

UDC 541.123.3

INTERACTION OF THE CERIA WITH YTTERBIA AT TEMPERATURE 1100 °C

Oksana A. Kornienko*

Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3 Academician Krzhizhanovsky St., Kyiv, 49010, Ukraine Received 29 December 2015; revised 29 February 2016; accepted 15 March 2016; available online 31 December 2016

Abstract

Phase equilibria in the binary $CeO_2-Yb_2O_3$ system at 1100 °C were studied by X-ray diffraction in the overall concentration range. The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100 °C. The solid solutions based on various polymorphous forms of constituent phases. The boundaries of mutual solubility and concentration dependences the lattice parameters for all phases have been determined. The study of solid state reaction of CeO₂ (fluorite-type, F) and Yb₂O₃ (cubic modification of rare-earth oxides, type C) at 1100 °C showed that two types of solid solutions based on cubic modifications of F-CeO₂ and C-Yb₂O₃ in the CeO₂-Yb₂O₃ system. These solid solution regimes were separated from end to end with the two-phase field: (F+C). The solubility of Yb₂O₃ in F- modification of CeO₂ to a = 0.5385 nm for the solid solution of boundary composition. The solubility of CeO₂ in cubic C- ytterbium oxide attains ~10 mol %. The lattice parameters of the unit cell C phase varies from a = 1.0425 nm in pure Yb₂O₃ to a = 1.0437 nm for in two-phase sample (C+F), containing 10 mol % CeO₂.

Keywords: phase equilibria; phase diagram; solid solutions; lattice parameters of the unit cells; functional materials.

ВЗАЄМОДІЯ ОКСИДІВ ЦЕРІЮ ТА ІТЕРБІЮ ПРИ 1100 °С

Оксана А. Корнієнко*

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, вул. Академіка Кржижановського, 3, Київ, 03142, Україна

Анотація

Вперше досліджено фазові рівноваги в подвійній системі CeO₂-Yb₂O₃ при температурі 1100 °C у всьому інтервалі концентрацій. Зразки різних складів отримані з розчинів азотнокислих солей випарюванням, сушкою і термообробкою при температурі 1100 °C. У роботі використано метод рентгенофазового аналізу. Встановлено, що в системі утворюються тверді розчини на основі різних кристалічних модифікацій вихідних компонентів. Визначено границі розчинності та концентраційні залежності періодів кристалічних ґраток фаз, що утворюються в системі.

Ключові слова:фазові рівноваги; діаграма стану; тверді розчини; періоди кристалічних ґраток; функціональна кераміка.

ВЗАИМОДЕЙСТВИЕ ОКСИДОВ ЦЕРИЯ И ИТТЕРБИЯ ПРИ 1100 °С

Оксана А. Корниенко*

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Академика Кржижановского, 3, Киев, 03142, Украина

Аннотация

Впервые исследованы фазовые равновесия в двойной системе CeO₂-Yb₂O₃ при температуре 1100 °C во всем интервале концентраций. Образцы различных составов были приготовлены из растворов азотнокислых солей выпариванием, сушкой и термообработкой при температуре 1100 °C. В работе использовали метод

^{*}Correspodingauthor:tel.: +380935811938; e-mail address: Kornienkooksana@ukr.net © 2016 Oles Honchar Dnipropetrovsk National University doi: 10.15421/081613

рентгенофазового анализа. Установлено, что в системе образуются твердые растворы на основе различных кристаллических модификаций исходных компонентов. Определены границы растворимости и концентрационные зависимости периодов кристаллических решеток образующихся фаз.

Ключевые слова: фазовые равновесия; диаграмма состояния; твердые растворы; периоды кристаллических решеток; функциональная керамика.

Введение

В последнее время в связи с постоянным ростом цен на традиционные источники энергии (уголь, нефть, природный газ) большое внимание стали уделять развитию альтернативной энергетики, в частности, водородной энергетике, базирующейся на электрохимических источниках энергии топливных элементов. В качестве твердых электролитов топливных ячеек, работающих при высоких температурах > 1000 °C. применяют материалы на основе ZrO_{2} стабилизированного Y_2O_3 [1-6]. Твердые растворы основе диоксида на церия, стабилизированного Ln_2O_3 , являются наиболее перспективными электролитами, которые работают при умеренных температурах ≥ 800 °С, поскольку их ионная проводимость И чувствительность к парциальному давлению кислорода намного выше, чем у ZrO₂, стабилизированного Y₂O₃ [7-14].

