Е. И. ГАЛАГУРЯ (Украинская государственная академия железнодорожного транспорта)

ИСПЫТАНИЕ СТАЛЬНЫХ И СТАЛЕБЕТОННЫХ КОЛОНН КОРОБЧАТОГО СЕЧЕНИЯ НА ОСЕВОЕ СЖАТИЕ

Наведені результати іспиту тонкостінних сталевих і сталебетонних колон коробчатого перетину на центральний стиск. У ході експерименту були отримані критичні зусилля місцевої втрати стійкості сталевих колон і несуча здатність сталебетонних колон.

Приведены результаты испытания тонкостенных стальных и сталебетонных колонн коробчатого сечения на центральное сжатие. В ходе эксперимента были получены критические усилия местной потери устойчивости стальных колонн и несущая способность сталебетонных колонн.

The article reresents the outcomes of testing the thin-walled steel and steel-concrete pillars of box-like section for central compression. In the course of experiment critical efforts of local stability loss of steel pillars and carrying ability of steel-concrete pillars were received.

Задачи снижения металлоемкости, стоимости и трудоемкости строительства, могут быть успешно решены путем применения конструкций с внешним армированием взамен стальных и во многих случаях железобетонных. Этому способствует ряд преимуществ сталебетонных конструкций, а именно: упрощение технологии изготовления; сокращение расходов на опалубку и закладные детали; простота сборки, ремонта и усиления; лучшая сопротивляемость в агрессивных средах; понижение высоты элементов за счет отсутствия защитного слоя и компактного расположения арматуры. Наиболее распространенными видами конструкций с внешним армированием являются колонны.

Автором выполнены экспериментальные исследования напряженно-деформированного состояния сталебетонных колонн коробчатого сечения на осевое сжатие. Для проведения эксперимента было запроектировано и изготовлено четыре серии образцов по три образца в каждой серии в виде металлических колонн пустотелых и с заполнителем (в качестве заполнителя использовали бетон). Высота образцов: 400 мм (1, 2-й серий); 800 мм (3, 4-й серий). При этом 1, 3-я серии представляют собой пустотелые образцы, а 2, 4-я – с заполнителем, поперечные сечения экспериментальных образцов представлены на рис.1. Относительные размеры поперечных сечений b/a = 1. Толщина оболочки $\delta = 2$ мм. В образцах оболочка выполнена из стальной квадратной электросварной холоднодеформированной трубы.

Бетонирование опытных образцов 2 и 4 серий было выполнено в лаборатории кафедры «Строительная механика и гидравлика» Украинской государственной академии железнодорожного транспорта.

Для изготовления бетонной смеси составом по массе 1:1, 23:2,9, при водоцементном отношении 0,38...0,4, использовался шлакопортландцемент Балаклейского цементно-шиферного комбината активностью 400, песок Безлюдовского карьера модулем крупности 1...1,4. В качестве крупного заполнителя использовался гранитный щебень марки М-1200 (по прочности) фракции 5...10 мм. Контрольные и опытные образцы выдерживали в естественных условиях до набора ими 100 % прочности.

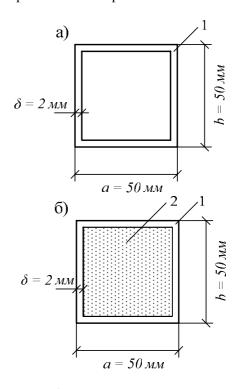


Рис. 1. Геометрические размеры поперечных сечений опытных образцов: a – образцы l, d серий; d – образцы d, d серий; d – квадратная оболочка; d – бетонное ядро

Для определения прочностных и деформативных характеристик применяемых материалов были проведены стандартные испытания. Прочность и деформативность бетона на сжатие определялись по результатам испытаний кубов $10\times10\times10$ см; предел прочности бетона на сжатие $R_b=25$ МПа; модуль упругости бетона $E_b=28,1\cdot10^3$ МПа. Деформативно-прочностные характеристики стали получены в результате испытаний на растяжение полосок размерами $20\times4\times0,2$ см в количестве трех штук. Предел текучести стали $\sigma=343$ МПа.

Металлические колонны 1 и 2 серий испытывались на гидравлическом прессе ИП-2000. Испытание колонн 3 и 4 серий производились на прессе ПММ-125. Опорные устройства обеспечивали шарнирную схему закрепления образца. Схема загружения образцов представлена на рис. 2

Рис. 2. Схема загружении образцов

В процессе испытаний измерялись продольные и поперечные деформации. В образцах 1, 2, 3 и 4 серий по всему периметру среднего по длине сечения наклеивались тензодатчики в количестве 8 штук (4 — в продольном направлении и 4 в поперечном направлении). Для определения прогибов было установленно 2 индикатора (см. рис. 2). Отсчеты по приборам снимались на каждой ступени нагрузки один раз до

уровня $N/N_{\rm пред} \le 0,5$, а при $N/N_{\rm пред} > 0,5$ дважды — сразу после установления необходимого уровня и после пятиминутной выдержки для фиксирования изменений деформаций во времени.

