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T-REGIONS IN REISSNER-NORDSTRÖM SPACETIMES  
WITH VACUUM ENERGY 

T-regions in spherically symmetric spacetime around an electrically charged distribution of 
matter in presence of vacuum energy are investigated. The solution of Einstein field equations is 
derived and examined for a constant vacuum energy density. This solution is asymptotically de Sitter 
generalization of Reissner-Nordström solution. The conditions for T-regions defined by mass function 
are studied. It is shown that in dependence on ratio of the vacuum energy density and the total mass of 
source the different types of spacetime are possible. When the mass of the source exceeds the upper 
limit Mmax the scheme for T-regions and R-regions is R-T. There is no black hole-like spacetimes 
possible in this case. When the mass of the source is less then the Mmax the scheme for T-regions and R-
regions is defined by the electric charge of the source. It may be R-T (no black hole), R-T-R-T (charged 
black hole), R-R-T and R-T-T (extreme cases with horizons). Charged black holes in presence of 
vacuum energy have the upper limit on charge that is slightly bigger then one for Reissner-Nordström 
solution. In case when the mass of the source is in range 0.5 Mmax < M < Mmax there is the low limit on 
electric charge of black hole. 

Keywords: Einstein equations, T-regions, vacuum energy density, Reissner-Nordström-de Sitter 

solution, charged black hole. 

1. Introduction 

We consider a spherically symmetric spacetime around an electrically charged 

distribution of matter. The gravitational field of such sources in empty space is described 

by well-known Reissner-Nordström solution: [1] 
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where M is the total mass of the source, q is the electric charge, and r is the distance to 

central source. 

The metric coefficient θθg  is in general a function of both time t and radial R 

coordinates. But there may be so called T-regions in spacetime for which θθg  can be 

written as a function of time coordinate only. Inside T-region the distance r to the center 

can not be constant for any test particle. So the inner region of black hole is the T-region 

separated from outer R-region by event horizon. 

For Reissner-Nordström solution the T-region exists only if |q|<M. Under this 

condition the central source is surrounded by inner R-region, then there is the T-region 

embedded by the outer R-region (scheme R-T-R). The horizons are located at [2] 

22
2,1 qMMr −±= . (2) 

For sources with Mq →  the inner R-region and the outer one are closed up, so 

there is no T-region at all (extreme case). Therefore charged black holes have the 

restriction on their electric charge: 
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Mq < . 
(3) 

Recent cosmological observations indicate that the empty space has a nonzero 

energy (so called dark energy). The vacuum energy density vε  is very small but nonzero. 

The latest observation data put restriction on the dark energy equation of state as [3] 

vv ε= wp , 075.0
080.0019.1 +

−−=w  where vp  is vacuum “pressure” and vε  is vacuum energy 

density. The simplest interpretation of vacuum energy is a positive cosmological 

constant: vε  = Const, vv ε−=p .  

For a non-charged spherically symmetric source in presence of vacuum energy 

spacetime always contains the outer T-region (solution is asymptotically de Sitter). So for 

charged black holes with vacuum energy the restrictions on their mass and electric charge 

are different from ones without vacuum energy. Some properties of the so called 

Reissner-Nordström-de Sitter black holes were discussed in works [4-7]. 

The aim of the present paper is to analyze scheme for T-regions and R-regions and 

to investigate how the presence of vacuum energy influences on the characteristics of 

charged black holes. 

2. Field equations and solution 

In case of spherically symmetric empty spacetime the line element can be written as 

( )2222222 sin ϕ⋅θ+θ−−= λν
ddrdRedteds  (4) 

where ν  and λ  are functions of both radial R and time t coordinates, θ  and ϕ  are 

spherical angles. We use geometrized units c = G = 1. 

