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FITTING OF BINDER CUMULANTS IN SU(2) - GLUODYNAMICS

The Binder cumulants are calculated and analyzed in SU(2) lattice gluodynamics. The Binder
cumulant is lattice observable quantity, which is constructed out of powers of the Polyakov loop. It
describes different aspects of the lattice theories and equals to scaling function in case of SU(2) theory.
Such computations become possible due to a technology of calculations on the graphics processing unit
(GPU). GPU is used as a computing platform allowing a huge amount of statistical data to be treated
over a short period of time. The statistics gathered allows the study of Binder cumulants for a great
number of various lattices. Main features of cumulants fitting are described and discussed in detail.
The cumulant fitting function is proposed which is based on analysis of obtained data. A few data
points (10 up to 20) are sufficient for computation of this function. The important feature of the
function constructed is ability to estimate quickly the critical value of the inverse coupling constant S

on a lattice. The procedure of determination of the intersection point of Binder’s cumulants, which
should cross in one point, is considered. The updated fitting procedure is proposed for determination of
such cumulants. The application of the results is discussed.

Keywords: SU(2) gluodynamics, lattice gauge theory, Monte-Carlo calculations, deconfinement
phase transition.

B SU(2) rmooauHaMuKe Ha pelleTKe BBLIYMCASIOTCH H AHAJIM3UPYIOTCS KyMyJasHTbl Bunpepa.
Kymyasint bunjepa siBasieTcsi Ha0/1101aeMoii Ha pelieTke BeJIMYHHOM, KOTOpasi CTPOUTCSI M3 CTeNeHeil
nersin IlonsikoBa. OH onMchIBAaeT pPa3jiMYHbIe aCNEKThI PelleTOYHbIX Teopuii U B ciaydyae SU(2) Teopnn
coBmajzaer ¢ MacmiTadHoil ¢ynkumeii. Takue pacyersl cTajJM BO3MOXKHBIMHM $JIaroJapsi TEXHOJIOTHMH
BbIYMCJIeHMiI Ha rpadguyeckux npoueccopax. I'paguueckux mnpoueccopbl HCNOJIBL3YIOTCS B KayecTBe
BBIYHCINTEIbHOH MIATQPOPMBI, YTO IO3BOJSET MOMYYATH O00JbIIOE KOJIMYECTBO CTATHCTHYECKHX
JAHHBIX 32 KOPOTKHIi NMpoMe:kyTok BpemeHd. CoOpaHHasi CTATHCTHKA [e/1aeT BO3MOKHBIM H3ydeHHe
KyMyJsIHTOB BuHaepa Ha 001bII0M KOJWYeCTBe pPa3INYHBIX pemeTok. OmHcaHbl H J1eTAJILHO
00CyKIAI0TCSl OCHOBHBIE 0COOEHHOCTH (puTHpOBaHMSI KyMYJAHTOB. OnHpasich HA aHAJIM3 MOJYyYeHHBIX
JAHHBIX, Npenao:keHa (uTHpywmAas QyHKUMs Aasi KymyJasHTa. Jisi BbIYHCJIeHHMsl 3Toil (yHKIuH
JAOCTATOYHO HecKO0JbKO Touek (0T 10 1o 20). BaxxHasi 0c00€HHOCTH NOCTPOEHHOI (GYyHKIUHU 3aK/II0YaeTCs
B BO3MOKHOCTH OBICTPO OLIEHUTH KPHTHYECKHE 3HAYeHHs 00PATHON KOHCTAHTDI CBSI3U [ Ha pelIeTKe.

PaccmoTpena nponeypa HaXo:KAeHUs TOYKH NepeceveHus TeX KyMyJISIHTOB Bunjiepa, KoTopble 10/ KHBI
nepeceKkaTbesl B 01HOM Touke. OfcyKaaeTcs NPHMeHEeHHe MOy YeHHbIX Pe3yJbTaTOB.

Kawuepsbie ciaopa: SU(2) rmoonuHaMuka, KanuOpoBouHas Teopus Ha pemerke, Monre-Kapno
BBEIYHCIICHUS, (Pa30BbIil epexo K TeKoH(paiMeHTy .

