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On the structure of artinian-by-(finite rank)
modules over generalized soluble groups

Нехай R – кiльце, G – група. R-модуль A називається модулем скiнченного рангу
над артiновим, якщо TorR(A) є артiновим i A/TorR(A) має скiнченний R-ранг. До-
слiджуються модулi A над груповими кiльцями Zp∞G такi, що A/CA(H) є модулем
скiнченного рангу над артiновим (як Zp∞-модуль) для кожної власної пiдгрупи H.

Ключовi слова: модуль, групове кiльце, модуль над груповим кiльцем, узагальнено
розв’язна група, радикал групи, артiновий модуль, узагальнено радикальна група,
модуль скiнченного рангу.

Пусть R – кольцо, G – группа. R-модуль A называется модулем конечного ранга
над артиновым, если TorR(A) является артиновым и A/TorR(A) имеет конечный R-
ранг. Исследуются модули A над групповыми кольцами Zp∞G такие, что A/CA(H)
является модулем конечного ранга над артиновым (как Zp∞-модуль) для кажной
собственной подгруппы H.

Ключевые слова: модуль, групповое кольцо, модуль над групповым кольцом, обоб-
щенно разрешимая группа, радикал группы, артинов модуль, обобщенно радикаль-
ная группа, модуль конечного ранга.

Let R be a ring and G a group. An R-module A is said to be artinian-by-(finite rank),
if TorR(A) is artinian and A/TorR(A) has finite R-rank. In this paper modules A over a
group ring Zp∞G such that A/CA(H) is artinian-by-(finite rank) (as an Zp∞-module) for
every proper subgroup H are investigated.

Key words: modules, group rings, modules over group rings, generalized soluble
groups, radical groups, artinian modules, generalized radical groups, modules of finite
rank.

1. Introduction

Let R be a ring, G a group and A an RG–module. The modules over group rings are
classic objects of study with well established links to various areas of algebra. The case
when G is a finite group has been studying in sufficient details for a long time. For the
case when G is an infinite group, the situation is different. Thus study modules over
group rings of infinite groups requires some different approaches and restrictions. For
instance, the classical finiteness conditions are largely employed and popular. The very
first restrictions here were those who came from ring theory, namely the conditions like
"to be noetherian"and "to be artinian". Noetherian and artinian modules over group
rings are also very well investigated. Many aspects of the theory of artinian modules
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over group rings are treated in the book [5]. Recently the so–called finitary approach
begun to be employed intensively in the theory of infinite dimensional linear groups
where it brings many interesting promising results.

Let A be a module over group ring RG, if H is a subgroup of G, then consider
the centralizer CA(H) = {a ∈ A | ah = a for each element h ∈ H} of H in A. Clearly
CA(H) is an RH-submodule of A and H really acts on A/CA(H). The R-factor-module
A/CA(H) is called the cocentralizer of H in A. Then H/CH(A/CA(H)) is isomorphic
to a subgroup of automorphism group of an R-module A/CA(H). It is not hard to see
that CH(A/CA(H)) is abelian, and therefore the structure of the automorphism group
of the R–module A/CA(H) defines the structure of whole group H.

Let M be a class of R-modules. We say that A is an M-finitary module over RG,
if A/CA(x) ∈ M for each element x ∈ G. If R is a field, CG(A) = 〈1〉 and M is a
class of all finite dimensional vector spaces over R, then we come to the finitary linear
groups. The theory of finitary linear groups is quite well developed (see, the survey [9]).
B.A.F. Wehrfritz began to consider the cases when M is the class of finite R-modules
[11, 13, 14, 16], when M is the class of noetherian R-modules [12], when M is the class
of artinian R-modules [14, 15, 16, 17, 18]. The artinian-finitary modules have been
considered also in the paper [6]. The notion of an minimax module extends the notions
of noetherian and artinian modules. An R-module A is said to be minimax, if A has
a finite series of submodules, whose factors are either noetherian or artinian. It is not
hard to show that if R is an integral domain, then every minimax R-module A includes
a noetherian submodule B such that A/B is artinian. The first natural case here is the
case when R = Z is the ring of all integers. This case has very important applications
in generalized soluble groups. Every Z-minimax module M has he following important
property: rZ(M) is finite and Tor(M) is an artinian Z-module.