For T-region the metric coefficient 2
rg =θθ  is assumed to be the function of time 

coordinate t only, so we can put 

22
tr = . (5) 

The energy-momentum tensor µ
νT  for spacetime under consideration consists of two 

parts: for a vacuum and for an static electric field. In chosen coordinates µ
νT  is diagonal 

with 
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where vε = Const is vacuum energy density, E is electric field intensity. 

The Einstein field equations for metric (4), (5) take the form 
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where the dot denotes differentiation with respect to t.  

For the spacetime under consideration 0
0

1
1 TT = , so from (7), (8) we have 

( ) ( )Rfee
t

1
ν−λ = . We may put the arbitrary function ( )Rf1  to 1, so  

( ) ( )tt
ee

ν−λ = . (11) 

The mass function for the line element (4), (5) takes the form [8]: 

( ) ( )ν−+= ettm 1 . (12) 

Equations (9) – (12) may be written as 
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The solution for T-regions in spacetime under consideration is 
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where M is the total mass of the source, q is the source charge. 

The solution (16), (17) describes the T-region of Schwarzschild spacetime if 0→q , 

0v →ε . If 0v →ε , 0≠q  then the solution (16), (17) reduces to the one for T-region of 

Reissner-Nordström solution. The solution (16), (17) is asymptotically de Sitter (for 

∞→t ) so it is often called Reissner-Nordström-de Sitter solution. 

3. Conditions for T-regions in Reissner-Nordström spacetimes with vacuum energy 

For T-region in spacetime described by the line element (4) metric coefficients ν
e , 

λ
e  are positive. Thus for T-regions the mass function must satisfy the condition 
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For mass function (17) this lead to condition 
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To investigate the condition (19) we rewrite it in following form: 
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T-regions correspond to the coordinates t for which  

( ) 22

crqtf > . (22) 

Condition ( ) 22
ch rqtf =  defines the location ht  of horizons that separate regions.  

Behavior of function ( )tf  for positive t depends on ratio of the vacuum energy 

density vε  and the total mass of the source M.  

In the case (a) when 
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function ( )tf  is monotone increasing from ( ) 00 =f . 

In the case (b) when 
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function ( )tf  has an inflection point at 2/30 Mt = , and ( ) ( ) 02/33
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In the case when 
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function ( )tf  has two extremum points at )(+t  and )(−t  where 
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Note that )()( −+ ≤ tt . At first extremum point ( ) 0)( >+tf  for any 0v >ε . At second 

extremum point value of function is ( ) ( ) 2/3 )()(
2

)( −−− −= tMtrtf c . 

The value ( ))(−tf  is: 0>f  for ( ) ( ) 12
v

12 98298
−−

⋅π<ε<⋅π MM  (case (c)), 0=f  

for ( ) 12

v 98
−

⋅= Mπε  (case (d)) and 0<f  for ( ) 12
v 98

−
⋅π<ε M  (case (e)). 

The plot of the function ( )tfrc

4)(  for different cases is presented at Fig. 1. For the 

cases (a) – (e) there are different schemes for T-regions and R-regions in spacetime. The 

condition (22) defines T-regions. It can be shown on the plot of ( )tf  that the ranges of 

coordinate t where curve ( )tfrc
4−  goes over value 22 −

crq  are T-regions. In the cases (a) 

and (b) there is the only possible scheme: R-T. The central R-region is surrounded by 

outer T-region for any value of charge q.  
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Fig. 1. Behavior of function f(t) for positive t. Curves (a) – (e) corresponds for cases with different 

values of parameter 2M/rc. Case (a): 2M/rc = 0.7. Case (b): 2M/rc = (2/3)3/2 ≈ 0.544331.  
Case (c): 2M/rc = 0.43. Case (d): 2M/rc = 2/(33/2) ≈ 0.3849. Case (e): 2M/rc = 0.35. 

In the case (c) the scheme for T-regions and R-regions depends on the ratio of 

values ( ))(+tf , ( ))(−tf  and 22
crq . 