¥ SU(2) rmooauHamini Ha rpaTUi 00YNCIIOIOTHCA Ta aHATI3YIOThesl KyMyJssHTH Binaepa. Kymyssinr
Binnepa € BeJIMUnHOIO, 110 CHIOCTEPIracThesl HA IpaTLi Ta siKka No0yAoBaHa i3 ctyneHiB neti Iloskosa. Bin
onucye pi3HOMAHITHI acmeKTH IpPaTKOBUX Teopiii Ta y Bunmaaky SU(2) teopii cmiBmagae 3 MacmradHoIo
(yskuiero. Taki 004ymuciIeHHS CTaJd MOXJIMBMMH 3aBJIAKHM TEXHOJIOIii po3paxyHkiB Ha rpadiynHnx
npouecopax. I'padiuni npouecopm BHKOPHCTOBYIOTBCSH Yy SIKOCTI 00YHMCIIOBAJILHOI IIaT(OpPMH, IO
J03BOJISIE OTPUMYBATH BEIMKY KUIbKICTh CTATHCTHMYHHX JAHHUX 32 KOPOTKI mpoMmikku 4acy. 3i0paHa
CTATHCTHKA POOUTH MOAIMBUM JOCJTiiKeHHs KyMyJsiHTiB Binaepa Ha Besukiii kinbkocTi pisHOMaHITHIX
rpaTok. Onucaxi Ta AeTajJbHO 00roBOPIOIOTHCS OCHOBHI 0c00,IMBOCTI iTyBaHHSA KyMyJsHTIB. Ciupaw4uch
HA aHAJI3 OTPUMAHUX JAHUX, NPONOHYETbcs (ityroua GyHKUiss Ast KyMyasiHTIB. s o0uucieHHs wiel
¢yskuii gocratHbo aekiibka Todyok (Bix 10 mo 20). BasimBa ocodiuBicTh 3anponoHOBaHOI (yHKII
HOJIATA€ Y MOKIMBOCTI INBUIKO OLIHUTH KPUTHYHE 3HAYEHHS 00ePHEHOI KOHCTAHTH 3B'SI3Ky [~ Ha rparui.
Po3rsinyTo mpomenypy 3HAXOMKeHHSI TOYKH NepeTHHY THUX KymyuasHTtiB bBingepa, siki moBumHi
NepPeTUHATUCDH Y O/Hil Touni. O0roBOpIOIOTHCS 32CTOCYBAHHS OTPHMAHUX Pe3y/IbTaTIB.

KawuoBi caoBa: SU(2) rmooxnHamika, KamiOpyBambHa Teopiss Ha Iparui, Monre-Kapmo
po3paxyHkH, (ha30BHil epexis 10 AeKOH(paHMEHTy.
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Introduction

The Polyakov loop is quantity of interest in Monte-Carlo (MC) calculations in the
lattice gluodynamics. In particular, it was used for calculation of critical indexes in
SU(2)-theory [1]. The value of the Polyakov loop is an important order parameter of
SU(N)-theories. It reads

P:izlrrﬁU - (1)
N 52

=1

where N_ is the number of lattice sites in each spatial direction, NV, is the number of lattice
sites in the time direction, the summation is assumed over all the spatial coordinates of lattice

sites x . There are such quantities, which can be constructed out of powers of the Polyakov
loop and describe different aspects of the theory. One of them is the Binder cumulant [2]

g zﬂ_3 2
T 2)

where brackets <> mean the averaging over MC configurations. The particular interest of

studying (2) has arisen after ref. [2]. Such cumulant identically coincides with the scaling
function of SU(2)-theory [2] and has been used for the critical temperature calculation [3, 4].

In present paper we analyze Binder cumulants. Such cumulants are calculated on
various lattices to demonstrate features of fitting of the cumulants.

Lattice computations of the Binder cumulant

The Binder cumulants are investigated in SU(2)-gluodynamics on the lattice.
Computer modeling is carried out using Monte-Carlo method. In the MC simulations, we

use the hypercubic lattice N, XN; with hypertorus geometry. The spatial part of the

lattice is cubic. The main features of the chosen MC procedure are listed below. We
chose the heat-bath as working algorithm in MC procedure. We use standard form of the
Wilson action of the SU(2)-lattice gauge theory. We use the thermalization procedure to
generate initial conditions for MC calculations. We chose common values for MC
parameters: 200 thermalizing sweeps, then 1000 working MC iterations [5, 6]. We set up
to 8 MC attempts for MC updating of each of lattice variables [5].