Let R be an integral domain and A be an R-module. An analogue of the concept
of a dimension for modules over integral domains is the concept of R-rank. One of the
essential differences of R-modules and vector spaces is that some elements of A can
have a non-zero annihilator in the ring. Put TorR(A) = {a ∈ A | AnnR(a) 6= 〈0〉}.
It is not hard to see that TorR(A) is an R-submodule of A. Actually, the concept of
R-rank works only for the factor-module A/TorR(A). In particular, the finiteness of
R-rank does not affect the submodule TorR(A). We say that an R-module A is an
artinian-by-(finite rank), if TorR(A) is artinian and A/TorR(A) has finite R-rank. In
particular, if an artinian-by-(finite rank) module A is R-torsion-free, then it could be
embedded into a finite dimensional vector space (over the field of fractions of R). If A
is R-periodic, then it is artinian.

Let G be a group, A an RG-module, and M a class of R-modules. Put

CM(G) = {H | H is a subgroup of G such that A/CA(H) ∈M}

If A is an M-finitary module, then CM(G) contains every cyclic subgroup (moreover,
every finitely generated subgroup whenever M satisfies some natural restrictions). It
is clear that the structure of G depends significantly on which important subfamilies
of the family Λ(G) of all proper subgroups of G include CM(G). The first natural
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question that arises here is the following: What is the structure of a group G in which
Λ(G) = CM(G) (in other words, the cocentralizer of every proper subgroup of G belongs
to M)? In [7] it was considered the case when R = Z and M is the class of all artinian-
by-(finite rank) modules. The next natural generalization of the case when R = Z is
the case when R = Zp∞ – the ring of p-adic integer, where p is prime. The proofs of
the results we used the same technique as in [7].

Recall that a group G is called generalized radical, if G has an ascending series
whose factors are locally nilpotent or locally finite.

The following results were obtained:

Theorem 1. Let G be a locally generalized radical group and A a Zp∞G-module. If the
factor-module A/CA(H) is artinian-by-(finite rank) for every proper subgroup H of G,
then either A/CA(G) is artinian-by-(finite rank) or G/CG(A) is a cyclic or quasicyclic
q-group for some prime q.

Corollary 1. Let G be a locally generalized radical group and A a Zp∞G-module. If
a factor-module A/CA(H) is minimax for every proper subgroup H of G, then either
A/CA(G) is minimax or G/CG(A) is a cyclic or quasicyclic q-group for some prime q.

Corollary 2. Let G be a locally generalized radical group and A a Zp∞G-module. If a
factor-module A/CA(H) is finitely generated for every proper subgroup H of G, then
either A/CA(G) is finitely generated or G/CG(A) is a cyclic or quasicyclic q-group for
some prime q.

Corollary 3. Let G be a locally generalized radical group and A a Zp∞G-module. If
a factor-module A/CA(H) is artinian for every proper subgroup H of G, then either
A/CA(G) is artinian or G/CG(A) is a cyclic or quasicyclic q-group for some prime q.

2. Some preparatory results

Lemma 1 ([7]). Let R be a ring, G a group and A an RG–module. If L, H are subgroups
of G, whose cocentralizers are artinian–by–(finite rank) modules, then A/CA(〈H,L〉) is
also artinian–by–(finite rank).

A group G is said to be F-perfect if G does not include proper subgroups of finite
index.

Let G be a generalized radical group. Then either G has an ascendant locally
nilpotent subgroup or it has an ascendant locally finite subgroup. In the first case,
the locally nilpotent radical Lnr(G) of G is non-identity. In the second case, it is not
hard to see that G includes a non-trivial normal locally finite subgroup. Clearly in
every group G the subgroup Lfr(G) generated by all normal locally finite subgroups
is the largest normal locally finite subgroup (the locally finite radical). Thus every
generalized radical group has an ascending series of normal subgroups with locally
nilpotent or locally finite factors.
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Observe also that a periodic generalized radical group is locally finite, and hence a
periodic locally generalized radical group is also locally finite.

Let q be a prime and A is an additive abelian q-group. For each positive integer n
we define nth layer Ωn(A) by the following rule: Ωn(A) = {a ∈ A | qna = 0}. Clearly
Ωn(A) is a characteristic subgroup of A.

Futher by Drλ∈ΛGλ we denote a direct product of groups Gλ, λ ∈ Λ.

Lemma 2. Let G be a locally generalized radical group and A be a Zp∞G-module.
Suppose that A includes a Zp∞G-submodule B which is artinian-by-(finite rank). Then
the following assertions hold:

(i) G/CG(B) is soluble-by-finite.
(ii) If G/CG(B) is periodic, then it is nilpotent-by-finite.
(iii) If G/CG(B) is F-perfect and periodic, then it is abelian. Moreover

[[B,G], G] = 〈0〉.