Фазовые равновесия в системах на основе CeO₂ с оксидами РЗЭ (La₂O₃, Sm₂O₃, Gd₂O₃, Er₂O₃, Yb₂O₃) ранее исследованы [2; 15-21]. Сведения о фазовых равновесиях в системе CeO₂-Yb₂O₃ противоречивы, в ряде случаев интерпретация полученных данных приводит к нарушению правила фаз Гиббса. Фазовые взаимодействия системе $CeO_2 - Yb_2O_3$ В изучены при температурах 1400 °C [20], 950 и 800 °С в атмосфере О₂ и H₂[13]. Показано, что в системе при 1400 °C образуются твердые растворы с кубической структурой типа флюорита (F-CeO₂) и С-типа оксидов РЗЭ (С-Yb2O3), которые разделены двухфазной областью (C+F). Согласно данным работы [20], твердые растворы типа флюорита простираются от чистого CeO_2 до $\geq 33\%$ (мол.). В области с высоким содержанием 100 % (мол.) Yb_2O_3 0Т ≈ 82% (мол.) до обнаружены твердые растворы на основе С-Уb₂O₃. Наличие твердых растворов типа F-CeO₂ и C-Yb₂O₃ при низких температурах 950 и 800 °C подтверждено в работе [13]. Установлено, что переход от кубического твердого раствора F-CeO₂ к $C-Yb_2O_3$ происходит в области составов ~ 50 мол. Yb₂O₃, в атмосфере O₂ и H₂. Наличие двухфазной

области при заданных температурах не установлено [13].

Некоторые физические характеристики образующихся фаз в системе CeO₂-Yb₂O₃ определены в работах [22-26]. Коэффициент расширения термического α_{av} ·10⁻⁶, °C⁻¹ твердого раствора Се_{0.80}Yb_{0.20}O_{2-δ} в интервалах температур 100-527 и 25-527 °С составляет 10.6 и 10.8, соответственно [22]. Согласно данным [22], энергия активации ионной проводимости Еа для твердых растворов Се_{0.85}Yb_{0.15}O_{2-δ} и Се_{0.80}Yb_{0.20}O_{2-δ} в интервале температур 600-900 °С составляет 1.03 и 1.18 эВ соответственно, а также 0.98 и 1.04 эВ температур 500-600°C, в интервале суммарная ионная проводимость σ при температуре 900 °С - 0.052 и 0.071 См/см соответственно.

Получение новых материалов на основе CeO_2 , легированного Yb_2O_3 , требует изучения фазовых равновесий и свойств образующихся фаз в указанной системе в широком интервале температур И концентраций. Знание диаграмм состояния оксидных систем необходимо для выбора оптимальных составов керамических материалов, условий их получения и эксплуатации.

В настоящей работе впервые изучено взаимодействие оксида церия с оксидом иттербия при температуре 1100 °С во всем интервале концентраций.

Результаты и их обсуждение

B качестве исходных веществ использовали азотнокислую соль церия Се(NO₃)₃×6H₂О марки Ч, азотную кислоту марки «ч.д.а.» и Yb₂O₃ с содержанием основного компонента не менее 99,99 %. Образцы готовили с концентрационным шагом 5 % (мол.) из растворов нитратов выпариванием с последующим разложением нитратов на оксиды путем прокаливания при 1200 °С в течение 2 ч. Порошки прессовали в таблетки диаметром 5 мм и высотой 4 мм под давлением 10 МПа. Образцы обжигали в печи с нагревателями H23U5T (фехраль) при 1100 °C (16554 ч) на воздухе. Скорость подъема температуры составляла 3.5 град/мин. Фазовый образцов состав рентгенофазового исследовали методами

анализа.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-З при комнатной температуре (Cu*K*_α-излучение). Шаг сканирования составлял 0.05-0.1 град в диапазоне углов $2\theta = 15-90$ °C. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC, с погрешностью не ниже 0.0002 нм для кубической фазы. Для определения фазового состава использовали базу данных Международного порошковых комитета стандартов (JSPDS International Center for Diffraction Data 1985). Coctab образцов контролировали с помощью спектрального и химического анализов выборочно.

Исследования твердофазного взаимодействия CeO₂ (тип флюорита, F) и Yb₂O₃ (кубическая оксидов модификация редкоземельных элементов, С) при температуре 1100 °C показали, что В системе $CeO_2 - Yb_2O_3$ образуются два типа твердых растворов, имеющих кубическую структуру: на основе F- CeO_2 $C - Yb_2O_3$. которые И разделены двухфазным полем (F+C) (рис. 1).

