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A PROBLEM OF COSMOLOGICAL TIME IN THE DE SITTER SPACE-TIME

In the paper a new representation of de Sitter solutions is obtained by a transformation from
coordinates of curvatures to synchronous coordinate systems. The special cases of this representation are
those by S. Hawking, G. Ellis and E. Shrédinger. Obtained generalized representation study is performed
by the method of embedding into the 5-dimensional flat space. The fundamental formulae for embeddings
are derived and explanation of the obtained results is given. The physical sense of integration functions is
ascertained. The feasibility of the matching of de Sitter solution and the Tolman world is shown. The de
Sitter world may be an initial state for the Tolman Universe because the choice of integration functions is
a choice of a synchronous coordinate system, in which it is possible to match Tolman and de Sitter
metrics. Since the generalized representation of de Sitter solution does not constrain the values of
integration functions, there are infinitely many such synchronous coordinate systems and, therefore, the
matching of de Sitter solutions and general Tolman solution is possible. So, it is impossible to introduce a
notion of universal cosmological time in the de Sitter Universe.
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cosmological time.

Y pobori MeTonomM mepexoAy Bil KOOPAMHAT KPHBHH 10 CHHXPOHHHUX CHCTEM KOOpPAMHAT
OTPHMAHO HOBe MpeAcTaBjeHHs po3B’sa3kiB ae Cirrepa, OKpeMHMHM BHNAJKAMU SKOI0 €
npeacrasiienns, orpumani C. Xokinrom, /x. Eniicom i E. Illpsoainrepom. locigkeHHs: 0TPpEMAaHOTr0
y3araJibHEeHOro mpeACTAB/IeHHs MNPOBOAMJIOCH MeTOJ0M BKJIAJAHHA B I'SITHBUMIPpHHH mI0CKMii
npoctip. BuBeneHo ocHoBHi ¢opMyau BKjIaJaHb i JaHO iHTepHpeTalil0 OTPUMAHHMX pPe3yJbTATIB.
YceranoBiaeno ¢izuynmii cene pynkuiii interpyBanns. IlokazaHo MOKIUMBICTH 3MIMTTH PO3B’SI3KY 1€
Cirrepa 3i cBiTtoM Tosamena. Ceirt ne Citrepa Moske 6yTu mo4aTkoBUM cTaHoM st BeecBity Tonmena
3 orysiAy Ha Te, M0 BHOIp (yHKUiH iHTerpyBaHHsl CTAHOBHTL 00010 BHOIp CHMHXPOHHOI CHCTeMH
KOOpPIMHAT, y fAKiii Moxause 3muTTs MeTpuk Toamena i ae Cirrepa. Ockinbku y3arajibHeHe
npeacTaBjieHHs po3B’sa3ky Ae CiTrepa He Hak/1ajaae o0MeskeHb HA 3HaYeHHs (PYHKUil IHTerpyBaHHS,
TO CHHXPOHHHX CHCTeM KOOPAMHAT icHY€ 0e3.1i4 i, 0TKe, MOKJIMBHUM € 3IIUTTS po3B’si3kiB Ae Cirrepa 3
3arajbHuM po3B’si3koM TosiMena. ToMy MOHATTS yHiBepcaJbHOI0 KOCMOJIOTiYHOrO 4acy y cBiTi ae
CitTepa 3anpoBaguTH HEMOKJIHBO.

Kumrouosi cioBa: merpuxu Tonmena it ne CitTepa, CHHXpOHHA CHCTEMa KOOPAWHAT, 11 SITUBUMIipHHI
IUTOCKHUH TIPOCTIip, KOCMOJIOTIYHUH dac.

