$	Z = 18/10 = 1,80
$10 \text{ WO}_4^{2-} + 19 \text{ H}^+ \leftrightarrows \text{H}_3 \text{W}_{10} \text{O}_{32}^- + 8 \text{ H}_2 \text{O}$	Z = 19/10 = 1,90

В работе [10] методами электронной спектроскопии и капиллярного электрофореза было проанализировано состояние ИПВА в водно-CH₃CN растворах натрия вольфрамата с $C_W = 3 \cdot 10^{-5}$ М и показано, что в данных растворах существуют изополианионы $W_{10}O_{32}^{4-}$, $W_6O_{19}^{2-}$, $W_{12}O_{38}(OH)_2^{6-}$ и $H_2W_{12}O_{38}(OH)_2^{4-}$. Данное исследование показало значительное влияние органического растворителя на комплексообразование в системе $WO_4^{2^-} - H^+$, так как считалось, что в водных растворах при $C_W \le 3 \cdot 10^{-5}$ М [1,11] происходит только образование протонированных форм HWO_4^- , H_2WO_4 и тетрамера $W_4O_{14}(OH)_2^{4-}$.

В данной работе методами pH-потенциометрического титрования, математического моделирования и электронной спектроскопии исследовано взаимодействие в растворах $WO_4^{2-} - H^+ - H_2O - CH_3CN$ при $C_W = 0,1$ M в области Z = 0,00 ÷ 2,50 и ионной силе 0,5 M (NaCl). Выбранный интервал кислотностей наиболее полно охватывает образование различных по составу ИПВА. Также полученные результаты позволили провести сравнительный анализ данных для среды вода-CH₃CN с данными для водной, водно-ДМФА и водно-ДМСО среды.

Экспериментальная часть. При проведении исследований были использованы водные растворы $Na_2WO_4·2H_2O$, HCl, NaCl и ацетонитрил (х.ч.). Точные концентрации устанавливали с помощью химического анализа: содержание W гравиметрически (гравиметрическая форма WO_3 , $\delta \le \pm 0.5$ %); концентрацию HCl титрованием навески натрия тетрабората $Na_2B_4O_7·10H_2O$ ($\delta \le \pm 0.5$ %).

Исследование превращений в водно-диметилформамидных растворах натрия вольфрамата проводили с помощью pH-потенциометрического титрования хлоридной кислотой в интервале кислотностей $Z = 0,0 \div 2,5$ с шагом титрования $\Delta Z = 0,02$ с использованием исходной концентрации натрия вольфрамата $C_W = 0,01$ M и ионной силы $\mu = 0,5$ M, которую задавали введением 4 M натрия хлорида. Вследствие ограниченной растворимости натрия вольфрамата в водно-ацетонитрильных растворах состав растворителя был ограничен концентрацией CH₃CN 40 % (v/v), а титрования были проведены в системах с содержанием CH₃CN от 0 до 40 % (v/v) (системы **0–IV** соответственно).

Измерения значений pH (с точностью $\delta \le \pm 0,04$) проводили на иономере лабораторном И-160 при 25,0 \pm 0,1 °C. Индикаторным электродом был селективный по отношению к ионам водорода стеклянный электрод ESL 63-07 Sr с координатами изопотенциальной точки pH_i = 7,0 \pm 0,3 pH и E_i= -25 \pm 10 mV, вспомогательным хлоридсеребряный электрод (Ag/AgCl, насыщенный расвтор KCl) марки EVL–1M3, потенциал которого составляет 202 \pm 2 mV относительно нормального водородного электрода. Небольшие отклонения температуры компенсировались с помощью термокомпенсатора (TCA 7.1). Правильность показаний иономера устанавливали с помощью стандартных буферных растворов – гидрофталата калия (pH = 4,01), тетрабората натрия (pH = 9,18) и тетраоксалата калия (pH = 1,68). Значения pH в системах с соответствующим содержанием ацетонитрила были получены на основе измеренных значений pH_{Aq-CH3CN} с учетом поправки Δ (-0,030, -0,067, -0,114 и -0,175 соответственно для систем I, II, III, IV), согласно уравнению: pH = pH_{Aq-DMF} – Δ [12].

Спектры поглощения растворов систем I–IV с Z=1,60 записывали на двухлучевом спектрофотометре SF-2000 в диапазоне $\lambda = 200 \div 1000$ nm. Растворы помещали в кварцевую кювету с толщиной поглощающего слоя 10 mm и записывали спектры относительно водно-CH₃CN растворов с соответствующей концентрацией ацетонитрила.

