
ISSN 9125 0912. Вiсник Днiпропетровського унiверситету. Серiя: Математика. 2014, вип. 19

УДК 517.977.56

S. O. Gorbonos∗, P. I. Kogut∗∗
∗ Днiпропетровський нацiональний унiверситет iм. Олеся Гончара,

Днiпропетровськ 49050. E-mail: gorbonos.so@gmail.com
∗∗ Днiпропетровський нацiональний унiверситет iм. Олеся Гончара,

Днiпропетровськ 49050. E-mail: p.kogut@i.ua

On non-variational solutions to optimal
boundary control problems for parabolic

equations

Дослiджується задача оптимального керування для лiнiйного параболiчного рiв-
няння з необмеженими коефiцiєнтами в головнiй частинi елiптичного оператора.
Особливiсть даного рiвняння полягає в тому, що матриця потоку є кососиметрич-
ною, а її коефiцiєнти належать до простору L2. Показано, що поставлена задача
керування має єдиний розв’язок, який не можна досягти через границю оптималь-
них розв’язкiв для L∞- апроксимованих задач.

Ключовi слова: параболiчне рiвняння, оптимальне керування, варiацiйний
роз’язок, необмеженi коефiцiєнти, кососиметрична матриця.

Изучается задача оптимального управления для линейного параболического
уравнения с неограниченными коэффициентами в главной части эллиптического
оператора. Особенность данного уравнения состоит в том, что матрица потока яв-
ляется кососимметричной, а ее коэффициенты принадлежат пространству L2. По-
казано, что данная задача управления имеет единственное решение, которое нельзя
достичь через предел оптимальных решений для L∞-аппроксимированных задач.

Ключевые слова: параболическое уравнение, оптимальное управление, вариацион-
ное решение, неограниченные коэффициенты, кососимметрическая матрица.

We study an optimal boundary control problem (OCP) associated to the linear
parabolic equation yt − div (∇y +A(x)∇y) = f . The characteristic feature of this equation
is the fact that the matrix A(x) = [aij(x)]i,j=1,...,N is skew-symmetric, aij(x) = −aji(x) and
belongs to L2-space (rather than L∞). We show that under special choice of matrix A
and distribution f , a unique solution to the original OCP inherits a singular character of
the original matrix A and it can not be attainable by the solutions of the similar OCPs
with L∞-approximations of matrix A.

Key words: parabolic equation, optimal control, variational solution, unbounded
coefficients, skew-symmetric matrix.

1. Introduction

We consider the optimal boundary control problem for a parabolic equation with
unbounded coefficients. The characteristic feature of this problem is the fact that the
stream matrix A(x) is skew-symmetric and its coefficients belongs to L2-space (rather
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than L∞). As a result, the existence, uniqueness, and variational properties of the weak
solution to optimal control problem (OCP) usually are drastically different from the
corresponding properties of solutions to the parabolic equations with L∞-matrices in
coefficients. In most cases, the situation can change dramatically for the matricesA with
unremovable singularity. Typically, in such cases, boundary value problem may admit
infinitely many weak solutions which can be divided into two classes: approximable
and non-approximable solutions [5], [12], and [13].

The aim of this work is to consider OCP with a well prescribed skew-symmetric L2-
matrix A and, using the direct method in the Calculus of variations, to show that this
problem admits a unique solution possessing a special singular properties. As a result,
we prove that this solution cannot be attained through a sequence of optimal solutions
to regularized OCP for boundary value problem with skew-symmetric matrices Ak ∈
L∞(Ω;S3) such that Ak → A strongly in L2(Ω;S3). Thus, this result shows that a
numerical analysis of optimal control problems for parabolic equations with unbounded
coefficients is a non-trivial matter and it requires the elaboration of special approaches.