Исходный химический и фазовый состав образцов, обожженных при 1100 °С, периоды кристаллических решеток фаз, находящихся в равновесии при заданной температуре, приведены в таблице.

Fig.1. Phase equilibria in the CeO₂–Yb₂O₃ system at 1100 °C:○– single-phase samples and O – two-phase samples

Table

Таблица

Phase composition and lattice parameters of the phases in the CeO₂- Yb₂O₃ system, annealed at 1100 °C for 16554 h (XRD data)

Фазовый состав и периоды кристаллических решеток фаз после обжига образцов	
системы СеО2-Уһ2О3 при 1100 °С. 16554 ч (по данным РФА)	

Chemical composition (mol %) Phase composition Lattice parameters of the phases $a \pm 0.0002$ (pm)					
CeO ₂	Yh2O3		<pre></pre>	<pre>c></pre>	
0	100	<()>	-	1.0425	
5	95	<c></c>	_	1.0431	
10	90	<c> hasic + <math><f></f></math></c>	0.5362	1.0437	
15	85	<c>+ <f>↑</f></c>	0.5360	1.0436	
20	80	<c>+<f>↑</f></c>	0.5368	1.0427	
25	75	<c>+<f>↑</f></c>	0.5373	1.0443	
30	70	<c>+<f>↑</f></c>	0.5374	1.0443	
35	65	<c>+<f>↑</f></c>	0.5379	1.0443	
40	60	<c>+<f>↑</f></c>	0.5370	1.0441	
45	55	<c>+<f>↑</f></c>	0.5373	1.0441	
50	50	<c>↓ + <f></f></c>	0.5384	1.0436	
55	45	<c>↓+ <f></f></c>	0.5374	1.0430	
60	40	<c>↓ + <f></f></c>	0.5373	1.0431	
65	35	<c>↓ + <f></f></c>	0.5374	1.0458	
70	30	<c>↓ + <f></f></c>	0.5382	1.0441	
75	25	<c>↓ + <f></f></c>	0.5377	1.0436	
80	20	<c>↓ + <f></f></c>	0.5381	1.0434	
85	15	<c>+ <f>_{basic}</f></c>	0.5385	1.0419	
90	10	<f></f>	0.5384	-	
95	5	<f></f>	0.5396	-	
100	0	<f></f>	0.5403	-	

* Designation of phases: <C> and <F> – solid solutions based on cubic modification with fluorite-type structure of CeO₂ and cubic modification of Yb₂O₃. The others designations: basic – phase constituent matrix, \uparrow – amount of phase increasing, \downarrow – amount of phase decreasing.

Fig. 2. XRD patterns of the samples for the CeO₂–Yb₂O₃ system heat-treated at 1100 °C:

Рис. 2. Дифрактограммы образцов системы CeO₂-Yb₂O₃ после обжига образцов при 1100 °C:

a) 100 mol. % Yb₂O₃, (C); b) 10 mol. % CeO₂- 90 mol. % Yb₂O₃, (C+F); c) 30 mol. % CeO₂-70 mol. % Yb₂O₃, (C+F↑); d) 50 mol. % CeO₂- 50 mol. % Yb₂O₃, (C+F↑); e) 60 mol. % CeO₂- 40 mol. % Yb₂O₃, (C↓+F); f) 85 mol. % CeO₂- 15 mol. % Yb₂O₃ (C↓+F); g) 90 mol. % CeO₂- 10 mol. % Yb₂O₃ (F); h) 100 mol. % CeO₂ (F)

Границы областей гомогенности твердых растворов на основе F–CeO₂, C–Yb₂O₃ определены составами, содержащими 10–15, 90–95 (мол.) Yb₂O₃ соответственно (таблица). Растворимость Yb₂O₃ в F-модификации CeO₂ составляет 15 % (мол.) при 1100 °C (16554 ч).

Период кристаллической решетки уменьшается от a = 0.5403 нм для чистого CeO₂ до a = 0.5385 нм для образца, содержащего Yb_2O_3 . Растворимость 15 % (мол.) СеО₂ в С-модификации оксида иттербия составляет 10% (мол.) CeO_2 (1100 °C). Периоды кристаллической решетки С-фазы изменяются от *a* = 1.0425 нм, для чистого Yb₂O₃ до a = 1.0437 нм для двухфазного образца (C+F), содержащего 10 % (мол.) СеО₂.

