Bulletin of Dnipropetrovsk University. Series Chemistry

p-ISSN 2306-871X, e-ISSN 2313-4984 journal homepage: http://chemistry.dnu.dp.ua

UDC 544.653.22

IDENTIFICATION OF PHASE STRUCTURE OF PLATED ZINC ALLOYS BASED ON A LINEAR VOLTAMMETRY IN ALKALINE SOLUTIONS

Lina V. Petrenko^{*}, Viktor I. Korobov

Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipropetrovsk, 49010, Ukraine Received 4 October 2016; revised 5 November 2016; accepted 6 November 2016; available online 31 December 2016

Abstract

The purpose of research was the development of new and effective technique of electroplatings phase composition analysis by inversion voltammetric methods. As a result the possibility of the phase composition of the plated zincbased alloys identification using anodic linear voltammetry in alkaline solutions was shown. The phase composition Zn-(0.27-9.4)% Fe alloy electroplated from alkaline zincate solutions was defined based on voltammetry data. As part of the Zn-Fe alloys the phase of hexagonal structure was found which is absent in the equilibrium phase diagram. The ratio of hexagonal crystal lattice axes (c/a) and the electron concentration (e/a) for this phase are significantly different from the corresponding values for the primary solid solution η . From the analysis of c/a and e/a values of investigated Zn-Fe alloy the defined phase was identified as a solid solution phase type ε . It also was shown that anodic linear voltammetry accomplished in alkaline solutions is more sensitive to the identification of the phase composition of zinc alloys than the traditional X-ray method and stripping voltammetry.

Keywords: electrolytic zinc alloys; phase analysis; linear voltammetry.

ВИЗНАЧЕННЯ ФАЗОВОЇ БУДОВИ ГАЛЬВАНІЧНИХ ПОКРИТТІВ ІЗ ЦИНКОВИХ СПЛАВІВ НА ПІДСТАВІ ЛІНІЙНОЇ ВОЛЬТАМПЕРОМЕТРІЇ В ЛУЖНИХ РОЗЧИНАХ

Ліна В. Петренко^{*}, Віктор І. Коробов

Дніпропетровський національний університет імені Олеся Гончара, просп. Гагаріна, 72, Дніпропетровськ, 49010, Україна

Анотація

Показана можливість визначення фазового складу електролітичних сплавів на основі цинку за допомогою анодної лінійної вольтамперометрії, виконаної в лужних розчинах. Виходячи з даних вольтамперометрії, визначено фазовий склад Zn-(0.27-9.4)% Fe сплавів, електроосаджених з лужних цинкатних розчинів. У складі Zn-Fe сплавів виявлена фаза гексагональної будови, яка відсутня на рівноважній фазовій діаграмі. Величини співвідношення осей гексагональної кристалічної решітки (с/а) і електронної концентрації (е/а) для цієї фази значно відрізняються від відповідних значень для первинного твердого розчину *п*. Виходячи з аналізу значень с/а і е/а досліджуваних Zn-Fe сплавів, виявлену фазу ідентифікували як фазу твердого розчину типу є. Також показано, що анодна лінійна вольтамперометрія, виконана в лужних розчинах, більш чутлива до ідентифікації фазового складу цинкових сплавів, ніж рентгенофазовий метод і традиційна стриппінг-вольтамперометрія.

Ключові слова: електролітичні сплави цинку; фазовий аналіз; лінійна вольтамперометрія.

ОПРЕДЕЛЕНИЕ ФАЗОВОГО СТРОЕНИЯ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ ИЗ ЦИНКОВЫХ СПЛАВОВ ЛИНЕЙНОЙ ВОЛЬТАМПЕРОМЕТРИЕЙ В ЩЕЛОЧНЫХ **PACTBOPAX**

Лина В. Петренко*, Виктор И. Коробов

Днепропетровский национальный университет имени Олеся Гончара, просп. Гагарина, 72, Днепропетровск, 49010, Украина

*Correspoding author: tel.: +380990194576; e-mail address: lksv@online.ua © 2016 Oles Honchar Dnipropetrovsk National University doi: 10.15421/081616

Аннотация

Показана возможность определения фазового состава электролитических сплавов на основе цинка при помощи анодной линейной вольтамперометрии, выполненной в щелочных растворах. Исходя из данных вольтамперометрии, определен фазовый состав Zn-(0.27-9.4)% Fe сплавов, электроосажденных из щелочных цинкатных растворов. В составе Zn-Fe сплавов обнаружена фаза гексагонального строения, которая отсутствует на равновесной фазовой диаграмме. Величины соотношения осей гексагональной кристаллической решетки (*c/a*) и электронной концентрации (*e/a*) для этой фазы значительно отличаются от соответствующих значений для первичного твердого раствора *η*. Исходя из анализа значений *с/а* и *е/а* исследуемых Zn-Fe сплавов, обнаруженную фазу идентифицировали как фазу твердого раствора типа *ε*. Также показано, что анодная линейная вольтамперометрия, выполненная в щелочных растворах, более чувствительная к идентификации фазового состава цинковых сплавов, чем рентгенофазовый метод и традиционная стриппинг-вольтамперометрия.