2. Notation and Preliminaries

Let Ω be the unit ball in R3, Ω = {x ∈ R3 : ‖x‖R3 < 1}. Let C∞0 (Ω; ΓD) be the set
of all infinitely differentiable functions ϕ : Ω → R with compact supports in Ω. Let
C∞0 (RN ; ΓD) =

{
ϕ ∈ C∞0 (RN) : ϕ = 0 on ΓD

}
. We define the Banach spaceH1

0 (Ω; ΓD)
as the closure of C∞0 (Ω; ΓD) with respect to the norm (see [1])

‖y‖H1
0 (Ω;ΓD) =

(ˆ
Ω

‖∇y‖2
R3 dx

)1/2

.

Let H−1(Ω; ΓD) be the dual space to H1
0 (Ω; ΓD).

Let X be a Banach space and let T > 0 be a given value. We denote by L2(0, T ;X)
the set of measurable functions y ∈ (0, T )→ X such that ‖u(·)‖X ∈ L2(0, T ). Similarly,
one can also define the set of distributions D′(0, T ;X) on (0, T ) with values in X.
L2(0, T ;X) is a Banach space with respect to the norm

‖y‖L2(0,T ;X) =

(ˆ T

0

‖u(x)‖2
X dx

)1/2

.

If X is reflexive, the space L2(0, T ;X) is reflexive too. Moreover, if X is separable, then
L2(0, T ;X) is separable.

Let C([0, T ];L2(Ω)) be the space of measurable functions on [0, T ] × Ω such that
y(t, ·) ∈ L2(Ω) for any t ∈ [0, T ] and such that the map t ∈ [0, T ] 7→ y(t, ·) ∈ L2(Ω) is
continuous. Let us define the Banach space

WΓD
=

{
y : y ∈ L2(0, T ;H1

0 (Ω; ΓD)),
∂y

∂t
∈ L2(0, T ;H−1(Ω; ΓD))

}
,

equipped with the norm of the graph. Here, the derivative ∂y/∂t is the distribution in
D′(0, T ;H−1(Ω; ΓD)). Then the following properties holds true (see [4, 10]).
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Theorem 1. (1) The embedding WΓD
↪→ L2(0, T ;L2(Ω)) is compact.

(2) One has the embedding WΓD
↪→ C([0, T ];L2(Ω)).

(3) For any u, v ∈ WΓD
, one has

d

dt

ˆ
Ω

u(t, x)v(t, x) dx = 〈u′(t, ·), v(t, ·)〉H−1(Ω;ΓD),H1
0 (Ω;ΓD)

+ 〈v′(t, ·), u(t, ·)〉H−1(Ω;ΓD),H1
0 (Ω;ΓD) .

Let y ∈ L2 (0, T ;H1
0 (Ω; ΓD)) ∩ C ([0, T ];L2(Ω)). Then the following density result

holds: there exists Φ ∈ C∞([0, T ];C∞0 (Ω; ΓD)) such that

‖y − Φ‖C([0,T ];L2(Ω)) ≤ δ, ‖∇y −∇Φ‖L2(0,T ;L2(Ω)) ≤ δ, ∀ δ > 0.

Skew-Symmetric Matrices. Let S3 be the set of all skew-symmetric matrices A =
[aij]

3
i,j=1, i.e., A is a square matrix with aij = −aji and, hence, aii = 0. Therefore,

the set S3 can be identified with the Euclidean space R3.
Let L2

(
Ω;S3

)
be the space of measurable square-integrable functions whose values

are skew-symmetric matrices and it is endowed with the norm

‖A‖L2(Ω;S3) =

(ˆ
Ω

‖A(x)‖2
S3 dx

)1/2

.

In what follows, we associate with matrix A ∈ L2
(
Ω;S3

)
the bilinear form ϕ(·, ·)A :

L2(0, T ;C1
0(Ω))× L2(0, T ;C1

0(Ω))→ R following the rule

ϕ(y, v)A =

ˆ T

0

ˆ
Ω

(
∇v,A(x)∇y

)
R3 dxdt, ∀ y, v ∈ L2(0, T ;C1

0(Ω)).