Дифрактограммы образцов, характеризующие фазовые области твердых растворов в системе CeO₂-Yb₂O₃ при 1100 °С представлены на рис. 2. Установлено, что для образца состава 10 % (мол.) CeO₂ – 90 % (мол.) Yb₂O₃ (рис. 2 *b*) наряду с С-фазой, составляющей основу, проявляются четко выраженные пики на углах 20 = 28°, 33°, характерные для кубической фазы флюорита (F-CeO₂). С увеличением типа содержания CeO_2 наблюдается рост интенсивности пиков, характеризующих кубическую структуру F-CeO₂. При содержании 60 % (мол.) церия преобладает оксида кубическая фаза F-CeO₂ (рис. 2 е). Дифрактограмма образца, содержащего 85 мол. % СеО₂, характеризуется наличием незначительного количества пиков. кубической фазе С-Yb₂O₃. принадлежащих Данный состав является граничным для двухфазной области (C+F) (рис. 2 f).

Имеющиеся в литературе данные [2; 15-26] исследования результаты настоящего И позволяют сделать некоторые выводы по строения закономерностям диаграмм состояния ряда CeO₂-Ln₂O₃ при температуре 1100 °С. Образование новых фаз не характерно для систем указанного ряда, что можно объяснить близостью физико-химических свойств исходных компонентов.

В системах ряда CeO₂–Ln₂O₃ найдены области твердых растворов различной протяженности на основе полиморфных

а) 100 мол. % Yb2O3,(C); b) 10 мол. % CeO2- 90 мол. % Yb2O3, (C+F); c) 30 мол. % CeO2- 70 мол. % Yb2O3, (C+F↑); d) 50 мол. % CeO2- 50 мол. % Yb2O3, (C+F↑); e) 60 мол. % CeO2- 40 мол. % Yb2O3, (C↓+F); f) 85 мол. % CeO2- 15 мол. % Yb2O3 (C↓+F); g) 90 мол. % CeO2- 10 мол. % Yb2O3 (F); h) 100 мол. % CeO2 (F)

модификаций исходных компонентов. В зависимости от температуры и ионного катионов R³⁺ известно радиуса пять полиморфных модификаций оксидов РЗЭ: гексагональная (А), моноклинная (В), кубивысокотемпературная ческая (С), гексагональная (Н) высокотемпературная И кубическая (Х), которые впервые были описаны Brauer G. [26] и позднее Haire R. G. и Eyring L. [27].

Области твердых растворов на основе гексагональной А-модификации оксидов редкоземельных элементов существуют в системах CeO_2 - Ln_2O_3 (Ln = La, Nd). В системах с оксидами Sm₂O₃, Eu₂O₃, Gd₂O₃ наблюдается образование твердых растворов на основе моноклинной В-модификации оксидов редкоземельных элементов. Добавление СеО2 к оксидам начала и середины ряда лантаноидов (Nd_2O_3) Sm_2O_{3} , Eu_2O_3) способствует образованию кубических твердых растворов С-модификации на основе оксидов редкоземельных элементов, не характерной для чистых оксидов при температуре 1100 °C [28].

С уменьшением ионного радиуса лантаноидов наблюдается изменение количества фазовых полей в системах ряда CeO₂–Ln₂O₃, что связано с температурной устойчивостью полиморфных модификаций исходных компонентов.

Область гомогенности кубических твердых растворов на основе F–CeO₂ сужается с уменьшением ионного радиуса лантаноида от La³⁺ (0.114 нм) до Yb³⁺ (0.86 нм) [28] от 49 до 15 % (мол.) Ln₂O₃ для оксидов лантана и иттербия соответственно, при 1100 °C.

Выводы

Таким образом, изучены фазовые равновесия в системе CeO₂–Yb₂O₃ при 1100 °С. Установлено, что для исследованной системы характерно образование ограниченных твердых растворов с кубической структурой двух типов: F–CeO₂ и C–Yb₂O₃, которые разделяет широкая гетерогенная область (C+F). Определены параметры элементарных ячеек фаз, находящихся в равновесии при

заданной температуре. Приведена краткая характеристика строения систем ряда при 1100 °C. $CeO_2-Ln_2O_3$ температуре Полученные данные могут быть для использованы разработки новых функциональных материалов с улучшенными свойствами.