Proof. Without loss of generality we can suppose that CG(B) = 〈1〉. We recall that the
additive group of artinian Zp∞-module is Chernikov, that is K = TorZp∞ (B) includes a
divisible subgroup D, which is a direct sum of quasicyclic subgroups such that K/D is
finite. The additive group of B/K is torsion-free and has finite Zp∞-rank. In particular,
the Π(D) = {p}. Clearly D is G-invariant. The factor-group G/CG(D) is isomorphic
to a subgroup of GLm(Qp∞) where Qp∞ is the field of fractions of Zp∞ and m satisfies
pm = |Ω1(D)|. Let Qp∞ be a field of fractions of Zp∞ , then G/CG(D) is isomorphic to
a subgroup of GLm(Qp∞). Note that char(Qp∞) = 0. Being locally generalized radical,
G/CG(D) does not include the non-cyclic free subgroup; thus an application of Tits
Theorem (see, for example, [10, Corollary 10.17]) shows that G/CG(D) is soluble-by-
finite. If G is periodic, then G/CG(D) is finite (see, for example, [10, Theorem 9.33]).
Since K/D is finite, G/CG(K/D) is finite. Finally, G/CG(B/K) is isomorphic to a
subgroup of GLr(Qp∞), where r = rZp∞ (B/K). Using again the fact that G/CG(A/K)
does not include the non-cyclic free subgroup and Tits Theorem or Theorem 9.33 of the
book [10] (for periodic G), we obtain that G/CG(B/K) is soluble-by-finite (respectively
finite whenever G is periodic). Put Z = CG(D)∩CG(K/D)∩CG(B/K). Then G/Z is
embedded in G/CG(D) ∩ G/CG(K/D) ∩ G/CG(B/K), in particular, G/Z is soluble-
by-finite (respectively finite). If x ∈ Z, then x acts trivially on every factor of the
series 〈0〉 ≤ D ≤ K ≤ A. Then Z is nilpotent [4]. It follows that G is soluble-by-finite
(respectively, for periodic G, it is nilpotent–by–finite). This completes the proof of (i)
and (ii).

Now we prove (iii). Suppose now that G is an F-perfect group. Again consider the
series of G-invariant subgroups 〈0〉 ≤ K ≤ B. Being abelian and Chernikov, K is an
union of ascending series

〈0〉 = K0 ≤ K1 ≤ . . . ≤ Kn ≤ Kn+1 ≤ . . .

of G-invariant finite subgroups Kn, n ∈ N. Then the factor-group G/CG(Kn) is finite,
n ∈ N. Since G is F-perfect, G = CG(Kn) for each n ∈ N. The equation K =

⋃
n∈NKn
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implies that G = CG(K). By the above G/CG(B/K) is soluble-by-finite, and being
F-perfect, it is soluble. Then G/CG(B/K) includes normal subgroups U , V such that
CG(B/K) ≤ U ≤ V , U/CG(B/K) is isomorphic to a subgroup of UTr(Qp∞), V/U
includes a free abelian subgroup of finite index [1, Theorem 2]. Since G/CG(B/K) is F-
perfect, it follows that G/CG(B/K) is torsion-free. Being periodic, G/CG(B/K) must
be identity. In other words, G = CG(B/K). Hence G acts trivially on every factor of
the series 〈0〉 ≤ K ≤ A, so that [[B,G], G] = 〈0〉 and we obtain that G is abelian [4].

Corollary 4. Let G be a group and A a Zp∞G-module. If the factor-module A/CA(G)
is artinian-by-(finite rank), then every locally generalized radical subgroup of G/CG(A)
is soluble-by-finite, and every periodic subgroup of G/CG(A) is nilpotent-by-finite.

Proof. Indeed, Lemma 2 shows that G/CG(A/CA(G)) is soluble-by-finite. Every
element x ∈ CG(A/CA(G)) acts trivially in the factors of the series 〈0〉 ≤ CA(G) ≤ A.
It follows that CG(A/CA(G)) is abelian. Suppose now that H/CG(A) is a periodic
subgroup. Since A/CA(G) is artinian–by–(finite rank), A has a series of H-invariant
subgroups 〈0〉 ≤ CA(G) ≤ D ≤ K ≤ A where D/CA(G) is a divisible Chernikov
subgroup, K/D is finite and A/K is torsion-free and has finite Zp∞-rank. In Lemma 2
we have already proved that G/CG(D/CA(G)), G/CG(K/D) and G/CG(A/K) are
finite. Let Z = CG(D/CA(G)) ∩ CG(K/D) ∩ CG(A/K). Then G/Z is finite. If x ∈ Z,
then x acts trivially on every factor of the series 〈0〉 ≤ CA(G) ≤ D ≤ K ≤ A. therefore
Z is nilpotent [4].