B pabore mMeronoM mepexoaa OT KOOPAMHAT KPHMBHM3H K CHHXPOHHBIM CHCTEMAaM KOOPAHHAT
NOJIy4eHO HOBOE IpeicTaBjieHHe pemeHuii Ae CUTTepa, YACTHBIMHM CJIY4asgMH KOTOPOro SiBJISIOTCSH
npeacrapieHusi, noaydenuble C.Xoxkunrom, JIx. Daaucom u . lHlpeaunrepom. MHccienoBanue
MOJIy4eHHOr0 00001IeHHOr0 NPeACTABIeHHs! TPOBOJANJIOCH METOJ0M BJIOKEHHs B IATHMEPHOE MJI0CKOoe
NMpPOCTPaHCTBO. BrhiBeaeHbl OCHOBHBbIE (hOPMY.JbI BJIOKEHHIT M JaHA HHTEPNpeTAlMsl NMOJYYeHHbIM
pe3yJbTaTaM. Y CTaHOBJIeH (pU3HYeCKuil cMbIci (pyHKuMil nHTerpupoBanus. [lokazana BO3MOKHOCTH
cumBKkH pemenusi Ae Cutrepa ¢ mupom Tosmena. Mup ne Currepa mMoxkeT ObITh HAYaJbHBIM
cocrosinMeM s Bceeaennoii Toamena BBuAY TOro, 4ro BbIOOp (YHKIUI HHTErpUpPOBAHHA
NpeacTaBseT co00il BLIOOP CHHXPOHHOM CHCTEMbI KOOPAUHAT, B KOTOPO# BO3MOKHA CHIMBKA METPHK
Toamena u e Currepa. Ilockoabky 0000meHHoe mpeacTaBjieHne peumeHusi ae Currepa He
HAKJIA/ILIBACT OrPAHUYCHUN HA 3HAYeHMs (YHKIMII HHTEIPUPOBAHHUSA, TO CHHXPOHHBIX CHCTEM
KOOpPIMHAT HMeeTcs 0eCKOHeYHOe MHOKECTBO H, C1eJ0BATeJIbHO, BO3MOXKHA CIIMBKA pelIeHMil ae
Cutrepa ¢ o0mmmM pemeHneM Toamena. Ilo3Tomy NOHsITHE YHHBEpPCAJBLHOIO KOCMOJOTHYECKOIO
BpeMeHH B Mupe e CHTTepa BBeCTH HEBO3MOKHO.

KmoueBbie cioBa: metpuku TonmeHa u ge CUTTepa, CHHXPOHHAs CHCTeMa KOOPAMHAT, MATHMEPHOE
IUIOCKOE MIPOCTPAHCTBO, KOCMOJIOTUYECKOE BPEMSL.
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1. Introduction

As in any other theory, in General Relativity there are many issues under discussion.
In view of complexity of field equations obtaining exact solutions becomes feasible only in
spaces of high dimensionality. Therefore, every exact solution is considerably preferred
than any kind of approximations. The cosmological Big Bang model is based on Friedmann
exact solutions. But they imply some difficulties including the initial singularity problem.
One of the ways of its suppression is matching of the Friedmann world and an exact
solution of field equations without initial singularity. Among the inflationary Universe
models such solution is de Sitter one describing initial period of the Universe.

Modern observations indicate inhomogeneous distribution of matter [1]. Thus, to
describe the Universe we use Tolman solution, the exact solution of field equations with
equation of state p=0. Upon solving such problem there arises the difficulty of

constructing the cosmological model where the current stage of the Universe evolution is
described by the Tolman solution and initial stage — by that of de Sitter.

A. A. Friedmann proved that the matter in the Universe cannot be quiescent. The
Universe cannot be stationary. It can either expand or collapse. So there was theoretically
revealed the necessity of overall evolution of the Universe. In line with this theory, the metric
of the homogeneous and isotropic Universe with equation of state p =0 can be written as

ds? = dt? — a2(t)dr? /(- kr? )+ r?(d6® + sin” 6dg? ||, (1)

where k =+1,—1,0 for the closed, open, and flat Friedmann Universe, correspondingly;
a(t) is the Universe “radius”, to be more precise, its scale factor (the full size of the
Universe can be infinite). The flat Universe corresponds to the metric

ds? = dt? — a2(t)(dx® + dy? + dz?). )

At any point of time its spatial part describes an ordinary 3-dimensional Euclidean
space and when a(t) is constant, it describes the Minkowski space. The closed, open, and
flat Friedmann solutions describing a homogeneous and isotropic distribution of dust-like
matter with equation of state p =0 can be written in synchronous coordinate systems [2]:

ds? = di? —aZsin*(n/2)(dR? +sin? Rdo?), 1=ay(n—sinn)/2, 3)
ds? = de? — alsh*(n/2)(dR? +sh?Rdo?), t=ay(shn—n)/2, (4)
ds? =dr? —(/b)3(dR? + R%do?), b =(2/3)a;"2 (5)

where a, = 4My/(3ﬂ:02). So, every Friedmann model class corresponds to a definite time.