Библиографические ссылки

- [1] Маслов В. И. Высокотемпературные топливные ячейки – когенерационные источники энергии будущего / В. И. Маслов // Турбины и дизели.– 2006. – С. 4–6. Режим доступа: http://www.turbine-diesel.ru/rus/jarchive
- [2] Chavan S. V. Phase relations and lattice thermal expansion studies in the Ce_{0.50}RE_{0.50}O_{1.75} (RE = rare-earths) / S. V. Chavan, A. K. Tyagi // Mater. Sci. Eng.: A. 2005. Vol. 404, N 1–2. P. 57–63. Way of Access : http://dx.doi.org/10.1016/j.msea.2005.05.036
- [3] Hsieh W.-S. Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dipcoating / W.-S. Hsieh, L. Pang, S.-F. Wang // Int. J. Hydrogen Energy. – 2013. – P. 2859–2867. Way of Access : http://dx.doi.org/10.1016/j.ijhydene.2012.12.056
- [4] Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells / Hari Prasad Dasari [et al.] // J. Power Sources. 2013.
 Vol. 240. P. 721-728. Way of Access : http://dx.doi.org/10.1016/j.jpowsour.2013.05.033
- [5] Aqueous tape casting of micro and nano YSZ for SOFC electrolytes / T. Baquero [et al.] // Ceram. Int. -2013 - Vol. 39, N 7. -P. 8279-8285. Way of Access:

http://dx.doi.org/10.1016/j.ceramint.2013.03.097

- [6] Effect of Coupled Conditions of Thermal Cycle and Dump Environment on Microstructure of 5mol% Yttria Stabilized Zirconia / J. F. Xia [et al.] // Key Eng. Mater. - 2013. - Vol. 544. - P. 330-333. Way of Access : http://dx.doi.org/10.4028/www.scientific.net/KEM.544.330
- [7] High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures / Z. Liu [et al.] // J. Power Sources. 2013. Vol. 241. P. 454–459. Way of Access :
- http://dx.doi.org/10.1016/j.jpowsour.2013.01.130
 [8] Sato K. Effect of rare-earth oxides on fracture properties of ceria ceramics / K. Sato, H. Yugami, T. Hashida // J. Mater. Sci. 2004. Vol. 39, N 18. P. 5765–5770. Way of Access :
- http://dx.doi.org/10.1023/B:JMSC.0000040087.37727.cd
 [9] Dudek M. Ceramic oxide electrolytes based on CeO₂-Preparation, properties and possibility of
- application to electrochemical devices / M. Dudek // J. Eur. Ceram. Soc.– 2008. – Vol. 28, N 5. – P. 965–971. Way of Access : http://dx.doi.org/10.1016/j.jeurceramsoc.2007.09.004

- [10] Synthesis of Functional Ceramic Materials for Application in 2 kW Stationary SOFC Stacks / A. E. Martinelli [et al.] // Mater. Science Forum. – 2013.
 – Vols. 730–732. – P. 147–152. Way of Access : http://dx.doi.org/10.4028/www.scientific.net/M SF.730-732.147
- [11] Malecka M. A. Structural characterization of nanosized Ce_{0.5}Ln_{0.5}O_{1.75} (Ln = Yb, Lu) mixed oxides. / M. A. Malecka, L. Kepinski // J. Microsc. -2010. -Vol. 237, N 3. - P. 391-394. Way of Access : http://dx.doi.org/10.1111/j.1365-2818.2009.03268.x
- [13] Structure and phase stability of nanocrystalline $Ce_{1-x}Ln_xO_{2-x/2-\delta}(Ln = Yb, Lu)$ in oxidizing and reducing atmosphere / M. A. Małecka [et al.] // J. Nanopart. Res. 2009. Vol. 11, N 8. P. 2113–2124. Way of Access: http://dx.doi.org/10.1007/s11051-008-9577-7
- [14] Incubational domain characterization in lightly doped ceria. / Li Z.-P. [et al.] // J. Solid State Chem.- 2012 - Vol. 192. -P. 28-33. Way of Access: http://dx.doi.org/10.1016/j.jssc.2012.03.051
- [15] Phase Relation Studies in the CeO₂-La₂O₃ System at 1100-1500 °C / E.R. Andrievskaya [et al.] // J. Eur. Ceram. Soc. -2011. Vol. 31, N 7. P. 1277-1283. Way of Access : http://dx.doi.org/10.1016/j.jeurceramsoc.2010.05.024
- [16] Фазовые соотношения в системе CeO₂-Sm₂O₃ при температуре 1500 °С / Е. Р. Андриевская, [и др.] // Соврем. проблемы физ. материаловед. 2008. Вып. 17. С. 25–29. Режим доступа : http://dspace.nbuv.gov.ua/handle/123456789/28623
- [17] Корниенко О. А. Взаимодействие и свойства фаз в системе CeO₂ – Gd₂O₃ при 1500 °C / О. А. Корниенко // Вісн. НТУ «ХПІ». – 2009. – N 45. – С. 86–90.
- [18] Корниенко О. А. Взаимодействие и свойства фаз в системе CeO₂-Gd₂O₃ при 1100 °C / О. А. Корниенко // Вісн. НТУ «ХПІ». – 2010. – N 66. – С. 14–18
- [19] Взаимодействие оксидов церия и эрбия при температуре 1500 °С / Е.Р. Андриевская [и др.] // Сб. научн. труд. ОАО УкрНИИ огнеупор. им. А. С. Бережного.- 2012. – N 112. – С. 133–140. Режим доступа :