Next result is well-known, but it is not able to find an appropriate reference.

Lemma 3. Let G be an abelian group. Suppose that G 6= KL for arbitrary proper
subgroups K, L. Then G is a cyclic or quasicyclic q-group for some prime q.

Proof. If G is finite, then it is not hard to see that G is a cyclic q-group for some
prime q. Therefore suppose that G is infinite. If G is periodic, then obviously G is a
q-group for some prime q. Let B be a basic subgroup of G, that is B is a pure subgroup
of G such that B is a direct product of cyclic q-subgroups and G/B is divisible. The
existence of such subgroups follows from [3, Theorem 32.3]. Since G/B is divisible,
G/B = Drλ∈ΛDλ where Dλ is a quasicyclic subgroup for every λ ∈ Λ (see, for example,
[3, Theorem 23.1]). Our condition shows that G/B is a quasicyclic group. In particular,
if B = 〈1〉, then G is a quasicyclic group. Assume that B 6= 〈1〉. If B is a bounded
subgroup, then G = B×C for some subgroup C (see, for example, [3, Theorem 27.5]),
and we obtain a contradiction. Suppose that B is not bounded. Then B includes a
subgroup C = Drn∈N〈cn〉 such that B = C × U for some subgroup U and |cn| = qn,
n ∈ N. Let E = 〈c−1

n · c
q
n+1 | n ∈ N〉. Then the factor-group C/E is quasicyclic, so that

B/EU is also quasicyclic. It follows that G/EU is a direct product of two quasicyclic
subgroups, which yields a contradiction. This shows that B = 〈1〉, which proves our
result.

Corollary 5. Let G be a soluble group. Suppose that G is not finitely generated and
G 6= 〈K,L〉 for arbitrary proper subgroups K, L. Then G/[G,G] is a quasicyclic q-group
for some prime q.
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If G is a group, then by Tor(G) we will denote the maximal normal periodic
subgroup of G. We recall that if G is a locally nilpotent group, then Tor(G) is a
(characteristic) subgroup of G and G/Tor(G) is torsion-free.

3. Proof of main Theorem

Again suppose that CG(A) = 〈1〉. Suppose that G is a finitely generated group.
Then we can choose a finite subset M such that G = 〈M〉, but G 6= 〈S〉 for every
subset S 6= M . If |M | > 1, then M = {x} ∪ S where x /∈ S and S 6= ∅. It follows
that 〈S〉 = U 6= G, thus A/CA(U) is artinian-by-(finite rank). The factor A/CA(x) is
also artinian-by-(finite rank), and Lemma 1 shows that 〈x, U〉 = 〈x, S〉 = G has an
artinian-by-(finite rank) cocentralizer.

Suppose that M = {y}, that is G = 〈y〉 is a cyclic group. If y has infinite order,
then 〈y〉 = 〈yp1〉〈yp2〉 where p1, p2 are primes, p1 6= p2, and Lemma 1 again implies that
A/CA(G) is artinian-by-(finite rank). Finally, if y has finite order, but this order is not
a prime power, then 〈y〉 is a product of two proper subgroups, and Lemma 1 implies
that A/CA(G) is artinian-by-(finite rank).

Assume now that G is not finitely generated and A/CA(G) is not artinian-by-
(finite rank). Suppose that G includes a proper subgroup of finite index. Then G
includes a proper normal subgroup H of finite index. We can choose a finitely generated
subgroup F such that G = HF . Since G is not finitely generated, F 6= G. It follows
that cocentralizers of both subgroups H and F are artinian-by-(finite rank). Lemma 1
shows that FH = G has an artinian-by-(finite rank) cocentralizer, and we obtain a
contradiction. This contradiction shows that G is an F-perfect group.

