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RADIAL MOTIONS IN THE GRAVITATIONAL FIELD OF A MASSIVE
OBJECT WITH SCALAR AND ELECTRIC CHARGES

An exact solution of Einstein equations for a static spherically symmetric space-time that
describes the scalar, electrostatic and gravitational fields of the central object with mass M, and scalar
G and electric Q charges in the quasi global coordinates with gy, g;; = -1 is obtained. The radial motion
of neutral test particles in this space is investigated. It is found that in the case of super-extremal
electric charge in which Q? > »M? the metric component gy, playing the role of an effective potential in

the equation of motion, has a minimum. This indicates on the existence of the hovering point that is a
position of the stable static equilibrium of a test particle for some set of particle parameter values. The
small deviations of the particle parameters from the equilibrium state will generate the harmonic
oscillations of the particle near the hovering point. As an example, the frequency of the oscillations due
to the small deviation of the particle energy is calculated. This result may serve as the classical
approximation to the quantum-mechanical problem of normal modes for a massive object with electric
charge and dynamical scalar field.
Key words: radial motion, scalar field, spherically-symmetric metric, hovering point.

Opnep:kaHo TOYHHUI Po3B 30K piBHAHD EifHIITeliHA VI cCTATHYHOTO chepUYHO-CHMETPUYHOTO
MPOCTOPY-Yacy, 10 OMUCYE CKAJISIPHe, eJeKTPOCTATHYHEe Ta rpaBirauiiliHe Mo LEHTPaJIbLHOrO
00'exTa 3 Mmacorw M, ckansapuum G i erekTpuunum Q 3apsiaMu B KBa3irjo6aabHUX KOOPIHHATAX,
KOJIH 811 = -1. Jocainzkeno paaiajibHi pyxu HeHTPaJIbLHUX NPOOHUX YACTHHOK Y HbOMY HMPOCTOPI.
BcTanoB/IeHO, W10 Yy BHNAAKY CYNepeKCTPEMATLHOr0 eJIeKTPHYHOro 3apsiay, Koam Q7 >M?,

KOMIIOHEHTAa MeTPHKH g, 110 IPa€ poib eeKTHBHOIO NMOTeHNiaJy B PiBHAHHI pyXy, Ma€e MiHiMyMm.
Ile Bka3ye Ha icHYBaHHSI TOYKH 3aBHCAHHM, TOOTO NOJIOKEHHSA CTilKOI CTAaTH4YHOI piBHOBaru
NMPOOHOI YACTHHKH JJIfl JesKOi CYKYMHOCTi 3HadYeHb mnapameTpiB yacTuHku. MaJji BiaxujeHHs
napaMeTpiB YacTHHKH Bil PiBHOBa:KHOI0 CTaHy MOPOMKYIOTh I'apMOHIYHI KOJHBAHHS YACTHHKH
1no0JM3y 3HaiiIeHOI TOYKH 3aBHCAHHA. SIK NIpPHUKJIAL PO3PAXOBAHO YACTOTY KOJIHMBAHL YHACIIAOK
MAaJIOro BigxuieHHs eHeprii yacTuHku. Ileii pe3yabTar MoKe €JIyryBaTH KJIACHYHUM HAOIHKEHHAM
A0 KBAHTOBO-MeXaHiYHOi 3ajaui Npo HOPMaJIbHI MOAM UII MACHBHOIO 00'€KTa 3 €JeKTPUYHHUM
3apsa/oM i 3 IMHAMIYHAM CKAJISIPHUM TI0JIeM.
KorouoBi ci1oBa: pamianbHuii pyx, CKasipHE 1oie, chepriHO-CHMETPUYHA METPHUKA, TOUKA 3aBHCAHHS.