Ключевые слова: электролитические сплавы цинка; фазовый анализ; линейная вольтамперометрия.

Вступ

Електролітичні сплави цинку з металами родини Феруму характеризуються більш високими функціональними властивостями порівняно з чистим цинком. Насамперед це стосується антикорозійних характеристик [1–3]. Електролітичні покриття Zn–(Fe, Co, Ni) сплавами використовуються в автомобільній, аерокосмічній, нафтовій, газовій та ін. галузях промисловості [2–4]. Ці сплави є гідною заміною токсичним кадмієвим покриттям [1; 2].

Властивості сплавів насамперед визначаються їх фазовим складом. Для фазової ідентифікації сплавів використовують: рентгенодифракційний метод, електронну мікроскопію, Оже-спектроскопію, гаммарезонансну спектроскопію тощо. Визначення фазового складу електролітичних покриттів сплавами традиційними методами ускладнене. Зокрема, в разі Оже-спектроскопії коригування селективне необхідне на розпилення одного з компонентів сплаву [5]. Визначення фазового складу електролітичних рентгенодифракційним сплавів методом може бути ускладнене через незначну товщину покриття і малий вміст фазових складових у сплаві. Електролітичні сплави також можуть містити складні й наднасичені фази з непевною кристалічною структурою, що додатково ускладнює ідентифікацію фаз вказаним методом.

Починаючи з робіт Swathirajan S. [6] і дотепер [2; 7] для визначення фазового складу електролітичних цинкових сплавів стриппінгвикористовується лінійний вольтамперометричний аналіз, який базується засадах інверсійної на вольтамперометрії [8; 9] i полягає В послідовному анодному розчиненні компонентів і фаз, що містяться в сплаві. На стриппінг-вольтамперограмах кожному

компоненту сплаву має відповідати власний реєстрації пік. Для стриппінгвольтамперограм на покриттях з цинкових сплавів традиційно підбирають умови, за яких відбувається повне розчинення покриття. Для цього електроосаджують дуже тонкі (не шари. більше. ніж 1 мкм) а анодні вольтамперограми реєструють У середовищах, в яких під час анодної поляризації відбувається активне розчинення компонентів сплавів, не обтяжене пасиваційними явишами.

Обмеженість традиційної лінійної стриппінг-вольтамперометрії полягає в неможливості дослідження товстих шарів покриттів, через що неможливо виявити у складі покриттів фазу, яка присутня в незначній кількості. Крім того, якісний і кількісний склад шарів електролітичного сплаву біля поверхні підкладки може суттєво відрізнятися від складу його подальших шарів, що за повного розчинення покриттів незначної товщини ускладнює фазову ідентифікацію сплавів методом традиційної стриппінг-вольтамперометрії. Таким чином, є актуальним пошук розчинів електролітів, які б дозволили усунути зазначені недоліки визначення фазового складу методом лінійної стриппінг-вольтамперометрії.

Методика експерименту

Покриття із Zn і Zn–Fe сплавів електроосаджували із цинкатних електролітів з блискоутворювальною добавкою ЛВ-4584 (полімерна тетраалкіламонієва сіль). Склади електролітів і густина струму електроосадження *i*_k наведені нижче:

Zn: ZnO – 20 г/л; NaOH – 100 г/л; ЛВ-4584 – 2 мл/л. *i*_k = 5 А/дм².

Zn-Fe: ZnO – 20–30 г/л; NaOH – 100–200 г/л; Fe₂(SO₄)₃·9H₂O – 0,8–30 г/л; триетаноламін (HOCH₂CH₂)₃N – 30 мл/л; ЛВ-4584 – 2–2.5 мл/л. i_k = 4 А/дм².