Regardless of the model class the scale factor of the Universe vanishes at some time
t =0, and matter density at this time becomes infinite. At once tensor of space curvature
goes to infinity also. This is a reason to call t=0 a point of initial cosmological
singularity. So, every Friedmann model implies a singularity where all nature laws fail.

Thus, when formulating cosmological models of the Universe one faces the problem
of infinite density of energy at zero time. But there is a way to avoid it. It consists in
using a solution of Einstein equations without initial singularity for the Universe
description at the initial stage of evolution. One of those solutions is de Sitter metric, and
a cosmological model is made by the matching of de Sitter metric and the Friedmann one.
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2. The generalized representation of de Sitter solution
The metric of de Sitter, written in coordinate system of curvatures, has the form:

d52:(1—r2/az)dt2—(1—r2/azyldr2—rzdcs2 (6)

where a:(8/3)c‘4nys; v is Newton constant; € is energy density; ¢ is speed of light,
further we assume c=1. Considering equation of state ¢+ p=0, we conclude p to be

negative as well [3], but none of existing kinds of matter can produce such negative
pressure, which comes up to density in magnitude. So, de Sitter Universe must be empty.
A general solution of cosmological form in synchronous coordinate systems is

ds® = dr? —Tz(r)(dR2 + \VZ(R)dGZ) (7

where cases \y(R)zsin R, shR and R are possible. In synchronous systems coordinate

time coincides with true time, time lines are geodesics normal to hypersurface t = const .
In Ref. [4] a general method of transformation between the metrics

ds® = A(r)dt? — B(r)dr? — rde?, (8)

ds? = dr? —exp[M(R, )]~ r?(R, 1)do? 9)
is given; the method comes to the integration of combined equations relating curvature
and synchronous coordinates:

(dr/def = £2(R)-1+r2(R,1)/a?, (dr /de)= f (R)/L—r?/a?),

exp[M(R,1)]= f2(R)dr /dR)?. (10)

Here f(R) makes sense the total energy of a particle. Depending on f(R) with
assumption of homogeneity and isotropy we obtain three types of synchronous coordinates:

ds? = dt? —a’sh(r,/a)(dR? +sh?Rde?), T2(R)>1, (12)
ds? = ct2 —a’ch (1, /a)dR? +sin?Rdo?),  F%(R)<1, (12)
ds? = di2 —aexp(2t,/a)dR? + R%do?),  F2(R)=1. (13)

The metric (11) defines the hyperbolic type of motion and the world with a constant negative
space curvature, obtained by Lemaitre and Robertson [5]; Eq. (12) describes the elliptic
motion type, the space curvature of the world is positive, obtained by Hawking and Ellis [6];
Eq. (13) determines the parabolic type and the world with zero space curvature [7].

Thus, only three solutions of cosmological type describing the curved space can be
formulated in terms of coordinates of curvatures. All of them describe the same metric, which
is de Sitter one, and the only solution, which can be expressed in a cosmological form, given
by Eq. (6). If the same metric corresponds to two different solutions of cosmological type, it
always can be described also in curvature coordinates (8) where all the metric coefficients
depend on radial coordinate. Then the equation of state is ¢ + p=0. It can be either de Sitter

metric or empty space (as a special case of de Sitter solution e=p=0).

The de Sitter Universe can be described by three different solutions (11)-(13). For
every such solution one may introduce the universal time. So, the de Sitter world proves
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to have three such times. The analysis of all three models shows, that only the coordinate
system (12) is complete, the time in this system is varying from —o to . But it might
be wrong to prefer this coordinate system and consider time t, as cosmological time. If
one considers a phase transition between the worlds at some time t=const, then it is
necessary to choose t;, 1, or 15 as universal time, depending on the Friedmann Universe

we study. So, in the de Sitter world there is no universal time. It appears only in the
transformation to the Friedmann Universe or any other Friedmann-like world (7).