IlonyyeHo ToO4YHOe pelieHHe YpaBHeHMIl OJHHIITeliHA IS CTATHYECKOIO0 cepUYecKHU-
CHMMETPHYHOI0 IPOCTPAHCTBA-BPEMEHHU, ONHUCBIBAIONIEI0 CKAJISAPHOE, JJIEKTPOCTATHYECKOE U
TPABUTALMOHHOE 1OJIS LIEHTPAJbHOro o0bekTa ¢ Maccoii M, ckanapHeiM G u 3jekTpuueckum Q
3apaJaMHl B KBa3UIVIO0AJIBHBIX KOOPAMHATAX, Koraa gy g1 = -1. HMceaenoBanbl paauaibHbIe
ABMKeHHs] HelTPAJILHBIX MPOOHBLIX YacTHL B 3TOM MPOCTPAHCTBE. YCTAHOBJIEHO, YTO B CJIy4ae
CYNepPIKCTPEMATILHOI0 JIEKTPHYECKOro 3apsiaa, Koraa Q? >j)M?, KOMIOHEHTa METPHKH gy,

urpamasi pojb 3((eKTHBHOrO NOTEHIHAJA B YPABHEHHH [BHKEHHsl, MMeeT MHHHMYM. JTO
yKa3bIBaeT HA CYLIECTBOBAaHHME TOYKH 3aBHCAHHA, TO €CTh IOJIOKEHUS YCTOHYHMBOIO CTATHYECKOIO
PaBHOBecHsl NPOOHOI YacTHUBI I8 HEKOTOPOro Hadopa 3HaueHMil mapameTpoB 4acTuubl. MaJjble
OTKJIOHEHHMsl NAapaMeTPOB 4YACTHIBI OT PABHOBECHOI0 COCTOSIHMSI MOPOXKIAIT TapMOHHYeCKHe
Ko0JIe0aHHs YACTHILI BOJIM3M HAlileHHOli TOUKH 3aBHcaHus. B kadyecTBe NpuMepa paccYnuTaHa YacToOTa
KoJIe0aHMIi BCJeJCTBHE MAJIOro OTKJIOHEHHMsl SHEPIMH YacTHIbI. JTOT Pe3yJbTAT MOXKET CJIYKHTb
KJAcCHYeCKHM MNpHOIMIKeHHeM JUIsl KBAHTOBO-MEXAaHMYeCKOH 3aJaud 0 HOPMAJIbHBIX MOJax
CKAJSAPHOrO0 MO JUISl MACCHBHOI0 00beKTa € 3J1eKTPHYECKHM 3apsiAoM U JHHAMHYECKHM CKAISIPHBIM
noJjieM.

KnroueBble ciioBa: pagnanbHOE ABIKEHHE, CKAIPHOE IT0JIe, ChepruecKr-CHMMETPUYHAS METPUKA, TOUYKa
3aBUCaHMS.

© V. D. Gladush, D. A. Kulikov, 2014
58


mailto:vgladush@gmail.com

V. D. Gladush, D. A. Kulikov

1. Introduction

Probing gravitational field of compact massive objects plays an important role in
General Relativity. One of the properties of interest is the hovering point that is an equili-
brium position of test particles moving radially near the object. It has been shown [1] that
such hovering points for charged and neutral test particles do exist for the Reissner-Nord-
strom geometry in the case when it corresponds to a super-extremal value of electric charge.

The goal of this work is to study the impact of scalar charge on the above result.
Although the gravitational field of a massive object with scalar and electric charges is
considered in [2], the solution is obtained there in a sophisticated parametric form. That is
why the present study starts with generalizing the more transparent solution with scalar
charge and sub-extremal electric charge [3] to arbitrary values of electric charge.

2. General solution for metric

Let us consider the static spherically symmetric geometry and adopt the following

Reissner-Nordstrom-like ansatz for the metric [3]
2

d52 :—(Z _a:gz _b) Csz2 _mdzz — rz(d¢92 +sin2 0 d¢2) (1)

with r =r(z) and ¢ being the velocity of light. Upon substituting r* = (z —a)(z —b)e”,
one gets the component of the Einstein tensor
2] _h)?
Gll — e—/l L_ (a Zb) 5 (2)
4 4(z-a)(z-b)

where the prime denotes the derivative with respect to z.