A few words should to say about our computing platform. We use the General Purpose
computation on Graphics Processing Units (GPGPU) technology allowing studying large
lattices on personal computers. The performance analysis indicates that the GPU-based MC
simulation program shows better speed-up factors for big lattices in comparison with the
CPU-based one. The GPU vs. CPU (single-thread CPU execution) speed-up factor is above
50 for the majority of lattice geometries and for some lattice sizes can overcome the factor
100 [7]. We use the video controller of the personal computer with GPU manufactured by
ATI Company. The programming language is ATI CAL. Because of the features of this
language and the GPU architecture we use lattices with even time part and the number of the
sites in each of the spatial directions is always multiple of four. Calculations are carried out
for lattices with the parameter NV_, which is varied from 2 up to 16, and parameter N_ has

the values changing from 8 to 32. The number of the fitting points of the dependence of the
Binder cumulant g, on # is varied for each lattice from 26 to 600.
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

The result of calculations of (2) is the set of the points. We put the accent on the
functional dependence which describes the Binder cumulant both in critical region and
beyond. To identify this relationship, it is necessary to apply a fitting procedure. For this
procedure we use the step functions. Let us explain, the g, cumulant has two horizontal

asymptoticses, and in the critical area cumulant changes itself step-like. The next function
(see Tab. 1) has the smallest parameter y* and the best fits for the dependence g,(f) in
the critical and beyond critical areas reads

g4(ﬁ):Al 3)

where A4,,4,,0,,p are the fitting parameters. The results of the fitting of the function (3) are

Az — Al
+ 1+ lo(ﬁo—ﬁ)xp

given in the Fig. 1 and on the Tab. 2.

Table 1
Tested fitting curves
Function Parameters
Az _ Al
vt g | oA Bop
A —+4,
1+[ﬂj Al’AzaﬂoaP
B
Al — Az
14 P-Pip +4, | A Sy p
2.30 2.32 2.34
r 1 1 [ rr &1 T T 1

-0.5

Figure 1. Binder cumulants. The cumulants are calculated on lattices with N, =4 and N,= 8, 12, 24, 28.
The higher number of nods in the lattice corresponds with the sharper step.
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Table 2
Fitting of Binder cumulants by 4, + A
1_‘_10(/”0*/3%17

Lattice Parameters Number Fitting range

X g 4 4, ﬂo P of points Brin Broax

N =2,N,=8 0.006 | —2 —0.13 1.86 | -18 | 126 1.7 | 295
N, =2,N,=12 | 0013 | -2 —0.08 1.86 |34 | 126 1.7 | 295
N.=2,N,=16 | 0013 | -2 —0.16 1.87 |43 | 126 1.7 | 295
N, =2,N,=20 | 0015 |-2 —0.11 1.87 | -81 | 126 1.7 | 295
N =2,N,=24 | 0015 |2 —0.28 1.87 | -117 | 126 1.7 | 295
N.=2,N,=28 |0.008 |-2 —0.03 1.87 | -77 | 123 1.7 | 295
N.=2,N,=32 | 0.006 |2 0.14 186 | 63 | 124 1.7 | 295
N, =4,N, =8 0.009 | -1.953 | —0.0523 | 22705 | -12 | 126 1.7 | 295
N, =4,N, =8 0.012 | -1.957 | —0.0507 | 22747 | -11 | 26 1.7 | 295
N =4N,=12 | 0025 |-198 | 0.1 2286 | —24 | 253 1.7 | 295
N.=4N,=12 | 0011 | -2 —0.04 2289 | -16 |26 1.7 | 295
N =4N,=16 | 0.029 |-2.01 —0.066 | 2287 | —30.1 | 236 1.7 | 295
N =4N,=16 | 0,013 |-1.99 | —0.05 2292 | -30.9 | 26 1.7 | 295
N =4N,=20 |0.055 | -2 —0.065 | 2291 | —48 | 246 1.7 | 295
N.=4N,=24 |01 -2.0098 | 0.044 | 2296 | -68 | 126 1.7 | 295
N.=4N,=24 | 0006 |-2.001 | 0061 |2291 |-27 |26 1.7 | 295
N =4N,=28 | 0089 |-205 |0.13 229 | -62 | 626 1.7 | 295
N.=4,N,=28 | 0012 |-1.99 8107 | 228 | 21 |26 1.7 | 295
N.=4N,=32 (012 |-1984 |02 23 -84 | 626 1.7 | 295
N.=4,N,=32 | 001 |-1988 | 0014 |227 |-28 |26 1.7 | 295
N.=4,N,=36 019 |2 —0.27 2.3 -105 | 600 228 | 231
N, =6,N,=8 0.014 | -1.65 | 0067 |24 -10.5 | 127 1.7 | 295
N =6,N,=12 10025 |-19 0.05 2.4 -17 | 127 1.7 | 295
N =6,N,=16 | 0032 | -2 —0.04 2.4 -17 | 127 1.7 | 295
N =6,N,=20 |0.092 |-2 —0.02 2.4 -44 | 126 1.7 | 295
N, =6,N,=24 | 014 |2 —0.04 2.4 =37 | 127 1.7 | 295
N, =6,N,=28 |02 -2 —0.1 24 -41 | 127 1.7 | 295
N =6N,=32 |0.04 |2 7-10" | 24 -200 | 26 1.7 |2.95
N =8N,=12 10023 |-18 —0.07 248 | -11 | 126 1.7 | 295
N =8N,=16 |0.05 |-19 0.005 249 |-13 | 126 1.7 | 295
N =8N,=20 |0.06 |-2 5-10° | 248 | -13 | 126 1.7 | 295
N =8N,=24 1014 |-2 —0.0014 | 25 34 | 127 1.7 | 295
N =8N,=28 |0.022 |-19 —0.06 249 | 26 |26 1.7 | 295
N, =8N,=32 | 0.0115 | 2 —0.02 248 | -15 |26 1.7 | 295
N, =16,N,=20 | 0,094 |-1.17 | 0017 |268 |-7 126 1.7 | 295
N, =16,N,=24 | 0.054 | -1.7 0.04 275 | -6 26 1.7 | 295
N, =16,N,=28 | 0.021 | -1.6 —0.017 267 |-17 |26 1.7 | 295
N, =16,N, =32 | 0.021 |-17 0.03 269 |23 | 126 1.7 | 295
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