Current knowledge of 3-dimensional distribution of galaxies gives grounds to
consider that our Universe is not homogeneous and isotropic [1]. So, to describe it instead
of Friedmann models one should use more general Tolman models [5] describing

inhomogeneous dust cloud with equation of state p=0 and & =&(R, ).
An arbitrary Tolman solution can be written in a form

ds? =dt® —(dr/dR}dR?/ f2(R)-r?(R,t)do?, do? =d6? +sin® 6de?. (14)

Here for the hyperbolic f2(R)>1, elliptic f?(R)<1 and parabolic f*(R)=1 types of
solutions we have:

r=F(Rkh2(a/2)/(f2(R)-1) 1-14(R)=FR)sha-a)/2[f2(R)-1f"*;  (15)
r=F(R)sin2(a/2)/l- t2(R)) t-1,(R)=F(R)a-sina)/2i— f2R)f';  (16)
r=[3FY2(R)t—1,(R))/ 2", (17)

where F(R), f(R) and t,(R) are arbitrary integration functions ( F(R) is a total mass of
substance inside the layer R; f(R) defines geometry of 3-dimensional part of solution;

1,(R) is the initial time, different for every layer).

Any cosmological model is made by the matching of de Sitter metric with that of
Tolman on a hypersurface t=const. In Ref. [7] it was constructed the Tolman — de Sitter
cosmological model where the standard representation of de Sitter solution (11)-(13) was
used. It was shown that an arbitrary Tolman solution (11) cannot be matched with de
Sitter world. It is possible only for a certain type of Tolman’s models, particularly, for all
types of Friedmann models. So, we face the problem of searching for more general
representation of de Sitter solution to match it with an arbitrary Tolman’s solution (11).

Integrating Egs. (10) we introduce integration functions rO(R) and X(R). The first
of Egs. (10) with r =afl— £2(R)“ch(a/a) leads to a =1 +1,(R). f(R)=CcosR gives
r=asinRchp, B=(t+1,(R))/a (18)
Integration of the second expression (10) with the same substitution gives:
t = a(Arcth[cos Rcth ]+ X (R)). (19)

The expressions (18) and (19) represent the relationship of curvature coordinates and
synchronous ones for the elliptic type of motion. Using the third equation (10), we find:

exp[MR, 7)]= a’ch?p + tg?Rsh?(dt, / dR ) + atg Rsh 2B(d, / dR). (20)
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Applying the foregoing calculations, we can write the metric of the elliptic de Sitter world as:
ds? = dv® — (a’ch + tg?Rsh?B(dr, / AR’ + atg Rsh 2B(dr, / dR)IR? o
—a?sin® Rch?pdo?.

Using this method, we can obtain similar results for another two types of de Sitter
solution. Replacing f(R): ch R, metric of the hyperbolic de Sitter world takes the form:

ds? = dv® — (a%sh?B + th°Rch?B(dr, / dRY? + ath Rsh 2B(ckr, / dR)LIR? -

22
—a’sh?Rsh?pdo?; (22)

and when f 2 (R)=1, for the metric of the parabolic de Sitter world we have:
ds® = dt? - exp(zﬁ)[a2 +R?(dt, /dR) +2aR(dr, /dR)JdR2 —a’R%exp(2B)da®.  (23)

The metrics (21)-(23) determine a generalized representation of the de Sitter
Universe. When arbitrary function rO(R) exists, any metric for every of three types of

solutions is represented by infinite set of metrics, each characterized by defined value of
rO(R) and, therefore, by defined time. For every such cosmological solution one can

introduce universal time. So, in the de Sitter Universe it appears to be infinitely many
those times, not only three, as considered recently. In other words, the de Sitter Universe
can be split by infinite number of possibilities into the worlds, each characterized by the
defined time value and one of three types of space curvature: positive, negative and zero.
3. Study of generalized representation by embedding into 5-dimensional flat space

One of the simplest ways to study geometric properties of the de Sitter Universe is
method of embedding the 4-dimensional de Sitter world into the 5-dimensional flat space
and considering the space-time geometry on the hypersurface, which is the de Sitter
world embedded in five-dimensionality. This problem is discussed in Refs. [6, 8-10].