Кількісний вміст Fe в покриттях визначали фотометрично [10] 3 використанням фотоелектроколориметра КФК-2М. Рентгеноструктурний аналіз здійснювали за допомогою рентгенівського дифрактометра ДРОН-2 в CuK_α-випромі-нюванні з графітовим монохроматором. Визначення фазового складу покриттів проводили за базою даних JCPDS. Вміст компонентів у сплавах і їх фазовий аналіз здійснювали на покриттях, осаджених на мідні підкладки.

Вольтамперні криві реєстрували в триелектродній електрохімічній комірці на стаціонарному робочому електроді. Покриття з цинку і зі сплавів електроосаджували на торець мідного стрижня, запресованого в тефлон. Електродом порівняння слугував хлоридсрібний насичений електрод 3 капіляром Лугіна. Реєстрацію і, Е-кривих здійснювали в 1.0 моль/л розчині NaOH і в 1 моль/л розчині NaCl. Швидкість сканування потенціалу складала: в розчинах NaOH -2 мВ/с; розчинах NaCl 1 мВ/с. В _ Електрохімічні виміри виконували 3 використанням потенціостата ПИ-50-1 i програматора ПР-8.

Для приготування розчинів натрій гідроксиду використовували NaOH кваліфікації «ос. ч», розчинів натрій хлориду – NaCl кваліфікації «ч.д.а.». Усі розчини готували з використанням бідистильованої води.

Значення електродних потенціалів наведені відносно стандартного водневого електрода. Вміст металів у сплавах надано в атомних відсотках.

Результати та їх обговорення

Згідно 3 нашими попередніми дослідженнями [11], між фазовим складом електролітичних цинкових сплавів і їх анодними вольтамперограмами, зареєстрованими в лужних розчинах, існує зв'язок (рис. 1). Тобто на підставі вигляду вольтамперограм сплавів, зареєстрованих у лужних розчинах, можна зробити висновок щодо їх фазового складу.

Анодні волтамперограми електролітичних сплавів Zn-Fe, а також чистого цинкового покриття наведено на рис. 2. Відповідно до аналізу вольтамперних кривих сплавів, можна зробити висновок, що сплав Zn-0.27% Fe є гетерогенним. До його складу входять фаза цинку й одна чи кілька ферумвмісних фаз у незначній кількості. Сплави з вмістом Fe від 0.88 до 3.5 % є також гетерогенними. До їх входять фаза цинку, якій складу на вольтамперограмах відповідає максимум А (рис. 2), і дві ферумвмісні фази: ZnFe (1) (максимум **B**) і ZnFe (**2**) (плече **C**). Фаза відноситься ZnFe (**2**), найімовірніше, д0 інтерметалічних фаз з кубічною кристалічною решіткою, а саме: Г₁ або Г. Сплави Zn-8.4% Fe i Zn-9.4% Fe, згідно з їх вольтамперограмами, містять єдину ZnFe (1)-фазу: на *і, Е*-кривих цих сплавів спостерігається один максимум В.

Рентгенограми електролітичних Zn-Fe сплавів і розраховані для них параметри гексагональної кристалічної решітки (*a* і *c*) наведено на рис. 3. На дифрактограмах сплавів спостерігаються рефлекси, які характерні цинку. Параметри для кристалічної решітки Zn-0.27% Fe сплаву не відрізняються від параметрів, знайдених для чистого цинкового покриття (a = 0.267 нм; с = 0.492 нм). Останнє є підтвердженням Zn-0.27% гетерогенності Fe сплаву. Підвищення вмісту Fe в сплавах викликало зміну значень a і c. Сплави з вмістом Fe 8.4 і 9.4 % за параметрами кристалічної решітки значно відрізняються від чистого цинку.

Залежно від кількості валентних електронів на атом (електронної концентрації e/a) тверді розчини з гексагональною симетрією утворюють три незалежні фази: η , ε і ζ [12; 13]. Для цих фаз властива характерна зміна співвідношення осей c/a залежно від електронної концентрації:

η-фаза – обмежений твердий розчин: *е/а* 1.93–2.00; *с/а* 1.7–1.85;

є-фаза: *е/а* 1.65–1.89; *с/а* ~ 1.58;

ζ-фаза: *e/a* 1.32–1.83; *c/a* ~ 1.63.

Водночас, за величин $e/a \approx 1.9 \div 1.95$ не існує гомогенних сплавів [12]. η -Тверді розчини вперше з'являються за $e/a \gtrsim 1.95$, коли значення c/a більше за 1.77. η - і ε -Фази розділяє гетерогенна зона.