It is easy to see that this form is unbounded on L2(0, T ;H1
0 (Ω)), since, in general,

the ’integrand’
(
∇v, A(x)∇y

)
R3 is not integrable on (0, T ) × Ω. This motivates an

introduction of the following set. We say that a distribution y ∈ L2(0, T ;H1
0 (Ω; ΓD))

belongs to the set D(A) if∣∣∣∣ˆ T

0

ˆ
Ω

(∇ϕ,A∇y)R3 dx dt

∣∣∣∣ ≤ c(y, A)

(ˆ T

0

ˆ
Ω

‖∇ϕ‖2
R3 dx dt

)1/2

, (2.1)

for all ϕ ∈ C∞([0, T ];C∞0 (Ω; ΓD)), with some constant c depending on y and A. As a
result, having set

[y, ϕ] =

T̂

0

ˆ

Ω

(∇ϕ,A∇y)RN dx dt, ∀y ∈ D(A),∀ϕ ∈ C∞([0, T ];C∞0 (Ω)), (2.2)
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we observe that the bilinear form [y, ϕ] can be defined for all ϕ ∈ L2(0, T ;H1
0 (Ω; ΓD))

using the standard rule
[y, ϕ] = lim

→∞
[y, ϕε], (2.3)

where {ϕε}ε>0 ⊂ C∞([0, T ];C∞0 (Ω; ΓD)) and ϕε → ϕ converges strongly in
L2(0, T ;H1

0 (Ω; ΓD)). In this case the value [y, ϕ] is finite for every y ∈ D(A), although
the ’integrand’

(
∇ϕ,A(x)∇y

)
R3 need not be integrable on (0, T )×Ω, in general. This

fact leads us to the conclusion

|[y, y]| < +∞, ∀ y ∈ D(A). (2.4)

At the same time, if we temporary assume that A ∈ L∞(Ω;S3), then the bilinear
form [y, ϕ] is obviously bounded on L2(0, T ;H1

0 (Ω; ΓD)), i.e. in this case D(A) ≡
L2(0, T ;H1

0 (Ω; ΓD)). Indeed, in view of the Bunjakowski inequality, we get

|[y, v]| ≤‖A‖L∞(Ω;S3)

ˆ T

0

ˆ
Ω

‖∇y‖R3‖∇v‖R3 dxdt

≤‖A‖L∞(Ω;S3)‖y‖L2(0,T ;H1
0 (Ω;ΓD))‖v‖L2(0,T ;H1

0 (Ω;ΓD))

Moreover, if y = v then [y, y] = −[y, y], and, therefore, [y, y] = 0 for all y ∈
L2(0, T ;H1

0 (Ω; ΓD)). However, as it is shown in the next section, there exist skew-
symmetric L2-matrices A such that the equality |[y, y]| = [y, y] does not hold true for
some y ∈ D(A).

We define the divergence divA of a skew-symmetric matrix A ∈ L2
(
Ω;S3

)
as a

vector-valued distribution d ∈ H−1(Ω;R3) by the following rule

〈di, ϕ〉H−1(Ω);H1
0 (Ω) = −

ˆ
Ω

(ai,∇ϕ)R3 dx, ∀ϕ ∈ C∞0 (Ω), (2.5)

where ai stands for the i-th row of the matrix A. We say that a matrix A ∈ L2
(
Ω;S3

)
belongs to the space H(Ω, div;S3) if d := divA ∈ L1(Ω;R3), that is,

H(Ω, div;S3) =
{
A
∣∣A ∈ L2

(
Ω;S3

)
, divA ∈ L1(Ω;R3)

}
.