Let the Einstein equations G* =87y(y T +,T,*)/c" contain the energy-momentum

\4 sC v

tensors of an electromagnetic field and a massless scalar field. For their static spherically
Ty =T} = Ts =sTs
0 sc'1 sc 2 sc'3

. . . 1 2
symmetric configurations, the relations o T, =T, =T, = T; » «

hold, so that one can integrate the conservation-law equation (y4T+¢T /)., =0 to obtain
2 2,4
Ge
elTl1 = Q 40 sch1 == 4 (3)
8ar 8ar

where integration constants Q and G are electric charge and scalar charge respectively.

The substitution of (2) and (3) into the Einstein equation for Gl1 yields

22 2
%(z —a)’(z-b)* —7Q—4e‘l -A*=0 4)
c
with A> =(a—b)?/4—4G?/c*. The general solution to (4) in terms of r(z) is [3]
f=L[(Z—a)(Z—b)](l_“)/2 C(z-b)* —E(Z—a)“ ()
2A Cc’
where
a_ MM’ =@ -G MM -RQ°  2A ©
b c? S c’ *7 a-b

and M is the mass. However, it is out of scope of [3] that this solution splits into three
different cases depending on whether constants under the square root signs in (6) are
positive or not. The electrostatic potential A, and the scalar field ¢, which obey
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,_ Q ,_ Gt G
=" P (z-a)z-b)’ ™

may have qualitatively different configurations in these three cases as well.

3. Metric and fields in particular cases
Let us examine separately the particular cases of the general solution.
1. First let Q> > M > +G” that implies that the electric charge is super-extremal
Q?>»M? . In this case a and b are complex numbers according to (6). Then the scalar
field derivative (7) is integrated for real z to produce

c’z—M?
V1@ -G)-y’M”
Applying de Moivre’s formula to calculate the powers of (z—a)and its complex

¢ =G arccot ®)

conjugated (z —b) in (5) and taking into account the relation ¢ =G arg(z —b), one gets

[ .
r=12’ = 2Mz/c? + (Q> —GZ)/C4{cos(a(p/G)+w
R —r'M

where o = \/ (Q* =M ?*)/(Q* —yM?* —G?) . This r(z) dependence is monotonous and

formulae (8) and (9) are well-defined when z > z,, with z, denoting the largest root of

r(z) =0 . Note that z is related to coordinate X of [2] by X =¢(2)/(Gy/Q* —/M? —G?).

It can be shown that in the absence of the scalar field, one has r(z) =z and metric

)

(1) reduces to that of the naked Reissner-Nordstrom singularity having no horizons. If the
scalar field is present, the metric coefficient g,,=(z—a)(z—b)/ r’ does not vanish

anywhere on the real z axis because a and b are complex. Consequently, in this case
there are no horizons and the metric has a naked singularity at the origin as well. In Fig. 1
the plots of g,, (left) and the scalar field ¢ (right) versus r calculated according to (1),

(8) and (9) are depicted by the solid lines. The calculation was made for M =1, Q=1.1,
M =1 and G =0.1 in units in which y=c=1.
2. Now let M? <Q? <M ?* +G?, so that the electric charge is super-extremal and

bounded from above. The main difference from the first case is that now a becomes
imaginary. As a consequence, the metric coefficients in (1) are defined through

[ A
r :\/z2 —2Mz/c* +7(Q? —Gz)/c“{cos(o}([)/GHw
-y M

that differs from (9) only in the replacement ¢ => @ =a/i, ¢ = @ where

. QZ_]MZ . CZZ—}/MZ
o= m, (/)_GarCCOth\/szz_y(Qz_Gz) (11)

and ¢ designates the scalar field for this case. Note that the so-obtained ¢ satisfies (7).