Звичайно, значення *e/a* і *c/a* для різних систем можуть дещо відрізнятися. Так, величини осей гексагональних ґраток сплавів будуть залежати від електронної будови і розміру атомів, їх електронегативності [13].

Величини *с/а* і *е/а*, розраховані для досліджуваних електролітичних Zn-Fe сплавів (валентність Zn приймалась рівною 2, Fe – рівною 0 [13]), надано на рис. 4. Можна стверджувати, що сплави з вмістом Fe 8.4 і 9.4 % складаються з *ε*-фази. Таким чином, фаза, позначена нами як ZnFe (**1**), є *ε*-фазою. Ця фаза відсутня на рівноважній фазовій діаграмі Zn–Fe сплаву. Про присутність у гальванічних сплавах Zn–(<13 %) Fe фази, яку за кристалографічними характеристиками можна віднести до *ε*-фази, також зазначено в роботі [14].

Для ідентифікації ZnFe (**2**)-фази було порівняно дифрактограму Zn–9.4% Fe сплаву, який містить *ε*-фазу, з дифрактограмою Zn-0.88% Fe сплаву, який, судячи з його анодної вольтамперограми, містить ще й фазу ZnFe (**2**). На дифрактограмі Zn-0.88% Fe (рис. 5) наявні низькоінтенсивні рефлекси *Г*-фази, які відсутні на дифрактограмі Zn-9.4% Fe. Отже, згідно з більш детальним аналізом дифрактограм, до складу сплаву Zn-0.88% Fe входить інтерметалічна *Г*-фаза.

Fig. 1. Polarization curves of the plated zinc-based alloys with varying phase composition in 1.0 mol/L NaOH Рис. 1. Вид анодних вольтамперограм електролітичних сплавів на основі цинку з різним фазовим складом, зареєстрованих у 1.0 моль/л розчині NaOH

Рис. 4. Залежність параметра *с/а* гексагональної кристалічної решітки від електронної концентрації *е/а* для Zn-Fe сплавів

Fig. 5. XRD patterns of Zn-0.88% Fe и Zn-9.4% Fe alloys Рис. 5. Рентгенограми сплавів Zn-0.88% Fe i Zn-9.4% Fe

Порівняння фазового складу електролітичних Zn-Fe сплавів, визначеного на підставі анодних вольтамперограм (VAG) і на підставі рентгенодифракційного методу (XRD), приведено в таблиці. Таким чином, анодний лінійний вольтамперний аналіз цинкових сплавів y лужних розчинах фазову дозволив уточнити будову електролітичних сплавів. Використання лише рентгенофазового методу не дозволило провести ідентифікацію фазової будови сплавів через малу кількість деяких ïx складових.

Традиційні стриппінг-вольтамперограми тонких шарів сплавів у 1 моль/л розчині NaCl (рис. 6) підтвердили, що за незначної кількості фази її ідентифікація цим методом ускладнена або зовсім неможлива. Таким чином, використання розчину лугу замість традиційних для стриппінг-вольтамперометрії розчинів полегшує ідентифікацію фаз. До того ж дозволяє використовувати товстіші шари гальванічних покриттів, що виключає вплив підкладки на результати фазового аналізу. Так, електроосаджений цинк може утворювати поверхневі сплави з матеріалом підкладки [16].

Table The phase composition of the electroplated Zn–Fe alloys Таблиця

		1
	Phase co	omposition
Fe, at. %	Phase identification method	
	XRD	VAG
0.27	Zn	Zn + (phase containing Fe)
0.88	η	$\eta + \varepsilon$ + intermetallic
3.5	$\eta + \varepsilon$	$\eta + \varepsilon$ + intermetallic
8.4	ε	ε
9.4	E	E

Fig. 6. Polarization curves of zinc (1) and alloys: Zn-0.27% Fe (2); Zn-0.88% Fe (3); Zn-3.5% Fe (4); Zn-9.4% Fe (5). C_{NaCl} = 1.0 mol/L

Рис. 6. Анодні вольтамперограми Zn (1) і сплавів: Zn-0.27% Fe (2); Zn-0.88% Fe (3); Zn-3.5% Fe (4); Zn-9.4% Fe (5). С_{NaCl} = 1.0 моль/л

Висновки

Показана можливість визначення фазового складу електролітичних цинкових сплавів на підставі їх анодних вольтамперних залежностей у лужних розчинах. Анодна лінійна вольтамперометрія, виконана В лужних розчинах, виявилась чутливішою до фазової ідентифікації електролітичних цинкових сплавів. ніж рентгенофазовий метод. У складі електролітичних Zn-Fe сплавів виявлено фазу гексагональної будови, яка відсутня на рівноважній фазовій діаграмі. На підставі аналізу кристалографічних і електронних характеристик Zn-Fe сплавів цю фазу ідентифіковано як фазу твердого розчину типу ε . Вміст Fe в цій фазі значно перевищує його вміст у термодинамічно рівноважному первинному твердому розчині (η -фазі) (9.4 % і 0.001 %, відповідно). Також значно відрізняються між собою параметри їх кристалічних ґраток.