If (i) ( ) ( ) 2/3 )()(
2

)(
22

+++ −=> tMtrtfrq cc  then the scheme is R-T (Fig. 2). 

 
Fig. 2. The scheme for T-regions and R-regions in case (c): 2M/rc = 0.43.  

Dashed lines (i) – (v) correspond to values of q2(rc)
-2. 

If (ii) ( ) ( ) 2/3 )()(
2
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+++ −== tMtrtfrq cc  then the scheme is R-R-T. The central R-

region is surrounded by another R-region. This R-regions are separated by horizon at 
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there exist T-region between two R-regions (scheme is R-T-R-T). The event horizon 

occurs at )()( −+ << ttt  and the solution (16), (17) describes the charged black hole.  

In the case (iv) when ( ))(
22

−= tfrq c  the scheme is R-T-T: inner and outer T-regions 

are joined. If (v) ( ))(
22

−< tfrq c  then the scheme is R-T. 

In the case (d) the similar analysis can be conducted. Note that ( ) 0)( =−tf  in this 

case. So if ( ))(
22

+> tfrq c  the scheme is R-T. For ( ))(
22

+= tfrq c  the scheme is R-R-T. 

And if ( ))(
22

+< tfrq c  then the scheme is R-T-R-T (charged black hole). 

In case (e) there are three possible schemes: R-T if ( ))(
22

+> tfrq c , R-R-T if 

( ))(
22

+= tfrq c  and R-T-R-T if ( ))(
22
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In the case of non charged source the condition of T-region (22) reduces to ( ) 0>tf . 

It can be shown from Fig. 1 that there is the central T-region for all values of vε .The  

R-region exists only if ( ) 12
v 98

−
⋅π<ε M . The schemes are: T (only T-region) for 
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⋅π>ε M ; T-T for ( ) 12
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⋅π=ε M ; and T-R-T for ( ) 12
v 98
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In the case of charged source with zero vacuum energy (Reissner-Nordström 

solution) we have ∞→cr . Rewriting condition (19) as 
222 qtMt >−  we find that the 

schemes are: R (only R-region) for 
22

Mq > ; R-R for 
22

Mq = ; and R-T-R for 

22
Mq <  (charged black hole). 

4. Conclusions 

In case of charged spherically symmetric sources in presence of vacuum energy 

different types of spacetime are realized depending on the ratio of values vε , M and q. 

For all cases there are the central R-region around the source and the outer T-region. The 

outer T-region is separated from inner regions by the cosmological horizon as in de Sitter 

solution. 

For a black hole-like spacetime there must be the inner T-region and the outer  

R-region separated by event horizon (scheme R-T-R-T). For a fixed value of vacuum 

energy density vε  the spacetimes of such type have restriction on the mass M and electric 

charge q of source. 

The mass of the charged black hole must not exceed the limit 
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For extreme case maxMM →  (Fig. 1, curve (b)) the scheme is R-T. 

The electric charge q of the black hole must satisfy conditions 

21 qqq <<   if  maxmax
2

1
MMM << , 

2qq <   if  max
2

1
MM ≤  

(29) 



T-regions in Reissner-Nordström spacetimes 

 67

where the limits 1q  and 2q  are 
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and )(−t , )(+t  are defined by (26). Note that the upper limit on charge MqM 125.12 <<  

differ from the one for Reissner-Nordström solution (3). For extreme case 2qq →  

(Fig. 2, line (ii)) the scheme is R-R-T, for extreme case 1qq →  (Fig. 2, line (iv)) the 

scheme is R-T-T. If conditions (28), (29) are not satisfied then the scheme is R-T. 

So for charged black holes with vacuum energy the main differences from the case 

0v =ε  are: 

1) the upper limitation on mass of black hole (28); 

2) the upper limit on electric charge (29) is bigger than one for Reissner-Nordström 

solution; 

3) for black holes of mass 
max max1 2 M M M< <  there is the low limit on electric 

charge 21 qqq << . 
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