http://nbuv.gov.ua/UJRN/vognetryv_2013_113_24

- [20] X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb_2O_3 - and Tm_2O_3 -substituted CeO₂ / B. P. Mandal [et al.] // J. Amer. Soc. – 2007. – Vol. 90, N 9. – P. 2961–2965. Way of Access : http://dx.doi.org/10.1111/j.1551-2916.2007.01826.x
- [21] Parvulescu V. I. Termal behavior of CO₂ laserirradiated CeO₂ doped with Yb₂O₃ / V. I. Parvulescu, F. Vasiliu, E. Segal // *J. Therm. Anal.* –1995. – Vol. 45, N 6. – P. 1313–1322. Way

of Access :

http://dx.doi.org/10.1007/BF02547425

- [22] CeO₂ based materials doped with lanthanides for applications in intermedete temperature electrochemical devices / E. Yu. Pikalova [et al.] // Int. J. Hydrogen Energy. 2011. Vol. 36. P. 6175–6183. Way of Access : http://dx.doi.org/10.1016/j.ijhydene.2011.01.132
- [23] Synthesis, characterization, and electrical conduction of 10 mol % Dy₂O₃-doped CeO₂ ceramics / Ya. Wang [et al.] // J. Eur. Ceram. Soc. 2006. Vol. 25, N 6. P. 949–956. Way of Access : http://dx.doi.org/10.1016/j.jeurceramsoc.2004.01.020
- [24] Anjana P. S. Microwave dielectric properties of (1-x) CeO_{2-x}RE₂O₃ (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) (0 ≤ x ≤1) ceramics / P. S. Anjana T. Joseph, M. T. Sebastian // J. Alloys Comp. 2010. Vol. 490, N 1–2. P. 208–213. Way of Access : http://dx.doi.org/10.1016/j.jallcom.2009.09.057
- [25] Baral A. K. Sankaranarayanan V. Ionic transport properties in nanocrystalline Ce_{0.8}A_{0.2}O_{2-δ} (with A = Eu, Gd, Dy, and Ho) materials. / A. K. Baral, V. Sankaranarayanan // Nanoscale Res. Lett. – 2010. – Vol. 5, N 3. – P. 637–643. Way of Access : http://dx.doi.org/10.1007/s11671-010-9527-z
- [26] Effect of Dysprosia Additive on the Consolidation of CeO₂ by Spark Plasma Sintering / K. Choi [et al.] // J. Am. Ceram. Soc. 2012. Vol. 95, N 5. P. 1524–1529. Way of Access : http://dx.doi.org/10.1111/j.1551-2916.2011.05054.x
- [27] Brauer G. Structural and solid state chemistry of pure earth oxides and hydroxides. / G. Brauer // Progress in the science and technol. of rare earths – 1968 – Vol. 3 – P. 434–457.
- [28] Haire R. G., Eyring L. Comparisons of binary oxides // Gschneider K. A., Eyring L., Choppin G. R., Lander G. R. (Eds). Handbook on the physics and chemistry of rare earths. Lanthanides/actinides: chemistry, Amsterdam: Elsevier Science. – 1994. – P. 413–503.