Бібліографічні посилання

- [1] Improved corrosion resistant properties of electrochemically deposited zinc-nickel alloys utilizing a borate electrolytic alkaline solution / H. A. Conrad [et al.] // Surf. Coat. Technol. 2015.
 Vol. 272. P. 50–57. Way of Access : http://dx.doi.org/10.1016/j.surfcoat.2015.04.025
- [2] Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath / Z. Feng [et al.] // Surf. Coat. Technol. – 2015. – Vol. 270. – P. 47–56. Way of Access :

http://dx.doi.org/10.1016/j.surfcoat.2015.03.020

- [3] Electrodeposition Behavior of Zn-Fe Alloy from Zincate Solution Containing Triethanolamine / H. Nakano [et al.] // Mater. Trans. – 2015. – Vol. 56, N 10. – P. 1664–1669. Way of Access : http://dx.doi.org/10.2320/jinstmet.J2014054
- [4] Effect of EDTA and NH₄Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid / S. Fashu [et al.] // Trans. Nonferrous Met. Soc. China. – 2015. – Vol. 25. – P. 2054–2064. Way of Access : http://dx.doi.org/10.1016/S1003-6326(15)63815-8
- [5] Tarng M. L. Auger-spectroscopy for structure analysis of coatings / M. L. Tarng, G. K. Wehner // J. Appl. Phys. – 1971. – Vol. 42. – P. 2449–2449.
- [6] Swathirajan S. Potentiodynamic and Galvanostatic Stripping Methods for Characterization of Alloy Electrodeposition Process and Product / S. Swathirajan // J. Electrochem. Soc. - 1986. - Vol. 133, N 4. of P. 671–680. Way Access : http://dx.doi.org/10.1149/1.2108652
- [7] The Effect Manganese Concentration on the Corrosion Resistance and Physical Properties of Zn-Ni-Mn Alloy Films Produced by Electrodeposition / F. H. Assaf [et al.] // Int. J. Electrochem. Sci. – 2015. – Vol. 10. – P. 6273–6287. Режим доступу : http://www.electrochemsci.org /papers/vol10/100806273.pdf
- [8] Vydra F. Electrochemical stripping analysis / F. Vydra, K. Stulik, E. Julakova. – New York, Toronto: Halsed Press, 1978. – 361 p.
- [9] Брайнина Х. З. Инверсионные электроаналитические методы / Х. З. Брайнина, Е. Я. Нейман, В. В. Слепушкин. – М.: Химия, 1988. – 240 с.
- [10] Marczenko Z. Separation and Spectrophotometric Determination of Elements / Z. Marczenko – Chichester: Ellis Horwood Limited, 1986. – 627 p.
- [11] Петренко Л. В. Кінетика анодного розчинення та пасивації легованих цинкових покриттів :

дис. … кандидата хім. наук : 02.00.05 / Петренко Ліна Володимирівна. – Д., 2016. – 172 с. Режим доступу : http://udhtu.com.ua/public/userfiles/image/dis Petrenko.pdf

- [12] Пирсон У. Кристаллохимия и физика металлов и сплавов. В двух частях / У. Пирсон. – М.: Мир, 1977. – Ч. 1. – 420 с.
- [13] Баррет Ч. С. Структура металлов. В двух частях / Ч. С. Баррет, Т. Б. Массальский. – М. : Металлургия, 1984. – Ч. 1. – 686 с.
- [14] Kondo K. Crystal structure and morphology of electrodeposited zinc-iron binary alloys / K. Kondo, S. Hinotani, Y. Ohmori // J. Appl. Electrochem. 1988. Vol. 18, N 1. P. 154–161. Way of Access :

http://dx.doi.org/10.1007/BF01016220

- [15] Structure of Electrodeposited Zn-Fe Alloy in the Zinc Rich Region / T. Fujieda [et al.] // ISIJ International. – 1992. – Vol. 32, N 9. – P. 1044– 1046. Режим доступу : https://www.jstage.jst.go. jp/article/isijinternational1989/32/9/32_9_1044 /_pdf
- [16] Криштоп Ю. Г. Кинетические и термодинамические особенности начальных стадий электрокристаллизации цинка : дисс. ... кандидата хим. наук : 02.00.05 / Криштоп Юрий Григорьевич. – Д., 2011. – 151 с.