3. Setting and Approximation of the Optimal Control Problem

We deal with the following optimal control problem (OCP) for a parabolic equation
with unbounded coefficients

I(u, y) = ‖y − yd‖2
L2(0,T ;H1

0 (Ω;ΓD)) + ‖u− ud‖2
L2(0,T ;L2(ΓN )) → inf (3.1)

subject to the constraints
yt − div

(
∇y + A(x)∇y

)
= f in (0, T )× Ω, (3.2)

y(0, ·) = y0 in Ω, (3.3)

y(·, x) = 0 on (0, T )× ΓD,
∂y(·, x)

∂νA
= u on (0, T )× ΓN , (3.4)

u ∈ L2(0, T ;L2(ΓN)), (3.5)
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where Ω be the unit ball in R3 and its boundary Γ = {‖x‖R3 = 1} is divided onto
two disjoint parts ∂Ω = ΓD ∪ ΓN which have positive 2-dimensional measures. Here,
u is a control, y0 ∈ L2(Ω), yd ∈ L2(0, T ;H1

0 (Ω)) and ud ∈ L2(0, T ;L2(ΓN)) and f ∈
L2(0, T ;H−1(Ω; ΓD)) are given distributions, and A ∈ L2

(
Ω;S3

)
is a skew-symmetric

matrix.
The optimal control problem which we consider is to minimize the discrepancy

(tracking error) between a given distribution yd ∈ L2(0, T ;H1
0 (Ω)) and a solution y of

the Neumann-Dirichlet boundary value problem for parabolic equation (3.2)–(3.4) by
choosing an appropriate boundary control u ∈ L2(0, T ;L2(ΓN)), where

∂y

∂νA
=

3∑
i,j=1

(
δij + aij(x)

) ∂y
∂xj

cos(ν, xi),

δij is the Kronecker’s delta, cos(ν, xi) is the i-th directing cosine of ν, and ν is the
outward unit normal vector at ΓN to the ball Ω.

More precisely, we are concerned with OCP (3.1)–(3.5). The distinguishing feature
of this problem is the special choice of matrix A and distribution f . This entails
a number of pathologies with respect to the standard properties of optimal control
problems for parabolic equation and leads to the non-uniqueness of weak solutions
to the corresponding initial boundary value problem and a singular properties of an
optimal pair. As a result, numerical approximation of the solution to OCP (3.1)–(3.5)
is getting non-trivial.

Note that the function y = y(u) is called an approximable solution to the initial-
boundary value problem in (3.2)–(3.4) if it can be attained by weak solutions to
the similar boundary value problems with L∞-approximated matrix A. However, this
type of solutions does not exhaust all weak solutions to the above problem. There is
another type of weak solutions, which cannot be approximated by weak solutions of
such regularized problems. Usually, such solutions are called non-variational [7, 12, 13],
singular [14], [2], [8], pathological [9], [11] and others

To begin with, we introduce the following notion.

Definition 1. We say that (u, y) is an admissible pair to OCP (3.1)–(3.5) if u ∈
L2(0, T ;L2(ΓN)), y ∈ W ,

y(0, ·) = y0 ∈ L2(Ω) almost everywhere in Ω, (3.6)

and the integral identity
ˆ T

0

ˆ
Ω

ytϕdxdt+

ˆ T

0

ˆ
Ω

(
∇ϕ,∇y + A(x)∇y

)
RN dxdt

=

ˆ T

0

〈f, ϕ〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt+

ˆ T

0

ˆ
ΓN

uϕ dH2dt (3.7)

holds true for each ϕ ∈ C∞([0, T ];C∞0 (Ω; ΓD)).
We denote by Ξ the set of all admissible pairs for the OCP (3.1)–(3.5).
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It is worth to note that in view of definition of the space W and Theorem 1, the
condition (3.6) has a sense. Moreover, as was shown in [3], if (u, y) is an admissible
pair, then y ∈ D(A).

Definition 2. We say that OCP (3.1)–(3.5) is regular if it admits at least one
admissible pair, i.e. Ξ 6= ∅.

We also say that a pair (u0, y0) ∈ L2(0, T ;L2(ΓN)) ×D(A) is optimal for problem
(3.1)–(3.5) if (u0, y0) ∈ Ξ and I(u0, y0) = inf(u,y)∈Ξ I(u, y).

