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ONE-VELOCITY AND ONE-TEMPERATURE HYDRODYNAMICS OF PLASMA

The hydrodynamics of fully ionized plasma where the relaxation of the component temperatures
and velocities is finished is investigated on the basis of the Landau Kkinetic equation. The reduced
description parameters of the system are the component particle densities, the macroscopic velocity and
the temperature of the system. The hydrodynamics is built starting from the Bogolyubov functional
hypothesis. The consideration is based on a perturbation theory in small gradients of the reduced
description parameters. The component distribution functions are found in the perturbation theory with
accuracy up to the first order in the gradients. Hydrodynamic equations for the reduced description
parameters are built taking into account dissipative processes. The obtained integral equations are solved
by expansion in the Sonine polynomial series with the additional use of the electron-to-ion mass ratio
smallness. The kinetic coefficients of the system are calculated taking into account smallness of the mass
ratio. These results of the work are not only important themselves, but can be a basis for the investigation
of relaxation phenomena at their final stage as a main approximation. The obtained hydrodynamic
equations can be used for the hydrodynamic mode investigation.

Keywords: fully ionized election-ion plasma, Landau kinetic equation, distribution functions,
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Ha ocHoBe knHeTHyeckoro ypaBHeHusi JlaHgay wu3ydyaercsi THAPOAMHAMHKA IIOJHOCTBHIO
HOHU3MPOBAHHOI IVIa3MbI B CJIyYae 3aBepUICHHOI peaKkcaliy CKOPOCTeil M TeMIepaTyp KOMIIOHEHT.
IMapameTpamM# COKPALEHHOT0 ONMMCAHHUSI CHUCTEMBI SIBJSIOTCH TUIOTHOCTH YHCJIA YACTHI] KOMIOHEHT,
MaKpOCKONHMYeCKasi CKOPOCTb W TeMIepaTypa cHcTeMbl. ['HIpOAMHAMHKA CTPOMTCSI MCXOASl M3
(ynxnuonanbHoii rumoresnl Boromo6osa. PaccMoTpenmne 0asupyercsi Ha TeOpHH BO3MYLIEHMii 1O
MaJbIM TIpaJHeHTaM MNapaMeTPOB COKPAILeHHOro omnucaHus. ®YyHKUUH pacnpeje/leHHs] KOMIIOHEHT
HILYTCSl B TEOPUH BO3MYIIEHHIT ¢ TOUHOCTBIO /10 YJEHOB MepBOro nopsiaika mo rpagueHtam. IlocrpoeHst
YPaBHeHHS] THAPOAMHAMHMKHM /UIS NApaMeTPOB COKPAIIEHHOT0 OMHCAHUS C y4YeTOM NAMCCHNATHBHBIX
npoueccoB. [losryueHHbIe MHTerpajibHble YPABHEHHs PelIAIOTCH Pa3JioiKeHHeM B Psii M0 MOJIMHOMAM
CoHnHA ¢ JOMOJHHUTEJbHBIM Y4eTOM MAJIOCTH OTHOINEHHMSI Macc JJeKTpoHa M moHa. Kunermueckme
K03 PUIHEHTHI CHCTeMbI BBIYHCIEHBI ¢ YI€TOM MAJIOCTH OTHOIIEeHHs1 Macc. Pe3yabraTsl pagoTnl He
TOJIbKO BaKHBI CaMH 10 cefe, HO TaKiKe MOIYT ObITh OCHOBOW /sl MCC/IEOBAHUS Pe/laKCAlMOHHBIX
sIBJIeHMii BOJIM3HM 3aBeplIeHUs peJIaKCAllMM KaK TIyaBHoe npuOamkenue. IlosydeHHble ypaBHeHHs
THAPOAHHAMHKH MOTYT OBbITh HCIOJIb30BAHBI 1151 H3YYeHUs] THAPOAMHAMHYECKHX MO/l CHCTEMBbI.

KnioueBble cji0Ba: TMONHOCTBIO HOHU3MPOBAHHAs OJJIEKTPOH-WOHHAS IUIa3Ma, KHHETHYECKOE
ypaBHeHue Jlannay, GyHKINH pacrpeseneHus, ypaBHeHUs THAPOANHAMHUKHI, KHHETHYeCKUe KO QUIINCHTHI.