Обсуждение. Для получения информации о частицах, присутствующих в водно-ацетонитрильных растворах натрия вольфрамата при разных кислотностях, было проведено рН-потенциометри–ческое

титрование при 25,0 ± 0,1 °С. На основе данных титрования были построены зависимости pH = f(Z) для систем **0–IV** с разным содержанием CH₃CN (рис. 1). На кривых титрования, как и в случае других изученных систем: водной, водно-ДМФА [8] и водно-ДМСО [9] наблюдается два перегиба при Z=1,00÷1,20 и 1,40÷1,70, которые, скорее всего, обусловлены образованием паравольфраматов в гепта- и додекаформе и мета- и декавольфраматов соответственно.

Базируясь на результатах титрования было проведено математическое моделирование химических процессов, протекающих в системе $Na_2WO_4 - HCl - NaCl - CH_3CN - H_2O$ с использованием метода Ньютона, реализованного в программе CLINP 2.1 [13]. Целью такого моделирования был поиск модели, которая бы адекватно описала полученные физико-химические измерения с помощью уравнений закона действующих

Рис. 1. Зависимость pH от Z в системах $Na_2WO_4 - HCl - NaCl - CH_3CN - H_2O$ с концентрацией CH_3CN 0÷40 % (v/v) (I=0,50 моль/л)

масс и уравнением материального баланса. В первую очередь модель формировали из наиболее вероятных реакций образования ИПВА, далее проводили последовательную выбраковочную оптимизацию модели путем включения в ее состав реакций образования только тех комплексов, которые улучшали статистические характеристики модели (χ^2 -критерий, критериальная функция $U = \sum_{k=1}^{N} w_k \Delta_k^2$ (w_k – статистический вес, $\Delta_k = [H^+]^{(pac)} - [H^+]^{(sc)}$), математическое ожидание, сумма квадратов отклонений между рассчитанными и экспериментальными значениями pH $Q = \sum_{k=1}^{N} (\Delta p H_k)^2 = \sum_{k=1}^{N} (\Delta p H_k^{pac} - \Delta p H_k^{sc})^2$ для числа N

точек кривой титрования pH = f(Z)) по сравнению с полученными на предшествующих этапах моделиро-

Пойманова Е. Ю., Розанцев Г. М., Белоусова Е. Е., Чунтук Е. С.

вания. Для каждой точки титрования определялась величина $\Delta p H_i = p H_i^{\text{pac.}} - p H_i^{\text{эксп.}}$ (p H_i – значение pH системы в *i*-той точке), которая не должна была превышать значение 0,15 (утроенная ошибка эксперимента). Модель считалась адекватной, если для критерия χ^2 выполнялось неравенство $\chi^2_{\text{эксп}} < \chi^2_{f_{\alpha=0.05}}$, где $\chi^2_{f_{\alpha=0.05}}$ –

5 %-я точка распределения χ^2 для f = N – z степеней свободы, z – число неизвестных констант равновесия.

Поэтому на базе литературных данных с учётом наиболее часто предлагаемых разными авторами ИПВА для математического моделирования процессов в растворе в качестве стартовой для системы Na2WO4 - HCl - H2O - CH3CN (10 % v/v) была использована *Модель 1*, включающая анионы, образуюцие в водном растворе: $W_6O_{20}(OH)_2^{6-}$, $HW_7O_{24}^{5-}$, $W_{12}O_{40}(OH)_2^{10-}$, $W_{12}O_{38}(OH)_2^{6-}$. Оказалось, что модель хорошо описывает зону образования паравольфраматов 1,00<Z<1,20, тогда как в области мета- и декавольфраматов $Z \ge 1,40$, расхождение в рассчитанном и экспериментальном pH ($\Delta p H \approx 5,99$) значительно превышает допустимую величину ∆рН≤0,15 при неудовлетворительном глобальном критерии адекватности: $\chi^2_{_{3\kappaсn}}=587,4>>\chi^2_{_{f_{,\alpha=0.05}}}=148,8$. Таким образом, данную модель нельзя использовать для описания реальной ситуации в 10 % (v/v) CH₃CN растворе. Скорее всего, что как и в случае воднодиметилформамидных [8] и водно-диметилсульфоксидных [9] систем в области Z≥1,50 в 10 % (у/у) растворе наряду с использованными в модели анионами существует еще одна или несколько форм ИПВА. Поэтому в *Модель 1* был добавлен анион W₁₀O₃₂⁴⁻. Новая *Модель 2* лучше описала область Z≥1,50 $(\chi^2_{_{3\kappaсn}}=78,1<\chi^2_{f_{,\alpha=0.05}}=147,7)$, но расхождение в рассчитанном и экспериментальном pH превышало допустимую величину (ΔpH>0,15), поэтому в *Модель 3* была включена частица H₃W₁₂O₄₀(OH)₂⁷⁻(Z=1,42), кислотность образования которой лежит в неописанной ксп Модель 1 Моделью 2 области Z=1,35÷1,45. Таким образом Мо-Модель 2 Модель З