As immediately follows from (3.7) and the definition of bilinear form [y, ϕ] (see also
the extension rule (2.3)), every admissible pair (u, y) ∈ Ξ is related by the following
energy equality

1

2

ˆ T

0

ˆ
Ω

(
y2
)
t
dxdt+ ‖y‖2

L2(0,T ;H1
0 (Ω;ΓD)) + [y, y]

=

ˆ T

0

〈f, y〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt+

ˆ T

0

ˆ
ΓN

uy dH2dt. (3.8)

The next question which we are going to discuss is about variational solutions to the
problem (3.1)–(3.5). Since A ∈ L2

(
Ω;S3

)
, it follows that there exists a sequence of skew-

symmetric matrices {Ak}k∈N ⊂ L∞(Ω;S3) such that Ak → A strongly in L2(Ω;S3).
Hence, it is reasonably, from numerical point of view, to consider the following sequence
of constrained minimization problems associated with matrices Ak.{ 〈

inf
(u,y)∈Ξk

Ik(u, y)

〉
, k →∞

}
. (3.9)

Here,
Ik(u, y) := I(u, y) (3.10)

for every (u, y) ∈ L2(0, T ;L2(ΓN)) × L2(0, T ;H1
0 (Ω; ΓN))), ∀k ∈ N and (u, y) ∈ Ξk if

and only if 

yt − div
(
∇y + Ak∇y

)
= f in (0, T )× Ω,

y(0, ·) = y0 in Ω,

y(·, x) = 0 on (0, T )× ΓD,
∂y(·, x)

∂νAk

= u on (0, T )× ΓN ,

u ∈ L2(0, T ;L2(ΓN)), y ∈ L2(0, T ;H1
0 (Ω; ΓD)),

yt ∈ L2(0, T ;H−1(Ω; ΓD)).


(3.11)

Theorem 2. Let ud ∈ L2(0, T ;L2(ΓN)), f ∈ L2(0, T ;H−1(Ω; ΓD)), y0 ∈ L2(Ω),
and yd ∈ L2(0, T ;H1

0 (Ω; ΓD)) be given distributions. Then for every k ∈ N there
exists a unique minimizer (u0

k, y
0
k) ∈ Ξk to the corresponding constrained minimization

problem (3.9) such that the sequence of optimal pairs {(u0
k, y

0
k) ∈ Ξk}k∈N is relatively
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compact with respect to the product of the weak topologies on L2(0, T ;L2(ΓN)) ×
L2(0, T ;H1

0 (Ω; ΓD)) and each of its cluster pairs (u∗, y∗) possesses the properties:

(u∗, y∗) ∈ Ξ, [y∗, y∗] ≥ 0. (3.12)

Proof. To begin with, we show that the sequence of minimal values for the problems
(3.9) is uniformly bounded, i.e.

sup
k∈N

inf
(u,y)∈Ξk

Ik(u, y) ≤ C for some C > 0. (3.13)

Indeed, for every k ∈ N the bilinear form [y, ϕ]k :=
´ T

0

´
Ω

(
∇ϕ,Ak(x)∇y

)
RN dxdt is

obviously bounded on L2(0, T ;H1
0 (Ω; ΓD)). Moreover, since

ˆ T

0

ˆ
Ω

(
∇ϕ,Ak∇y

)
RN dxdt = −

ˆ T

0

ˆ
Ω

(
∇y, Ak∇ϕ

)
RN dxdt,

we have ˆ T

0

ˆ
Ω

(
∇v,Ak(x)∇v

)
RN dxdt = 0 ∀ v ∈ L2(0, T ;H1

0 (Ω; ΓD)) (3.14)

and, hence, the initial-boundary value problem (3.11) has a unique solution (see [10]
for the details)

yk ∈ L2(0, T ;H1
0 (Ω; ΓD)), (yk)t ∈ L2(0, T ;H−1(Ω; ΓD))

for every u ∈ L2(0, T ;L2(ΓN)).
As an obvious consequence of this observation and the properties of lower

semicontinuity and strict convexity of the cost functional Ik, we have: the corresponding
minimization problem (3.9) admits a unique solution [6]

Ik(u
0
k, y

0
k) = inf

(u,y)∈Ξk

Ik(u, y), (u0
k, y

0
k) ∈ Ξk.