Ha ocHoBi kiHernuyHoro piBHaHHs Jlanjgay BuB4Yae€Thesl TiipoguMHaMika IOBHICTIO iOHi30BaHOI
IUIA3MH Yy BHIIAJKY 3aBeplLICHOI pesiakcalii MIBUAKOCTeH Ta Temmeparyp kommoHeHT. Ilapamerpamm
CKOPOY€HOI0 ONMCY CHCTEMH € TYCTHHH KiJTbKOCTI YaCTHHOK KOMIIOHEHT, MAKPOCKOMIYHA IBHAKICTH Ta
Temreparypa cuctemu. I'itponnHamika 6ynyerbess Buxoasaum 3 ¢pyHKLioHaIbLHOL rinore3u boroarodosa.
Po3risig 6a3yerbest Ha Teopii 30ypeHb 32 MaJIMMM IPajlieHTaMH apaMeTpiB CKOpo4eHoro onucy. yHkuii
PO3MOIiTy KOMIIOHEHT WHIYKATHCS y Teopili 30ypeHb 3 TOYHICTIO 10 4/IeHiB NepUIOro MOPsSAKYy IO
rpajgieHTam. I1oGynoBaHo piBHSIHHSA IAPOAUHAMIKH 1J151 IapaMeTPiB CKOPOYEHOT0 ONHUCY 3 YPAXYBAHHAM
AUCHNATUBHUX mpoueciB. OTpuMaHi iHTerpanbHi pPiBHAHHSA PO3B’SI3YIOTHCH PO3BHHEHHSIM B Psi MO
noixinomam CoHiHA 3 J0AATKOBHM YPaXyBaHHSIM MAaJIOCTi BiJHOIIEHHS MAC eJEKTPOHA Ta ioHa.
Kinernuni koedinieHTH cucTeMH NOPaxoBaHO 3 ypaXyBaHHSIM MAaJIOCTi BinHomeHHs Mac. Pesyabratn
po0oTH BakJIMBi He Juime caMi Mo co0i, ajle TakoK MOKYTb OyTH BHKOPHUCTAHI Il AOCJIZKeHHS
pejakcauiiHuX sBMI 1M00JM3Y 3aBeplLIeHHs pejiaKkcalil K roJioBHe Ha0u:keHHsl. OTpUMaHi PiBHIHHA
riIpoAMHAMIKH MOKYTh O0yTH BUKOPUCTAHI /181 OTPMMAHHSA riIpoAMHAMIYHIX MO/ CUCTEMH.

KiouoBi cioBa: TOBHICTIO 10HI30BaHa €NEKTPOH-IOHHA IUTa3Ma, KiHeTWYHE piBHAHHS JlaHmay,
¢yHKLiT po3moiny, piBHSHHS I'iIpOJUHAMIKH, KIHETHYHI KOS(IMieHTH.
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Introduction

In his famous work [1] Landau derived a kinetic equation for completely ionized gas
with Coulomb interaction, which is widely used in the kinetic theory of plasma. On the
basis of this equation he also studied the temperature relaxation in plasma. The problem
of the relaxation times in the spatial uniform case was investigated by many authors (see,
for example [2-4]). Present work is concerned with the non-homogenous case where the
relaxation of the component temperatures and velocities is finished. The problem of the
one-velocity and one-temperature hydrodynamics of two-component systems (a usual
hydrodynamics) is not new [5-7], but it was usually investigated on the basis of the
Boltzmann equation for uncharged particles.

The aim of the present work is to build usual hydrodynamics of plasma on the basis
of the Landau kinetic equation and to obtain the component distribution functions and
kinetic coefficients of the system. The mentioned results, besides being important
themselves, obviously can be considered as the leading order approximation in the case of
small differences of the component velocities and temperatures.

The article is organized as follows. First, the Landau kinetic equation is written.
Then reduced description parameters of the system are introduced, and the component
distribution functions are obtained in the homogenous case. Then hydrodynamic
equations for the reduced description parameters are built, and the distribution functions
in the non-homogenous case are calculated. Using these distributions, the kinetic
coefficients of the system are found.