References

- Maslov, V. I. (2006). [High-temperature fuel cell cogeneration energy sources of the future]. Turbines & Disels, (1), 4–6 (in Russian). Retrieved from http://www.turbinediesel.ru/rus/jarchive
- [2] Chavan, S. V., & Tyagi, A. K. (2005). Phase relations and lattice thermal expansion studies in the $Ce_{0.50}RE_{0.5}O_{1.75}$ (RE = rare-earths). *Mater. Sci. Eng.: A*, 404(1–2), 57–63. doi: 10.1016/j.msea.2005.05.036
- [3] Hsieh, W.-S., Pang, L., & Wang, S.-F. (2013) Fabrication of electrolyte supported microtubular SOFCs using extrusion and dip-coating. *Int. J. of Hydrogen Energy*, (253), 2859–2867. doi: 10.1016/j.ijhydene.2012.12.056
- [4] Dasari, H. P., Park, S.-Y., Kim, J., Lee, H.-B., Kim, J.-K., Lee, H.-W., & Yoon, K. J. (2013). Electrochemical

characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. *J. Power Sources, (240),* 721– 728. doi: 10.1016/j.jpowsour.2013.05.033

- [5] Baquero, T., Escobar, J., Frade, J., & Hotza, D. (2013). Aqueous tape casting of micro and nano YSZ for SOFC electrolytes Ceram. Int., 39(7), 8279–8285. doi: 10.1016/j.ceramint.2013.03.097
- [6] Xia, J. F., Liu, G. M., Peng, N. S., Feng, T., Xu, H. F., Huang, D. X., & Jiang, D. Y. (2013). Effect of Coupled Conditions of Thermal Cycle and Dump Environment on Microstructure of 5mol% Yttria Stabilized Zirconia. *Key Eng. Mater.*, 544, 330–333. doi: 10.4028/www.scientific.net/KEM.544.330
- [7] Liu, Z., Ding, D., Liu, M., Ding, X., Chen, D., Li, X., Xia, C., & Liu, M. (2013). High-performance, ceriabased solid oxide fuel cells fabricated at low temperatures. *J. Power Sources*, 241, 454–459. doi: 10.1016/j.jpowsour.2013.01.130
- [8] Sato, K., Yugami, H., & Hashida T. (2004). Effect of rare-earth oxides on fracture properties of ceria ceramics. *J. Mater. Sci.*, 39(18), 5765–5770. doi: 10.1023/B:JMSC.0000040087.37727.cd
- [9] Dudek, M. (2008). Ceramic oxide electrolytes based on CeO₂-Preparation, properties and possibility of application to electrochemical devices. J. Eur. Ceram. Soc., 28(5), 965–971. doi: 10.1016/j.jeurceramsoc.2007.09.004
- [10] Martinelli, A. E., Macedo, D. A., Cesário, M. R., Cela, B., Nicodemo, J. P., Paskocimas, C. A., Melo, D. M., & Nascimento R. M. (2013). Synthesis of Functional Ceramic Materials for Application in 2 kW Stationary SOFC Stacks. *Mater. Sci. Forum*, 730–732, 147–152. doi: 10.4028/www.scientific.net/MSF.730-732.147
- [11] Malecka, M. A., & Kepinski, L. (2010). Structural characterization of nano-sized Ce_{0.5}Ln_{0.5}O_{1.75} (Ln = Yb, Lu) mixed oxides. *J. Microsc.*, 237(3), 391–394. doi: 10.1111/j.1365-2818.2009.03268.x
- [12] Małecka, M. A., Delgado, J. J., Kępiński, L., Calvino, J. J., Bernal, S., Blanco, G., & Chen, X. Structure transformations and reducibility of nanocrystalline Ce_{1-x}Yb_xO_{2-(x/2)} mixed oxides. *Catal. Today*, *187*(1), 56–64. doi: 10.1016/j.cattod.2012.01.004
- [13] Małecka, M. A., Burkhardt, U., Kaczorowski, D., Schmidt, M. P., Goran, D., & Kepin'ski, L. (2009). Structure and phase stability of nanocrystalline $Ce_{1-x}Ln_xO_{2-x/2-\delta}$ (Ln = Yb, Lu) in oxidizing and reducing atmosphere. *J. Nanopart. Res.*, *11*(8), 2113–2124. doi: 10.1007/s11051-008-9577-7
- [14] Li, Z.-P., Mori, T., Auchterlonie, G. J., Zou, J., & Drennan, J. (2012). Incubational domain characterization in lightly doped ceria. *J. Solid State Chem.*, 192, 28–33. doi: 10.1016/j.jssc.2012.03.051
- [15] Andrievskaya, E. R., Kornienko O. A., Sameljuk, A. V., & Sayir, A. (2011). Phase Relation Studies in the CeO₂-La₂O₃ System at 1100– 1500 °C. *J. Eur. Ceram. Soc.*, 31(7), 1277–1283. doi: 10.1016/j.jeurceramsoc.2010.05.024