Moreover, having fixed a control u ∈ L2(0, T ;L2(ΓN)), condition (3.14) implies the
fulfilment of the following identities for every k ∈ N
ˆ T

0

ˆ
Ω

(yk)tϕdxdt+

ˆ T

0

ˆ
Ω

(
∇ϕ,∇y + Ak(x)∇yk

)
RN dxdt

=

ˆ T

0

〈f, ϕ〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt+

ˆ T

0

ˆ
ΓN

uϕ dH2dt, (3.15)

1

2
‖yk(τ, ·)‖2

L2(Ω) + ‖yk‖2
L2(0,T ;H1

0 (Ω;ΓD)) =

ˆ τ

0

〈f, yk〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt

+

ˆ τ

0

ˆ
ΓN

uyk dH2dt+
1

2
‖y0‖2

L2(Ω), ∀ τ ∈ [0, T ], (3.16)

7
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where yk = yk(u) ∈ L2(0, T ;H1
0 (Ω)) are the corresponding solutions to the initial-

boundary value problems (3.11). Hence, following the standard technique [10], it is
easy to show that the sequence {yk}k∈N is bounded in WΓD

for every fixed u ∈
L2(0, T ;L2(ΓN)) and due to the a priori estimates

‖yk‖L2(0,T ;H1
0 (Ω;ΓD)) +

∥∥∥∥∂yk∂t
∥∥∥∥
L2(0,T ;H−1(Ω;ΓD))

≤ C(Ω)
[
‖f‖L2(0,T ;H−1(Ω;ΓD)) + ‖u‖L2(0,T ;L2(ΓN )) + ‖y0‖L2(Ω)

]
, (3.17)

where the constant C(Ω) is independent of Ak, we arrive at the relation

Ik(u
0
k, y

0
k) = inf

(u,y)∈Ξk

Ik(u, y) ≤ Ik(u, yk) ≤ 2‖yd‖2
L2(0,T ;H1

0 (Ω;ΓD))

+ 2‖ud‖2
L2(0,T ;L2(ΓN )) + 4C2(Ω)

[
‖f‖2

L2(0,T ;H−1(Ω;ΓD)) + ‖y0‖L2(Ω)

]
+
(
4C2(Ω) + 1

)
‖u‖2

L2(0,T ;L2(ΓN )) ≤ C ∀ k ∈ N. (3.18)

Thus, (3.13) holds true and it implies that

sup
k∈N

[
‖y0

k‖2
L2(0,T ;H1

0 (Ω;ΓD)) +

∥∥∥∥∂y0
k

∂t

∥∥∥∥2

L2(0,T ;H−1(Ω;ΓD))

+ ‖u0
k‖2

L2(0,T ;L2(ΓN ))

]
< +∞. (3.19)

So, by the completeness of WΓD
, we can assume that there exists a pair (u∗, y∗) ∈

L2(0, T ;L2(ΓN))×WΓD
such that up to a subsequence

y0
k ⇀ y∗ in L2(0, T ;H1

0 (Ω; ΓD)),

∂y0
k

∂t
⇀

∂y∗

∂t
in L2(0, T ;H−1(Ω; ΓD)),

u0
k ⇀ u∗ in L2(0, T ;L2(ΓN)).

Hence,
y0
k −→ y∗ strongly in L2(0, T ;L2(ΓN)) (3.20)

by compactness of the embedding H1/2(ΓN) ↪→ L2(ΓN).
It remains to prove the properties (3.12). To do so, we note that due to the strong

convergence Ak → A in L2(Ω;S3
)
, we get∣∣∣∣ˆ T

0

ˆ
Ω

(
∇ϕ,A∇y∗ − Ak∇y0

k

)
RN dxdt

∣∣∣∣ ≤ ˆ T

0

ˆ
Ω

‖Ak − A‖SN‖∇y0
k‖RN‖∇ϕ‖RN dxdt

+

∣∣∣∣ˆ T

0

ˆ
Ω

(
A∇ϕ,∇y∗ −∇y0

k

)
RN dxdt

∣∣∣∣
≤ ‖ϕ‖C([0,T ];C1(Ω)) sup

k∈N
‖y0

k‖L2(0,T ;H1
0 (Ω;ΓD))‖Ak − A‖L2(Ω;S3)