Basic equations of the theory
The well-known Landau kinetic equation for fully ionized electron-ion plasma is written

O (6D - _hw-f I ( f(x t))
ap ? ’

ot m, OX,
0 2 Moy O p_p
| (f)==) —|27z(ee ) LI f —2—f —2!D |———|d°p
ap( ) gapn|: 7[( a b) _[{ ap apll bp apl} nl(ma mb p (1)
where
D, (u)=(uf &, —uu)/|uf )

Here f, (X,t) is distribution function of the a -th component of the plasma (a, b, c,...
=eg,i). It is normalized by relation

J fp(e00’p=n,(x0) 3)
where n,(X,t) is number of particle number density of the a -th component. The Landau

equation is a model one but it adequately describes the role of the Coulomb interaction in
the system at long distances. Therefore, it is widely used in the plasma theory.

As is known [5], the reduced description parameters in the one-velocity and one-
temperature hydrodynamics are the particle number densities of the components n_(X,t),

the temperature T(X,t) and the velocity v,(X,t) of the system. By definition, these
parameters are introduced as follows:

ﬂnzzjfappnde:Unp (pEneme+nimi)’

3 1
g=ZI fapgapd3p=5nT+Epu2 (n=n,+n,) 4)
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One-velocity and one-temperature hydrodynamics of plasma

where 7, and & are the total momentum and the energy densities of the system,
respectively (&,, = p*/2m, ).
The investigation is based on the functional hypothesis [5], which can be written as
oo (6 t) = fa (x.60) 5)
where the reduced description parameters are denoted as &,: & =T, =v,, §,=n,

(#=0,n,a). In (5) 7, is a time which is much longer than the subsystem velocity and

temperature relaxation times. The dependence of the reduced description parameters on
the coordinates is supposed to be weak, so the gradients of the reduced description
parameters are assumed to be small,

A
0K, .0, J (g=D). ©)

Parameter ¢ is estimated as g =1./L where |, is the mean free path, L is characteristic

length of inhomogeneities in the system. In what follows, the contribution of the order g°

to a quantity A is denoted by A® .
According to the functional hypothesis (5), hydrodynamic equations have the structure

95, (X,1)
”T =L, (x, f(&1) (7
where functional L, (X, f ) can be found from the kinetic equation (1) and definitions (4). Then

equation (1) is rewritten in view of (5) and (6) as the equation for the functional f (X, ¢ )

Sf of (X,
J‘d3r ap Xé I(X',f(f)):_&M+|ap(f(X,§))- ®)

m OX,

a

This equatlon should be solved with additional conditions

> [ fe6 )P’ p=0,003mn, 00,  [f,06&d’p=n,0,

[ £ 066128 P=2T (O L 1,00+ 0()° Xm0, (9 ©)

that follow from definitions (3), (4).
In order to realize the reduced description method, one should calculate the

functional f (x,é) from equations (8) and (9). These equations are obviously solvable in

a perturbation theory in the gradients of the reduced description parameters.

Hydrodynamic equations

Hydrodynamic equations (7) are obtained from conservation laws following from
the kinetic equation (1) and the definitions (4)
on, 1 on, or, ot os 0,

= — — :——nl —_— =,
ot m, ox ot o~ ot ox (10)

Here the total energy and momentum fluxes in the system q,, t,, and momentum density

of the a -th component 7,

=Za‘,jd3p8ap%fap, tn.=Za:Id3ppn%fapa 7y =[d’ppif,,. (11)

a

are introduced ( 7, = 7, + 7;, ).
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To build hydrodynamic equations with taking into account dissipative processes the
solution of equations (8), (9) should be found in the form of a series up to the first order
in the gradients of the parameters &,(X) by using an iterative procedure

fp(x.&)= 1)+ 1) +0(g%). (12)
Equation (8) shows that the distribution functions in the leading approximation
coincide with the Maxwell ones

0 n ﬂ3/2
f()_wap Mo 2 Wapzmexf’(_ﬂgap) (B=1/T) (13)

because for collision integral (1) the relation
lp (W) =0 (14)

is true.
The fluxes in the lab reference system are connected with ones in the accompanying
reference system (ARS) by relations