Моделью 2 области 2–1,35–1,45. таким образом *Модель* 3 (W₆O₂₀(OH)₂⁶⁻, HW₇O₂₄⁵⁻, W₁₂O₄₀(OH)₂¹⁰⁻, H₃W₁₂O₄₀(OH)₂⁷⁻, W₁₂O₃₈(OH)₂⁶⁻, W₁₀O₃₂⁴⁻) благодаря хорошему совпадению экспериментальных точек с теоретической кривой (рис. 2) (Δ pH<0,12, $\chi^2_{_{3ксп}}$ =20,5< $\chi^2_{_{f,\alpha=005}}$ =146,6), адекватна реальному процессу. Аналогичным образом для систем **II-IV** были подобраны модели, которые представлены в табл. 1.

Рис. 2 Выбор модели ИПВА в водно-CH₃CN растворе

Таблица 1

Частица	Z	lgK _c (I=0,50 моль/л) при концентрации CH ₃ CN v/v %				
		0	10	20	30	40
$W_6O_{20}(OH)_2^{6-}$	1,00	50,2	50,6	52,1	54,8	56,2
$W_7 O_{24}^{6-}$	1,14	-	—	-	71,0	72,6
$W_{12}O_{40}(OH)_2^{10-}$	1,17	117,5	117,8	121,9	-	-
HW ₇ O ₂₄ ⁵⁻	1,29	71,6	71,1	73,9	_	_
$H_2W_{12}O_{40}(OH)_2^{8-}$	1,33	-	_		135,9	141,2
$H_3W_{12}O_{40}(OH)_2^{7-}$	1,42	130,6	131,0	135,5	138,7	145,1
$W_{12}O_{38}(OH)_2^{6-}$	1,50	135,9	134,7	139,7	142,2	-
$W_{10}O_{32}^{4-}$	1,60	-	114,4	119,9	120,8	122,7
$W_6O_{19}^{2-}$	1,70	-	_	-	72,0	74,2

Средние значения концентрационных констант lgK_C образования ИПВА в системах $Na_2WO_4-HCl-NaCl-CH_3CN-H_2O$

В ходе математического моделирования с доверительной вероятностью 95 % были рассчитаны концентрационные константы равновесия образования K_c частиц в исследуемой системе, которые составляли химическую модель (табл. 1). Как и в случае водно-ДМФА [8] и водно-ДМСО систем [9], в данном случае можно отметить рост значения lg K_c с увеличением доли ацетонитрила.

Рассчитанные константы образования позволили построить диаграммы распределения разных ионных форм в соответствии с кислотностями в системах с различным содержанием CH₃CN. Полученные диаграммы распределения ИПВА (рис. 3) свидетельствуют о том, что добавление ацетонитрила в водную систему смещает равновесие процесса в сторону образования гептавольфрамат-аниона $7W_{12}O_{40}(OH)_2^{10-} + 2OH^- \leftrightarrows 12W_7O_{24}^{6-} + 8H_2O$, что согласуется и с поведением данного процесса в водно-ДМФА и водно-ДМСО системах, причем при концентрациях $CH_3CN > 30$ % доля гептавольфрамат-аниона в растворе при выше 90 %, что свидетельствует о стабилизирующем действии ацетонитрила на $W_7O_{24}^{6-}$. Доля гексавольфрамат-аниона ($W_6O_{20}(OH)_2^{6-}$) с возрастанием содержания ацетонитрила в системе увеличивается. В системах **I–IV** при увеличении содержания органического компонента раствори-