References

- [1] Conrad, H. A., McGuire, M. R., Zhou, T., Coskun, M. I., & Golden, T. D. (2015). Improved corrosion resistant properties of electrochemically deposited zinc-nickel alloys utilizing a borate electrolytic alkaline solution. *Surf. Coat. Technol.*, 272, 50–57. doi: 10.1016/j.surfcoat.2015.04.025
- Feng, Z., Li, Q., Zhang, J., Yang, P., Song, H., & [2] An, M. (2015).Electrodeposition of nanocrystalline Zn-Ni coatings with single gamma phase from an alkaline bath. Surf. Coat. Technol., 270, 47-56. doi: 10.1016/j.surfcoat.2015.03.020
- [3] Nakano, H., Arakawa, S., Oue, S., & Kobayashi, S. (2015). Electrodeposition Behavior of Zn–Fe Alloy from Zincate Solution Containing Triethanolamine. *Mater. Trans.*, 56(10), 1664–1669. doi: 10.2320/jinstmet.J2014054
- [4] Fashu, S., Gu, C. D., Zhang, J. L., Huang, M. L., Wang, X. L., & Tu, J. P. (2015). Effect of EDTA and NH₄Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. *Trans. Nonferrous Met. Soc. China*, 25, 2054–2064. doi: 10.1016/S1003-6326(15)63815-8
- [5] Tarng, M. L., & Wehner, G. K. (1971). Augerspectroscopy for structure analysis of coatings. *J. Appl. Phys., 42*, 2449–2452.
- [6] Swathirajan, S. (1986). Potentiodynamic and Galvanostatic Stripping Methods for Characterization of Alloy Electrodeposition Process and Product. J. Electrochem. Soc., 133(4), 671–680. doi: 10.1149/1.2108652

- [7] Assaf, F. H., Abou-Krisha, M. M., Alduaij, O. K., El-Seidy, A. M. A., & Eissa, A. A. (2015). The Effect Manganese Concentration on the Corrosion Resistance and Physical Properties of Zn-Ni-Mn Alloy Films Produced by Electrodeposition. *Int. J. Electrochem. Sci.*, 10, 6273–6287. Retrieved from http://www.electrochemsci.org/papers/vol10/1 00806273.pdf
- [8] Vydra, F., Stulik, K., & Julakova, E. (1978). *Electrochemical stripping analysis*. New York, Toronto, USA: Halsed Press.
- [9] Braynina, Kh. Z., Neyman, Ye. Ya., & Slepushkin, V. V. (1988). [Inversion Electroanalytical Methods]. Moskow, USSR: Khimiya (in Russian).
- [10] Marczenko, Z. (1986). *Separation and Spectrophotometric Determination of Elements.* Chichester, UK: Ellis Horwood Limited.
- [11] Petrenko, L. V. (2016). [The kinetics of anodic dissolution and passivation of zinc alloyed coatings] (Unpublished doctoral dissertation). Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine (in Ukrainian). Retrieved from http://udhtu.com.ua/public/userfiles/image/dis

_Petrenko.pdf

- [12] Pearson, W. (1977). [*Crystal Chemistry and Physics of Metals and Alloys*]. Moscow, USSR: Mir (in Russian).
- [13] Barrett, C. S., & Massalski, T. B. (1980). *Structure* of metals. Oxford, UK: Pergamon Press.
- [14] Kondo, K., Hinotani, S., & Ohmori, Y. (1988). Crystal structure and morphology of electrodeposited zinc-iron binary alloys. J. Appl. Electrochem., 18(1), 154–161. doi: 10.1007/BF01016220
- [15] Fujieda, T., Nsganawa, A., Toyota, M., Higuchi, S., & Takahashi, S. (1992). Structure of Electrodeposited Zn-Fe Alloy in the Zinc Rich Region. *ISIJ International.*, *32*(9), 1044–1046. Retrieved from https://www.jstage.jst.go.jp/article/isijinternational 1989/32/9/32_9_1044/_pdf
- [16] Kryshtop, Yu. G. (2011). [Kinetic and thermodynamic peculiarities of the initial stages of zinc electrocrystallization] (Unpublished doctoral dissertation). Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine (in Russian).