1
qn :qr? +tr?IUI +(‘90 +Ep02)un ’ tnI =t§| +pUnUI > ”an :ﬂ-;n + manaUn (15)

where quantities taken in the ARS have superscript 0. From (4), (11)-(13), (15) it can be
obtained that the hydrodynamic equations with contributions up to the second order in
gradients are given by relations

on, _ ono, 1 omy" ov,  ou, laonT 1aty"
at ox,  m, ox, ot Yox,£ pox. p ox
0 o 0 oo
ﬂ__vnﬂ_%'[‘ Yn _iq__itﬁl(l)i+lz 1 o7 ) (16)
ot ox, 3 ox, 3n ox, 3n ox, nSgm, ox,
Here we take into account that for the considered system
&= % nT, t”=nTs,, q”=0, z2”=0, 7z°=0. (17)

o(1)

an

o(l) o(D)

In equations (16) fluxes of mass 7. momentumt ", energy ¢, describe dissipative

processes in the system.

According to the idea of the rotational invariance, the distribution functions of the
first order in gradients in the ARS have the structure

f(l): ap mu|:pnzAaNb( ap)a%"_pnAa (ﬂgap)ﬂ—l_

n axn

0%,
Scalar functions A™ ( Be,) A: (Be,), A (Be,) can be found from integral equations

P, { Ls, —i} =2 [d*p’Ky, (P, D) DI A (Beiy )
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n
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One-velocity and one-temperature hydrodynamics of plasma

Kernel K(p,p’) of these equations is defined through the collision integral (1) by the
formulas

: : n_ Olap(F)

Ko (P P)Woy =My (P, P") Wy My (P ") =—2—

20
5 fbp’ fepr ( )

Additional conditions (9) give the following restrictions on the solution of the integral
equations (19)

Id pw, p Aa ﬂgap) 5 .[d pw, p A:‘b ﬁgap): > (21)

which pr0V1de the uniqueness of the solutlon.
The solution of integral equations (19) will be found in the form of the expansions in
the Sonine polynomials [8]

Nb(ﬂgap) Zgz’;‘sbsslz(ﬁgap) (ﬂgap) Zgassyz(ﬂgap)’

A (B, ) = Zgasss”(ﬂeap)- (22)

The Sonine polynomials S’ ( ) are defined by the relation

1 d"
Sa =_ —X ya+n , 23
n()nex dx”(ex ) (23)
and have the property of orthogonality
L ves ; I(n+a+1)
}[e X“S¢ (x)Sn,(x)dx=T5m.. (24)

The Sonine polynomials are useful in the next calculation because of the equality
o 2n, T T(n+a+1
P 287 (e )55 (o) = — D g
which follows from (24).
Distribution function (18) allows calculating the first order in gradients contributions
to fluxes (dissipative fluxes) in the ARS:

70 on 6T 0 on, oT
(1) ZAab by aX qn(l) — Dg
ov, ovuv, 20v
tO(l) n oy L _Z7"m 5 ,
" 77( ox  ox, 30x, "'j (25)

where kinetic coefficients
T
A-l _mnTgaO’ Ba:manaT ga0=

5 5
Cangzgnb(gt?oa_gtﬁa)’ DZETzzna(glo_g;)’

2 v
n=-T*y nmgy,. (26)
a
are introduced. Here# is shear viscosity but for other kinetic coefficients there are

several standard notations (see, for example, [5 - 7]).

As seen, the usage of the Sonine polynomials is rather convenient, because the
momentum density and the momentum flux are expressed in terms of only one
polynomial, and the energy flux is expressed in terms of only two polynomials.

43



V. N. Gorev, A. |. Sokolovsky

Calculation of the kinetic coefficients

Substituting expansions (22) in integral equations (19), multiplying by the Sonine
polynomials and integrating over momentum give an infinite set of equations for
coefficients g}, gL, g%. For their approximate calculation we should artificially
truncate the number of polynomials in (22) (see, for example [10]) to obtain a finite set
equations for the coefficients g, gl., g2 . From (26) it is evident that at least A™® and
Al should be found in the two-polynomial approximation, and A’ — in the one-
polynomial one.