теля наблюдается смещение равновесий $12HW_7O_{24}^{5-} + 10H_2O \leftrightarrows 7H_2W_{12}O_{40}(OH)_2^{8-} + 4OH и <math>12HW_7O_{24}^{5-} + 12H_2O \leftrightarrows 7H_3W_{12}O_{40}(OH)_2^{7-} + OH в сторону образования протонированных форм паравольфрамата Б, таким образом <math>HW_7O_{24}^{5-}$ полностью исчезает из растворов при 30 % (v/v) CH₃CN. Анионы $W_{12}O_{38}(OH)_2^{6-}$ и $W_{10}O_{32}^{4-}$ находятся в равновесии друг с другом: $5W_{12}O_{38}(OH)_2^{6-} + 6H^+ \leftrightarrows 6W_{10}O_{32}^{4-} + 8H_2O$, причем равновесие в водно-ацетонитрильном растворе смещено в сторону декавольфрамат-аниона. Однако содержание декавольфрамат-аниона максимальное при 20 % (v/v) CH₃CN (рис. 3, *a*), а при дальнейшем повышении доли ацетонитрила содержание $W_{10}O_{32}^{4-}$ уменьшается, однако не становится меньше 45 %. Это уменьшение связано с тем, что в системе при концентрации CH₃CN $\ge 30\%$ (v/v) образуется гексавольфрамат-аниона со структурой Линдквиста $W_6O_{19}^{2-}$ и $W_{10}O_{32}^{4-}$ сосуществуют в равновесии, а добавление H_2O смещает равновесие в сторону $W_{10}O_{32}^{4-}$ [14].

Рис. 3 Диаграммы распределения частиц ИПВА в системе Na₂WO₄ – HCl – NaCl - H₂O – CH₃CN при содержании CH₃CN 20 (*a*), 30 (δ) (v/v) %.

Таким образом, в 0,01 М растворе натрия вольфрамата при подкислении до Z=1,60 (кислотность образования декавольфрамат-аниона) наибольшая доля $W_{10}O_{32}^{4-}$ образуется при 20 % v/v содержании CH₃CN. Подтверждением этому служат абсорбционные спектры растворов натрия вольфрамата, подкисленных до Z=1,60, с различным содержанием ацетонитрила. Пик при 325 нм, характерный для декавольфрамат-аниона, становится наиболее интенсивным при содержании 20 % v/v CH₃CN (рис. 4).

Полученные результаты согласуются с данными, представленными в работе [10] для растворов с исходной концентрацией натрия вольфрамата 5·10⁻³ М.

Рис. 4 Электронные спектры, записанные для свежеприготовленных водно-ацетонитрильних растворов Na_2WO_4 (C=5·10⁻³M) при Z=1,60. Содержание ацетонитрила в растворах % (v/v) отмечено на рисунке

Выводы. Методом pH-потенциометрического титрования и электронной спектроскопии исследованы процессы образования ИПВА в водно-ацетонитрильной среде. В системах Na₂WO₄ – HCl – NaCl – CH₃CN – H₂O наиболее устойчивы ИПВА: гептавольфрамат-анион (W₇O₂₄⁶⁻), декавольфрамат-анион (W₁₀O₃₂⁴⁻), гесавольфрамат-анион со структурой Линдквиста (W₆O₁₉²⁻) и протонированный паравольфраматанион (H₃W₁₂O₄₀(OH)₂⁷⁻). Установлено стабилизирующее влияние вода-ацетонитрильного раствора с концентрацией CH₃CN > 30 % (v/v) на гептавольфрамат-анион, декавольфрамат-анион образуется в растворах во всем диапазоне концентрации CH₃CN от 10 до 40 % (v/v), причем при CH₃CN < 40 % (v/v) он образуется дополнительно из метавольфрамата, однако при CH₃CN ≥ 30 % (v/v) переходит в гексавольфрамат.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pope M. T. Heteropoly and Isopoly Oxometallates / M. T. Pope. Berlin: Springer-Verlag, 1983. 285 p.
- Haufe P. Raman-spectrophotometric determination of the tungstate anion and its isopolyanions in aqueous systems / P. Haufe // Fresenius Z. Anal. Chem. 1982. – Vol. 310, No 5. – P. 388–391.
- Maksimovskaya R. I. ¹⁷O and ¹⁸³W NMR studies of the paratungstate anions in aqueous solutions / R. I. Maksimovskaya, K. G. Burtseva // Polyhedron. – 1985. – Vol. 4, No 9. – P. 1559–1562.
- Cruywagen J. J. Van der Tungsten (VI) equibria: A Potentiometric and calorimetric investigation / J. J. Cruywagen, F. I. Merve // J. Chem. Soc. Dalton Trans. – 1987. – P. 1701–1705.

Пойманова Е. Ю., Розанцев Г. М., Белоусова Е. Е., Чунтук Е. С.