В ходе испытаний пустотелых колонн изучалась местная потеря устойчивости сжатых тонкостенных стержней прямоугольного сечения, были получены величины критических усилий местной потери устойчивости и предела несущей способности выпучившихся стержней, а также определены с помощью тензометрических измерений эпюры продольных до- и закритических напряжений в поперечных сечениях тонкостенных стержней и построены графики продольных и поперечных деформаций в двух сечениях.

В табл. 1 содержаться геометрические характеристики испытанных пустотелых образцов и результаты сопоставления с теоретическими расчетами. Как видно из приведенных в таблице результатов, теоретические расчеты критических напряжений и предела несущей способности дают избыточную, по сравнению с экспериментальным результатом, относительную ошибку, не превышающую 5 %. То, что полученные экспериментальным путем значения критических напряжений меньше теоретических, можно объяснить наличием начальных несовершенств в реальных стержнях. Ошибки в определении несущей способности можно отнести за счет специфического характера использованной в расчетах величины предела упругости $\sigma = 245 \text{ M}\Pi \text{a}$ при остаточных деформациях не более 0,2 %, являющейся, по существу, условной границей между областями упругой и пластической работы материала стержней. Можно предположить, что в случае использования в расчетах напряжений физического предела упругости были бы получены более точные значения несущей способности стержней.

Таблица 1 Результаты испытаний пустотелых металлических колонн на центральное сжатие

№ серии	№ образцов	Эксперимент		Теория	
		σ _{пр} , ΜΠа	<i>N</i> , кН	σ _{пр} , МПа	Погр., %
1	1	346	133	354	2,2
	2	338	132	354	4,5
	3	343	130	354	3,1
3	1	281	108	282	0,3
	2	286	110	282	1,4
	3	289	111	282	2,4

В экспериментальных исследованиях представленных в табл. 2 содержатся результаты испытаний сталебетонных коротких колони на центральное сжатие.

Таблица 2 Результаты испытаний сталебетонных колонн на центральное сжатие

		Эксперимент		
№ серии	№ образцов	о пр, МПа	<i>N</i> , кН	
	1	355	155	
2	2	357	156	
	3	348	152	
	1	326	137	
4	2	327	138	
	3	322	136	

Величины отношений средних напряжений в бетоне сталебетонной колонны к прочности неизолированного бетона зависят от размеров оболочки и ее толщины. Наиболее эффективно бетон работает в квадратной обойме. Как отмечалось ранее, причиной повышения прочности бетона в оболочке является боковое обжатие. Бетонное ядро испытывает неравномерное напряженное состояние, изменяющееся в зависимости от отношения сторон обоймы. Наиболее нагружен бетон в зонах, непосредственно прилегающих к углам сечения и расположенным по диагоналям. Здесь наибольшее боковое обжатие. По мере удаления от угловых зон и диагоналей боковое давление ослабевает.

Механизм разрушения тонкостенных металлических колонн, заполненных бетоном, представляется следующим: разрушение бетона в угловых зонах сечения приводит к исчезновению контактных сил в этих зонах сечения. Поскольку продольные напряжения в пластинах контура близки к $\sigma_{\scriptscriptstyle T}$, то уменьшение до нуля растягивающих контактных сил на этом участке, является причиной выпучивания пластины. В контуре с квадратным поперечным сечением пластины выпучиваются одновременно в одном сечении по длине образца.

Проанализировав результаты испытаний стальных и сталебетонных колонн, можно сделать вывод:

- 1. Стальные колонны с заполнителем из бетона отличаются от пустотелых колонн более рациональным использованием материалов, выражающемся в том, что бетонное ядро имеет повышенную прочность за счет бокового обжатия, создаваемого оболочкой.
- 2. Заполнитель, препятствуя местной потере устойчивости, увеличивает сопротивляемость контура. В этом случае контур работает как отдельные шарнирно-опертые пластинки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бондаренко В. М. Устойчивость гибких железобетонных стержней под действием нескольких сжимающих сил / В. М. Бондаренко, Э. Д. Чихладзе // Прочность и деформативность железобетонных конструкций. — Харьков, 1969.
- 2. Тимошенко С. П. Устойчивость стержней пластин и оболочек. М., 1971, 808 с.

Поступила в редколлегию 04.12.2006.