From (19), (22) the following set of the truncated equations for the coefficients gaNsb

(s=0,1), g (s=0,1), g, is obtained

3nmT
z ZGas,bs’ggs’ = _Yas > Z es, bs' 9 l;\‘se = _—550 >
s=0,1 b s=0,l b P
3n,m.T , 3n.m.T
ZGes,bs’gbl\;l’ = —550 ’ z is, bs' 9 I;\ls —550 ’
$=0,l b P $=0,1 b P
3nmT v
ZGis,bs’gb’\?’e = — 550 ’ Z gbOHaO,bO = _lonamaT (27)
§=0,1 b P b
where
Yo =Y, =30N(M,—m,)/ p, Y, =-15n/2. (28)

Equations (27) contain the matrixes G, ,,,, H, ,, given by formulas

Gas,bs’ E{ an:/Z (ﬂgap) 83/2 (ﬂgbp )}
as bs’ {(pl pn nI p2 /3)855/2 (ﬂgap)’(pl pn - 5n| p2 /3)855’/2 (ﬁgbp )}ab (29)

which contain integral brackets defined by the relation

(9,1} = [d* pd* p'g (p)wi, Koy (P P)N(P). (30)
Using (22), relations (21) take the form

LM =0, 2 MmN, 05 =0 (31)

and must be used as additional conditions to equations (27).
In order to simplify the obtained results, we may take into account that the electron-

to-ion mass ratio is small o =.,/m, / m, < 1. Using (1), (20), (29)-(31), we obtain the
coefficients g:s" (s=0,1), gi (s=0,1), g, in a perturbation theory in &
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One-velocity and one-temperature hydrodynamics of plasma

3
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2} (ne +\/§nizz)

where the notation
Tl/2
e‘L(zm,)"”
is introduced. As seen from (25), (26), the obtained expressions are important for
calculation of the kinetic coefficients.
According to the standart definition of kinetic coefficients for the two-component
systems [6, 7], we can introduce notations

t3|<u>:_,7£%+%_25 %J_%%

(33)

b

ax  ox 3 " ox, X,
250 = olnT _mDﬂdn’ 250 = T olnT _n’mm, D.d. .
OX, P oX, P
aT & 51-0°
oW — e 4T =+= P
SR o, [ 0. "2 m [ (34)

0

where quantity d, is defined by formula (with taking into account, that 72" + 72" =0).

in

d - n.n(m —m,)dInT e (olnn,  , dlnn, |
" pn X, on o ox, OX

Here 77, ¢ are shear and bulk viscosity, D, , D, are thermal diffusion and diffusion

coefficients, x is thermal conductivity, & is an additional kinetic coefficient.

(35)

n
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Using definitions (34), (35) and formulas (25), (26), (32), we obtain the following
expressions for the kinetic coefficients

45n,m.T?
T Py
5 o 372 (4420, +132°n;)
) ¢ 29/2nz“(ni +\/§zzne)
- 750,72
25’2(4\/§ne +1322ni)

/1+O(0),

/1+O(0),

_5m.T?

2°7*

/1+O(G), Ao +0(c’), ¢=0,

~ 45nn,T?
29/2nemen(zzni +\/§ne)

which define dissipative fluxes in the system.

/1+O(O'), (36)

Conclusions

The hydrodynamics of fully ionized two-component plasma with equal component
temperatures and macroscopic component velocities has been investigated taking into
account that the electron-to-ion mass ratio is small. The distribution functions of the
plasma components are found up to the first order in gradients of hydrodynamic
variables. The kinetic coefficients of the system have been calculated.

The considered hydrodynamic states are the states in which the relaxation of the
component velocities and temperatures is finished. The obtained results are not only
important themselves, but they are also very important for the relaxation processes
investigation at the end of relaxation. In the last situation the results obtained in the
present paper give the leading order approximation for the case of small differences of
component temperatures and velocities. The developed here hydrodynamics will be used
in another paper for investigation of the plasma modes taking into account the relaxation.
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