If one knows the dependencies (3) for various lattices, it is easy to find the critical value
of the inverse critical coupling constant . [3, 4]. If one fixes a number of lattice sites in the

time direction N, and changes a number of sites in spatial directions N_, then the curves of
the dependencies g,(/) will intersect each other in one point [8, 9]. The value of £ in this
point is a critical value for the lattice with N_ = const and N_ — o . As shown above, the

result of MC calculations of g, is the set of points; therefore one should fit data to find an

intersection point of the cumulants. To locate this intersection point we use data from Tab. 3.
The detailed procedure of the calculation of intersection point is described below. Values of
the B. received for various lattices are gathered in Tab. 4. For example, the following values

of B. was calculated in Ref. [3]: 1.8800(30)N s 2.2986(6)N i 2.4265(30)
2.5115(40)N=8; the next values was calculated in Ref. [4]: 1.87380(3)N=2,

2.29850(6)N 4 2.51098(58)N _, - Listed values of /. are in good agreement with our

data (Tab. 4).

Let us consider the properties of the curve (3). First, as it seen from Tab. 2, the
parameters of the curve based on the 600 data points, are merely the same as parameters of
the curve based on the 25 data points. It leads to an important consequence: to estimate the
parameters of a curve there is no need to perform the long MC calculation. Second, the
parameter /3, coincides (to within 2 up to 3 digits) with an inverse critical coupling constant

N,=6"

B, for a corresponding lattice. Using combination of both properties it is possible to estimate

quickly a value of . on a lattice with any geometry N_ x N, ; .

It is often necessary to construct and analyze a quantity which depends on Binder
cumulants g,(fB,N_,N_) which is calculated using different N and N_. Beta-function

[10] is an example of such quantity. For lattices with identical values of N_ the Binder

cumulants should intersect in one point [8, 9] and beta-functions should self-intersect in a
corresponding point. From Fig. 1, any three of curves do not cross in one point. Moreover, the
position and the shape of curves are random variables which depend on a choice of a fitting
interval, and also depend on the data amount. The interest causes studying of beta-function in
the critical area. In this area the beta-function distorts mostly. This distortion appears due to
many points of the cumulants intersections. In practice, applying fitting procedure to the sets
of data from different lattices, one won't receive the set of cumulants, crossed in a point.

One needs to update the fitting procedure in such manner that required cumulants cross
in one point. This is very similar to a problem of calculation of inverse critical coupling on a
lattice. Considered problem is not trivial because of the condition, which is imposed on the
curves during fitting.