(10)

Once again g, has no zeros for z > z;, and thus there is a naked singularity. For this
case, the dependences of g,, and ¢ on r are depicted by the dotted lines in Fig. 1. The
calculation was made using the values M =1, Q=1.1, M =1 and G=0.5.
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3. Let Q% <yM? that refers to the solution with sub-extremal electric charge, which

was analyzed in [3]. In this case all the constants in (6) are real and hence the initial
r(z) dependence (5) is well-defined and determines the metric via (1). Since r(z)

vanishes at @ and b (a>b),z is now restricted to z>a . In the absence of the scalar
field (G=0), one has r(z)=z and z=a is the event horizon of the Reissner-Nordstrém

black hole. However, if G # 0, there are no horizons and z=a turns out to be a naked
singularity [3]. The corresponding ¢,, and ¢ are depicted by the dashed lines in Fig. 1.

These plots were obtained using the values M =1, Q=0.9, M =1 and G=0.5.
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Fig. 1. Typical plots of gg(r) (left) and o(r) (right) for Q> > M > + G’ (solid line),
M?<Q’ <M +G” (dotted line) and Q° <)M (dashed line).
It is seen from Fig. 1 that the metric is asymptotically flat in each of the cases
though its behavior at small r varies depending on the value of electric charge. So does

the scalar field, which is finite at origin only in the case of super-extremal electric charge.
In its turn, the electrostatic potential behaves approximately as A, = Q/r in all the three

cases because it always obeys (7) where r(z) is almost linear in z especially for large z.
As a remark, it should be added that the system under consideration has also two
limiting cases M*=Q? and Q*> =yM?*+G?, which were not considered here for the
sake of brevity. The corresponding metrics can be found in [3].
4. Radial motions

Consider a neutral test particle with mass m and energy E. Its radial motion in the
space-time with metric (1) is described by the world-line equation

dz jz 1 i
2 2.4 2 2 24,4
mc-— | =——-Im°c'g,,—E"J=E"—m°c’e (12)
[ ds 91190 ( " )

in which the component g,, plays the role of an effective potential. Since the metric is

shown to be asymptotically flat, g,, = e* -1 as r —»oo. Then from (12) it follows that

the motion is finite (infinite) for particles with E <mc? ( E >mc?).

If the electric charge is sub-extremal Q* < yM? (case 3), from Fig. 1 one sees that
Joo=€"—0 as r—0. Hence, (mc’dz/ds)> - E*>0 and the particle moving in-
wards will fall into the singularity. If the electric charge is super-extremal (cases 1 and 2),
(mc?dz/ds)* — -0 as r — 0, so that the particle cannot reach the singularity. In these
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cases there exists a hovering point of the test particle. According to [4], it is located at the
minimum of g,, =€ *. For case 1, the corresponding areal radius is

2
=23 (13)
(Q* —yM ?)sin’ Q ]M 5 arcsin
| Q* - M- V
that reduces to the Reissner-Nordstrom value Tpy_oq = Q*/(Mc?) [1] when G =0. For

case 2, one should invert the signs in Q> — M * —G? and replace sin by sinh in (13).

Suppose the particle energy is slightly greater than that of the particle resting at
hovering point. Then the small radial oscillations of the particle near the hovering point
will occur with the frequency calculated with respect to the time of a remote observer [5]

1/2
:(82H 62H] . (14)

2 2
62 6p Teq=0, p=0

In the case of Q% > M ? +G? (case 1) the last formula yields

¢ @Q@-MH)" sin’ Q" M’ arcsin\/;M (15)
fQ(Q;MG) \/Q—;M Jor

that in the absence of the scalar charge (G = 0) reduces to the Reissner-Nordstrom result
[5]. The frequency for the case of M? <Q* <M ? +G? (case 2) is obtained from (14)
by the same replacements as described after equation (13).

5. Conclusions

In this work the solution to the Einstein equations for the massive object with
arbitrary values of scalar and electric charges has been presented. It is shown that the
radial motions of neutral test particles in this geometry depend on the electric charge of
the object. If and only if this charge attains a super-extremal value, there is a stable
equilibrium position of the test particle. It is interesting to explore the implications of this
effect at the quantum level since it may give rise to the scalar field normal modes.
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