IfH is a proper subgroup of G, then Corollary 4 shows thatH is soluble-by-finite. In
particular, G is locally-(soluble-by-finite). By Theorem A of the paper [2], G includes
a normal locally soluble subgroup L such that G/L is finite or locally finite simple
group. Since G is an F-perfect group, then in the first case G = L, i.e. G is locally
soluble. Consider the second case. Put C = CA(L). In a natural way, we can consider
C as Zp∞(G/L)-module. CG/L(C) is a normal subgroup of G/L. Since G/L is a simple
group, then either CG/L(C) is the identity subgroup or CG/L(C) = G/L. In the second
case C ≤ CA(G) and A/CA(G) is artinian-by-(finite rank). This contradiction shows
that CG/L(C) =< 1 >. Let H/L be an arbitrary proper subgroup of G/L. Then H is a
proper subgroup of G, therefore A/CA(H) is artinian-by-(finite rank). It follows that
C/(C∩CA(H)) is also artinian-by-(finite rank). Clearly CC(H/L) ≤ C∩CA(H), so that
C/CC(H/L) is artinian-by-(finite rank). Since H/L is periodic, it is nilpotent-by-finite
by Corollary 4. In other words, every proper subgroup of G/L is nilpotent-by-finite.
Using now Theorem A of the paper [8], we obtain that either G/L is soluble-by-finite or
a q-group for some prime q. In any case, G/L cannot be an infinite simple group. This
contradiction shows that G is locally soluble. Being an infinite locally soluble group,
G has a non-identity proper normal subgroup. Corollary 4 shows that this subgroup is
soluble. It follows that G includes a non-identity normal abelian subgroup. In turn, it
follows that the locally nilpotent radical R1 of G is non-identity. Suppose that G 6= R1.
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Being F-perfect, G/R1 is infinite. Using the above arguments, we obtain that the locally
nilpotent radical R2/R1 of G/R1 is non-identity. If G 6= R2, then the locally nilpotent
radical R3/R2 of G/R2 is non-identity, and so on. Using ordinary induction, we obtain
that G is a radical group. Suppose that the upper radical series of G is infinite and
consider its term Rω, where ω is the first infinite ordinal. By its choice, Rω is not
soluble. Then Corollary 4 shows that Rω = G.

Since Rn is a proper subgroup of G, A/CA(Rn) is artinian-by-(finite rank), n ∈ N.
Rn is normal in G, therefore CA(Rn) is a Zp∞G-submodule. Lemma 2 (iii) shows
that G/CG(A/CA(Rn)) is abelian. Suppose that there exists a positive integer m such
that G 6= CG(A/CA(Rm)), then [G,G] is a proper subgroup of G. An application of
Corollary 4 to Lemma 2 shows that [G,G] is soluble, thus even G is soluble. This
contradiction proves the equality G = CG(A/CA(Rn)). In other words, [A,G] ≤
CA(Rn). Since it is valid for each n ∈ N, [A,G] ≤

⋂
n∈NCA(Rn). The equation

G =
⋃
n∈NRn implies that CA(G) =

⋂
n∈NCA(Rn). Hence [A,G] ≤ CA(G). Thus G

acts trivially on both factors CA(G) and A/CA(G), which follows that G is abelian [4].
Contradiction. This contradiction proves that G is soluble.

Let D = [G,G]. Then by Corollary 5 G/D is a quasicyclic q-group for some prime
q. It follows that G has an ascending series of normal subgroups

D = K0 ≤ K1 ≤ . . . ≤ Kn ≤ Kn+1 ≤ . . .

such thatKn/D is a cyclic group of order qn, n ∈ N, and G =
⋃
n∈NKn. Every subgroup

Kn is proper and normal in G, therefore CA(Kn) is a Zp∞G-submodule and A/CA(Kn)
is artinian-by-(finite rank). Lemma 2 shows that [[A,G], G] ≤ CA(Kn). It is valid for
each n ∈ N, and therefore [[A,G], G] ≤

⋂
n∈NCA(Kn). The equation G =

⋃
n∈NKn

implies that CA(G) =
⋂
n∈NCA(Rn). Hence [[A,G], G] ≤ CA(G). It follows that G acts

trivially on factors CA(G), [A,G]/CA(G) and A/[A,G]. It follows that G is nilpotent
of class at most 2 [4].

If G is abelian, then Lemma 3 shows that G is a cyclic or quasicyclic q–group for
some prime q. Suppose that G is non-abelian. Let T = Tor(G). If we suppose that
T 6= G, then G/T is a non-identity torsion-free nilpotent group. In particular, G/T has
a non-identity torsion-free abelian factor-group, which contradicts Corollary 5. This
contradiction shows that G is a periodic group. Moreover, G is a q-group. Since G is
nilpotent of class 2, then [G,G] ≤ ζ(G). In particular, G/ζ(G) is a quasicyclic group.
In this case, [G,G] is a Chernikov subgroup (see, for example, [5, Theorem 23.1]). It
follows that whole group G is Chernikov. Being F-perfect, G is abelian, which completes
the proof. It is not hard to proof that in the Theorem 1 if G/CG(A) is a quasicyclic
q-group for some prime q than q = p.
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