- Hastings J. J. A ¹⁸³W, ¹H and ¹⁷O nuclear magnetic resonance study of aqueous isopolytungstates / J. J. Hastings, O. W. Howarth // J. Chem. Soc. Dalton Trans. – 1992. –P. 209–215.
- Terms S. Reduction of the decatungstate anion in nonaqueous solution and its confirmation as "polytungstate-Y" / S. Terms. M. T. Pope // Inorganic Chemistry. – 1978. – Vol. 17, No 2. – P. 500–501.
- Electronic spectra of mixed valence reduced heteropolyanions / J. M. Fruchart, G. Hervé, J. P. Launay [et al.] // Journal of Inorganic Nuclear Chemistry. – 1976. – Vol. 38. – P. 1627–1634.
- Пойманова Е. Ю. Определение условий образования декавольфрамат-анионов в водно-диметилформамидной среде / Е. Ю. Пойманова, Г. М. Розанцев, Е. Е. Белоусова // Вісник Донецького національного університету, Сер. А: Природничі науки. – 2012. – № 1. – С. 152–156.
- 9. Пойманова Е. Ю. Состояние изополивольфрамат-анионов в водно-диметилсульфоксидной среде / Е. Ю. Пойманова, Г. М. Розанцев, А. С. Божий // Вопр.химии и хим.технологии. 2013. № 5. С. 127–132.
- Himeno S. Capillary electrophoretic study on the formation and transformation of isopolyoxotungstates in aqueous and aqueous-CH₃CN media / S. Himeno, I. Kitazumi // Inorg. Chim. Acta. – 2003. – Vol. 355. – P. 81–86.
- 11. Загальская Е. Ю. Анализ состояния вольфрама (VI) в разбавленных водном и ацетонитрильном растворах / Е. Ю. Загальская, Г. М. Розанцев, С. В. Радио // Наукові праці ДонНТУ. Серія: хімія і хімічна технологія. – 2010. – Вип. 14 (162). – С.40–48.
- 12. δ Conversion parameter between pH scales (^s_wpH and ^s_spH) in acetonitrile/water mixtures at various compositions and temperatures / L. G. Gagliardi, C. B. Castells, C. Rafols [et al.] // Anal.Chem. 2007. Vol. 79. P. 3180–3187.
- 13. Холин Ю. В. Количественный физико-химический анализ комплексообразования в растворах и на поверхности химически модифицированных кремнеземов: содержательные модели, математические методы и их приложения / Ю. В. Холин. – Харьков: Фолио, 2000. – 288 с.
- Das polywolframation Y, ein dekawolframation / E. Birkholz, J. Fuchs, W. Schiller [et al.] // Z. Naturforsch. 1971. Vol. 26b, No 4. – P. 365–366.

Поступила в редакцию 29.05.2014 г.

РЕЗЮМЕ

Методами pH-потенциометричного титрування, математичного моделювання (програма CLINP 2.1) та електронної спектроскопії досліджено процес утворення ізополівольфрамат-аніонів (ІПВА) у підкислених водноацетонітрильних розчинах із $C_W=0,01$ M, розраховано концентраційні константи утворення ІПВА. У системах $Na_2WO_4 - HCl - NaCl - CH_3CN - H_2O$ при концентрації CH₃CN>30 % (v/v) стійкий гептавольфрамат-аніон, найбільша частка декавольфрамат-аніону утворюється при CH₃CN 20 % (v/v), при CH₃CN>30 % (v/v) в системі утворюється гесавольфрамат-аніон зі структурою Ліндквіста ($W_6O_{19}^{-2}$).

Ключові слова: рН-потенціометрія, моделювання, рівновага, водно-ацетонітрильне середовище, ізополівольфрамат-аніон.

SUMMARY

The methods of the pH-potentiometric titration, mathematical simulation (CLINP 2.1 program) and electronic spectroscopy were used to investigate the isopolytungstate-anion (IPTA) formation processes in acidified aqueous-acetonitrile solutions of sodium tungstate at $C_W = 0.01$ M, concentration formation constants of IPTA were calculated. In the systems Na₂WO₄ – HCl – NaCl – CH₃CN – H₂O with concentrations CH₃CN>30 % (v/v) heptatungstate-anion is stable, the highest content of decatungstate-anion was noted in the system with CH₃CN 20 % (v/v), at concentration CH₃CN>30 % (v/v) hexatungstate-anion with Lindkvist structure is formed.

Keywords: pH-potentiometric investigation, modeling, equilibrium, aqueous-acetonitrile media, isopolytungstate-anion.