+

∣∣∣∣ˆ T

0

ˆ
Ω

(
A∇ϕ,∇y∗ −∇y0

k

)
RN dxdt

∣∣∣∣ −→ 0 as k →∞
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for every ϕ ∈ C∞([0, T ];C∞0 (Ω)).
Hence, Ak∇y0

k
∗
⇀ A∇y∗ in L1(0, T ;L1(Ω;R3)). It means that we can pass to the

limit in integral identity (3.15) with u = u0
k. As a result, we have: the pair (u∗, y∗) is

related by the integral identity (3.8), therefore, y∗ is a weak solution to the original
boundary value problem (3.2)–(3.4) under u = u∗ in the sense of Definition 1. Thus,
(u∗, y∗) ∈ Ξ. Moreover, following [3], we have y∗ ∈ D(A).

In order to prove the property (3.12)2, we pass to the limit in the energy equality
(3.16). Takin into account the lower semicontinuity of the norm ‖ · ‖2

L2(0,T ;H1(Ω)) with
respect to the weak convergence ∇y0

k ⇀ ∇y∗ in L2(0, T ;L2(Ω;R3)), we obtain

1

2

ˆ T

0

ˆ
Ω

(
y2
)
t
dxdt+ ‖y‖2

L2(0,T ;H1
0 (Ω;ΓD))

≤ 〈f, y∗〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) + lim

k→∞

ˆ T

0

ˆ
ΓN

u0
ky

0
k dH2dt

by (3.20)
=

ˆ T

0

〈f, y∗〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt+

ˆ T

0

ˆ
ΓN

u∗y∗ dH2dt. (3.21)

Thus, the desired inequality (3.12)2 obviously follows from (3.8) and (3.21). The proof
is complete.

Remark 1. As immediately follows from the proof of this theorem, some admissible
pairs (u∗, y∗) ∈ Ξ can be attained by optimal solutions to the approximate OCPs
(3.9). Hence, we can conclude that the original optimal control problem (3.1)–(3.5) is
regular for every ud ∈ L2(0, T ;L2(ΓN)), f ∈ L2(0, T ;H−1(Ω; ΓD)), y0 ∈ L2(Ω), and
yd ∈ L2(0, T ;H1

0 (Ω; ΓD)).
Remark 2. The next observation deals with the inequality (3.12)2. As Theorem 2
proves, for any approximation {Ak}k∈N of the matrix A ∈ L2

(
Ω;S3

)
with properties

{Ak}k∈N ⊂ L∞(Ω;S3) and Ak → A strongly in L2(Ω;S3), the optimal solutions to the
regularized OCPs (3.9)–(3.11) always leads us in the limit to some admissible solution
(u∗, y∗) of the original OCP (3.1)–(3.5). Moreover, in general, this limit pair can depend
on the choice of the approximative sequence {Ak}k∈N. That’s why it is reasonably to
call such pairs attainable admissible solutions to OCP (3.1)–(3.5).

As we will see later on, the pair (u∗, y∗) is not optimal, in general, and the pair
(ud, yd) is a unique optimal pair to OCP (3.1)–(3.5). Whereas we will shown that
[yd, yd] = −α, where α is a given strictly positive value, in the mean time [y∗, y∗] ≥ 0
for any attainable pair (u∗, y∗). Thus, for given f, yd, y0, ud the optimal pair (u0, y0)
to OCP (3.1)–(3.5) cannot be attained through any L∞-approximation of the matrix
A ∈ L2

(
Ω;S3

)
.