It is possible to simplify fitting procedure of cumulants g,, making changes into initial

objective: we will search only for a point of cumulants crossing. The easiest way to
demonstrate the given approach is to fit data by straight lines. As it is known, Binder
cumulants are linear near critical region [8, 9]. We compute such lines for the data from
critical regions of different lattices. Fitting results are in Tab.3. From this, we calculate
coordinates of all possible points of crossing of the straight lines and calculate mean
deviations for such coordinates. Received coordinates are the random values of the fitting
interval and lattice data. And next, we find a point of the intersection of the cumulants as
weighted average of coordinates considered (Tab. 4).
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Table 3
Fitting of Binder cumulants by straight lines a,B +b
Lattice Parameters Number 1;23;5

7 P b of points b B
N, =2,N_ =8 0.007 -14 25 100 1.875 | 1.885
N, =2,N, =12 | 9013 -30 56 100 1.875 | 1.885
N, =2,N,=16 | 9016 -33 61 100 1.875 | 1.885
N, =2,N,=20 | 9018 -43 79 100 1.875 | 1.885
N, =2,N,=24 | 9019 -53 98 81 1.875 | 1.883
N, =2,N,=28 | 9014 -39 71 61 1.875 | 1.881
N, =2,N,=32 | 9012 -33 61 71 1.875 | 1.882
N, =4,N,=8 | 00087 -13 29 100 2295 | 2.305
N, =4,N,=12 | 9035 221 47 207 2295 | 235
N.=4,N,=16 | 0038 -25 55 191 2295 | 233
N,=4,N,=20 | 9083 -32 71 191 2295 | 232
N.=4,N,=24 | 013 -72 165 100 2.295 | 2.305
N, =4,N,=28 | 911 -48.7 110.6 541 2295 | 2314
N.=4,N_=32 | 016 -49 111.3 541 2.2997 | 2.314
N, =4,N,=36 | g2 -65 147 600 2.8 2.30995
N,=6,N_=8 0.012 -4.1 8.7 101 2422 | 2432
N,=6,N,=12 | 9023 -4.05 8.4 101 2.422 2.432
N.=6,N_=16 | 0035 -15 35 101 2422 | 2432
N, =6,N,=20 | 911 -47 113 101 2422 | 2432
N.=6,N,=24 | 017 -48 116 101 2422 | 2432
N,=6,N,=28 | 905 -44 106 101 2422 | 2432
N.=8,N,=12 | o024 -6.5 15 100 2.507 | 2.5169
N, =8,N_ =16 | 9061 -11 26 100 2.507 | 2.5169
N.=8N_,=20 | 0.071 -20 48 100 2.507 | 2.5169
N, =8,N, =24 | 916 -35 87 100 2.507 | 2.5169

Table 4
Critical values of the inverse coupling constant and values of Binder cumulant in the critical point
N, 2 4 6 8

T

Be 1.875 | 2.301 | 2.422 | 2.508
g.(B:) | -154 | -1.5 | -1.23 | -1.27

It is easy to change fitting procedure using Tab. 4, so that appropriate cumulants will cross
in one point. We impose the condition on the Eq. (3) that this curve should pass through the
point with fixed coordinates (Tab. 4). Thus, one parameter of the curve (3) is excluded. We
choose to exclude 4,, so the modified equation (3) for lattices with N_ =4 looks:

(A4, +1.40864) x (1+ 1023008607
1+10(ﬂ0’ﬁ)><l7 .

g(B) =4~ “4)
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

The fitting procedure of data by the modified curves (3) leads to convergence yet not
always. The convergence depends on the excluded parameter and on the software chosen
for fitting. It can be complicated to adopt this software for any given relation. Therefore,
it is more usual to exclude some another parameter of (3).

Conclusions

Our calculations became possible due to technology of GPU computations. It is
necessary to notice that usage of GPU during lattice calculations makes possible to gather
a huge amount of the statistical data that allows studying of the Binder cumulants for a
great number of various lattices.

We have performed high-statistics calculations of the Binder cumulant in SU(2)
lattice gluodynamics. It is important that the gathered statistics allow us to construct and
analyze the Binder cumulants. Based on such analysis we propose the function for fitting
of cumulants. A few points of data (10 up to 20) are sufficient for computation of this
function. The remarkable feature of the function offered is ability to estimate quickly the
critical value of the inverse coupling constant f.. The values of f. calculated are in

good agreement with the values known in the literature [3, 4].

The procedure of determination of the intersection point of the Binder cumulants,
which are computed on lattices with different numbers of spatial sites and equal numbers
of time sites, is considered. The updated fitting procedure for determination of cumulants,
which are crossed in one point, is proposed.
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