[16] Andrievskaya, E. R., Kornienko, O. A., Gorodov, B. S., Cherkasova, K. A., & Zgurovetz, V. O. (2008).
[Phase relations in the CeO₂-Sm₂O₃ system at 1500 °C]. Modern problems of materials science, (17), 25-29 (in Russian).

http://dspace.nbuv.gov.ua/handle/123456789/28623

- [17] Kornienko, O. A. (2009). [Interaction and phase properties in the CeO₂–Gd₂O₃ system at 1500 °C]. *Visn. NTU «KhPI» Bull. NTU «KhPI»*, (45), 86–90. (in Russian).
- [18] Kornienko, O. A. (2010). [Interaction and phase properties in the CeO₂–Gd₂O₃ system at 1100 °C]. *Visn. NTU «KhPI» – Bull. NTU «KhPI»*, (66), 14–18 (in Russian).
- [19] Andrievskaya, E. R., Gusarov, V. V., Kornienko, O. A., & Sameljuk, A. V. (2012). [Interaction cerium oxide with erbium oxides at temperature 1500 °C]. Sb. nauchn. trud. OAO UkrNYY ohneupor. ym. A. S. Berezhnoho Digest Sci. Research. Ukr. Research Institute of refractories name after A. C. Berezhnovo, (112), 133–140 (in Russian). Retrieved from

http://nbuv.gov.ua/UJRN/vognetryv_2013_113_24

- Mandal, B. P., Grover, V., Roy, M., & Tayagi, A. K. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb₂O₃- and Tm₂O₃-substituted CeO₂. *J. Amer. Soc.*, *90*(9), 2961–2965. doi: 10.1111/j.1551-2916.2007.01826.x
- [21] Parvulescu, V. I., Vasiliu, F., Segal, E. (1995). Termal behavior of CO₂ laser-irradiated CeO₂ doped with Yb₂O₃. *J. Therm. Anal.*, *45*, 1313–1322. doi: 10.1007/BF02547425
- [22] Pikalova, E. Y., Murashkina, A. A., Maragou, V. I., Demin, A. K., Strekalovsky, V. N., & Tsiakaras P. E. (2011). CeO₂ based materials doped with

lanthanides for applications in intermedete temperature electrochemical devices. *Int. J. Hydrogen Energy*, (36), 6175–6183. doi: 10.1016/j.ijhydene.2011.01.132

- [23] Wang, Ya., Mori, T., Li, J.-G., & Drennan, J. (2006). Synthesis, characterization, and electrical conduction of 10 mol% Dy₂O₃-doped CeO₂ ceramics. *J. Eur. Ceram. Soc.*, 25(6), 949–956. doi: 10.1016/j.jeurceramsoc.2004.01.020
- [24] Anjana, P. S., Joseph, T., & Sebastian, M. T. (2010). Microwave dielectric properties of (1-x)CeO_{2-x}RE₂O₃ (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) ($0 \le x \le 1$) ceramics. J. Alloys Comp., 490(1-2), 208-213. doi: 10.1016/j.jallcom.2009.09.057
- [25] Baral, A. K., & Sankaranarayanan, V. (2010). Ionic transport properties in nanocrystalline $Ce_{0.8}A_{0.2}O_{2-\delta}$ (with A = Eu, Gd, Dy, and Ho) materials. *Nanoscale Res. Lett.*, 5(3), 637–643. doi: 10.1007/s11671-010-9527-z
- [26] Choi, K., Reavis, R. E., Osterberg, D. D., Jaques, B. J., Butt, D. P., Mariani, R. D., Burkes, D. E., & Munir, Z. A. (2012). Effect of Dysprosia Additive on the Consolidation of CeO₂ by Spark Plasma Sintering. *J. Am. Ceram. Soc.*, 95(5), 1524–1529. doi: 10.1111/j.1551-2916.2011.05054.x
- [27] Brauer, G. (1968). Structural and solid state chemistry of pure earth oxides and hydroxides. Progress in the science and technol. of rare earths, 3, 434–457.
- [28] Haire, R. G., & Eyring, L. (1994). Comparisons of binary oxides. In: Gschneider K. A., Eyring L., Choppin G. R., Lander G. R. (Eds). Handbook on the physics and chemistry of rare earths. Lanthanides/actinides:chemistry. Amsterdam: Elsevier Science.