Embedding the de Sitter solutions (6) in R®, which metric is
ds® =dW? —dV2—dX?-dY?-dz?, (24)
we find by technique of undefined functions how (W,V, X ,Y,Z) depend on (t,r,0,¢):

w =sh(t/a)a?-r2]"?, v =ch(t/a)a®-r]"

o o (25)
X =rcosf, Y =rsinBsing, Z=rsinBsing.
The hypersurface, which is de Sitter model embedded in R®, is given by
X24Y24+Z224Vi-W2=a? (26)

i.e. it is a 5-dimensional hyperboloid. To make object of our study more graphic let’s consider
the section 6 =0 of the complete model (26). R® -space transforms into R® with the metric

ds? =dW? —dV?—dX?, (27)
and the de Sitter Universe turns into one-lane equiaxed hyperboloid:

X2 +V2-W?=2a% (28)

36



A. N. Turinov

The hyperboloid coordinates defining the embedded elliptic de Sitter model are [6]:
W =ash(t,/a), V =ach(r,/a)cosR, X =ach(t,/a)sinRcos6,

Y =ach(t,/a)sinRsin@cosp, Z =ach(t,/a)sinRsindsing. (29)

Time-like geodesics are hyperbolae converging monotonically to some spatial distance and

then diverging to infinity again; space-like ones are S*-spheres of constant positive
curvature; when choosing W as a time, both particle and event horizons appear for a time-
like observer because of past and future boundary space-likeness; t,, R, 0, ¢ cover all the

space (—o<1,<0, 0<R<m, 0<0<m, 0<¢<2n),sosystem (12) is complete.
The hyperboloid coordinates for the embedded hyperbolic de Sitter model are [2]:
W =ash(t,/a)chR, V =ach(r,/a), X =ach(t,/a)sinRcos6,

Y =ash(r,/ahRsinfcosg, Z =ash(t,/a)kshRsin0sing. (30)

The system (11) is incomplete as V cannot be less than a , it covers only a part of hyperboloid.
In view of isotropy of past and future boundaries there are no particle and event horizons.
The hyperboloid coordinates for the embedded parabolic de Sitter world are [6]:

W = a[sh(r3/a)+ R%exp(ty/a)/ 2], V= a[ch(r3/a)— R? exp(r3/a)/21 a1
X =aRexp(t;/a)cosh, Y =aRexp(t,/a)sinbcosp, Z =aRexp(t;/a)sinsin . (1)

The coordinate system (13) covers only a half of hyperboloid in region V +W > 0. In the
model for any time-like observer there are no particle and past and future event horizons.
The hyperboloid coordinates for the generalized elliptic model are of the form:

W =afcosRchpsh X (R)+ch X (R)sh 4]

V =alcosRchpch X(R)+sh X(Rhp], X =asinRchp (32)

For X(R): 0 and 1,(R)=0 we have the standard representation (29). When 6 =0 Eq.
(21) can be written as follows:

ds? = de® - (azchZB +tg?Rsh?p(dz, /dR) +atg Rsh 2p(dx, /dR))dR2 (33)
Finding dw?, dv?, dX?, making combination like ds? =dwW?—dV?—dX? (to be the

R®-metric) and then comparing the dt?® and dR?coefficients, we reveal that functions
1,(R) and X (R) for the elliptic type of solution are related as:

—(dty(R)/dR)=acosR(dX (R)/dR). (34)
By analogy, the hyperboloid coordinates for the generalized hyperbolic model are:

W =a[chRshpch X (R)+sh X (R)chp],
V =a[chRshpsh X(R)+ch X(R)ch 8], X =ashRsh§, (35)
for X(R)=0 and t,(R)=0 we have the standard Eq. (30). When 6 =0, Eq. (22) gives
ds? = de? - (azshzﬁ +th?Rch?B(dt, /dR)* +ath Rsh 2p(dr, /dR))dRz, (36)
and functions t,(R) and X (R) for the hyperbolic type of solution are related by
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—(dty(R)/dR)=achR(dX (R)/dR). (37)
The hyperboloid coordinates for the generalized parabolic model are:

W =alchX (R)sh -+ R2exp(B)/ 2)+ ch X (R)ch B — R? exp(B)/ 2]},

V =alch X (R)chp—RZexp(B)/2)+sh X (R)sh B+ R2exp(B)/2), X =aRexp(p) (38)

where for X(R)=0 and t,(R)=0 we come to Eq. (31). When 6 =0 Eq. (23) looks like
ds? = ct® —exp(2B a2 + R?(dr, / dR)? + 2aR(dr, / dR)IR?, (39)

and functions t,(R) and X (R) for the parabolic type of solution are related as:
—(dty(R)/dR)=a(dX (R)/dR) (40)

Egs. (32), (35), and (38) are the formulae of embedding the generalized
representation of de Sitter solutions in 5-dimensional flat space with additional conditions
(34), (37) and (40). Note that pairs of rO(R) and X(R) functions for each of three cases
are different.

Let us ascertain the geometric sense of X (R) and t,(R) for the elliptic model. The
general Lorentz transform for coordinates (28), as the metric is pseudo-Euclidean, is

W =Vshy+Wthy, W =Vshy+WTcthy. (41)

Under Lorentz transformations the shape of our hyperboloid does not change, only curves
made by section of the hyperboloid with certain surfaces, reshapes.
Difference of squares of coordinates (32) is

VZ-W?2 =[ch?Bcos’ R —sh’p]a®. (42)

It coincides with that of (29), then as v in this case we take X(R). So, X(R) is “angle
of rotation” in the 5-dimensional flat space, and t,(R) is a function of angle of rotation.

For us it is important to find time lines and space sections. Note that we can obtain in
general only the time lines. There is no way to get in general the spatial sections without

concretization of function rO(R) (one can represent them geometrically on hyperboloid).
The general form of the time lines R = const for the elliptic model is:

[ch X (RN —sh(RW]? —[ch X (RW —sh X (RN ]?cos® R =a? cos® R. (43)

The space-like geodesics are clump of circles and ellipses each being the circle in
synchronous coordinate system characterized by the defined value of rO(R) [8].
By analogy, we find the time lines for the hyperbolic and parabolic worlds:

ch®R[ch X(RV —sh X (RW1?* ~[ch X (RW —sh X (RNV]* =a’chR; (44)

[ch X (RV —sh X (RW]? —[ch X (RW —sh(RV]? =a*(1- R?) (45)
Lines t=const for a hyperbolic model are hyperbolae and curves overlapping them upon

rotation of coordinate system in R?; similarly, for a parabolic model lines t = const
represent parabolas etc. The straight lines are isotropic geodesics.
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A peculiarity of the considered representation should be emphasized. Choosing a type of
rO(R), we can obtain the equations for geodesics corresponding to another model within the

model in study. Thus, rO(R)z Insin R for the elliptic model gives the spatial sections
W + X =exp(t)=const. (46)

And this is nothing else but parabolas, which are time lines of a parabolic model. Hence,
choosing the function rO(R) , we can change the world type to another.

Returning to the construction of Tolman — de Sitter cosmological model, one concludes
the de Sitter world can be the initial state for the Tolman Universe, because the choice of

1,(R) is the choice of synchronous coordinates, in which it is possible to match the Tolman
metric and that of de Sitter. As the generalized representation of de Sitter solution does not
constrain the values of rO(R) , there is an infinite set of synchronous coordinate systems and,
therefore, the matching of de Sitter solutions and the general Tolman solution (14) is feasible.

4, Conclusions

In the paper a new representation of de Sitter solutions is obtained by transforming to
synchronous coordinate systems. The representation of de Sitter solutions got by
S. Hawking and G.Ellis [6] and E. Shrddinger [8] is a special case of the obtained one.

With applying the method of embedding into the 5-dimensional flat space, the
properties of obtained representation of de Sitter models are studied. The expressions for
embedding of these solutions are found. The outcomes are explained and the physical sense
of integration function is ascertained. It is shown that the matching of de Sitter solution and
the Tolman world is possible. The problem of time is considered. In Refs. [3, 6, 7] it was
shown, that the de Sitter Universe can be described by three different times. In the present
paper it is proved that in the de Sitter Universe there are infinitely many such times, thus it
is no way to introduce the notion of universal cosmological time in the de Sitter world.
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