4. Example of the Non-Variational Solution

Our aim in this section is to show that optimal control problem (3.1)–(3.5) has a
unique non-variational solution. Namely, we will show that for a given positive scalar

9
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value α ∈ R there exist a skew-symmetric matrix A ∈ L2
(
Ω;S3

)
and a function yd ∈

L2(0, T ;H1
0 (Ω)) such that

yd ∈ D(A) and [yd, yd] = −α < 0, (4.1)

where the bilinear form [y, v] is defined by (2.2).
We divide our analysis into several steps. At the first step we define a skew-

symmetric matrix A as follows

A(x) =

 0 a(x) 0
−a(x) 0 −b(x)

0 b(x) 0

 , (4.2)

where a(x) =
x1

2‖x‖2
R3

and b(x) =
x3

2‖x‖2
R3

. Since

‖a‖2
L2(Ω) =

ˆ
Ω

(
x1

2‖x‖2
R3

)2

dx =

ˆ 1

0

ˆ 2π

0

ˆ π

0

ρ2 cos2 ϕ sin2 ψ

4ρ4
ρ2 sinψ dψ dϕ dρ < +∞,

it follows that a ∈ L2(Ω). By analogy, it can be shown that b ∈ L2(Ω). Moreover, it is
easy to see that the skew-symmetric matrix A, define by (4.2), satisfies the property
A ∈ H(Ω, div;S3), i.e. A ∈ L2(Ω;S3) and divA ∈ L1(Ω;R3). Indeed, in view of the

definition of the divergence divA of a skew-symmetric matrix, we have divA =

 d1

d2

d3

,
where di = div ai =

xix2

‖x‖4
R3

and ai is i-th column of A. As a result, we get

‖div ai‖L1(Ω) =

ˆ 1

0

ˆ 2π

0

ˆ π

0

∣∣∣∣ρ2fi(ϕ, ψ) sinϕ sinψ

ρ4

∣∣∣∣ ρ2 sinψ dψ dϕ dρ

< +∞,
for the corresponding fi = fi(ϕ, ψ) (i = 1, 2, 3). Therefore, divA ∈ L1(Ω;R3).

Step 2 deals with the choice of the function yd ∈ L2(0, T ;H1
0 (Ω)). We define it by

the rule

yd(t, x) = t

√
52α

πT 3(1− exp(−2π))

(
1− ‖x‖5

R3

)
× x2

2

x2
1 + x2

2

exp

(
−π

2
− arctan

√
x2

1 + x2
2 − x1

x2

)
, (4.3)

for all (t, x) ∈ (0, T )× Ω. It is easy to see that

v0

( x

‖x‖R3

)
:=

√
52α

πT 3(1− exp(−2π))

x2
2

x2
1 + x2

2

exp

(
−π

2
− arctan

√
x2

1 + x2
2 − x1

x2

)

=

√
52α

πT 3(1− exp(−2π))
sin2 ϕ exp(−ϕ/2), ∀ϕ ∈ [0, 2π]

10
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with respect to the spherical coordinates. Hence, v0 ∈ C1(∂Ω), and, as immediately
follows from (4.3), it provides that

yd ∈ L2(0, T ;L2(Ω)) and yd(t, ·) = 0 on ∂Ω ∀ t ∈ [0, T ]. (4.4)

By direct computations, we get

∇v0

( x

‖x‖R3

)
=

1

‖x‖3
R3

 ∂v0

∂z1

(
‖x‖2

R3 − x2
1

)
− ∂v0

∂z2
x1x2

∂v0

∂z2

(
‖x‖2

R3 − x2
2

)
− ∂v0

∂z1
x1x2

−∂v0

∂z1
x1x3 − ∂v0

∂z2
x2x3

 , ∀x 6= 0. (4.5)

Hence, there exists a constant C∗ > 0 such that∥∥∥∥∇v0

( x

‖x‖R3

)∥∥∥∥
R3

≤ C∗

‖x‖R3

.

Thus,

‖∇yd‖R3 ≤t
∣∣∣∣v0

( x

‖x‖R3

)∣∣∣∣ ∥∥∇ (1− ‖x‖5
R3

)∥∥
R3

+ t
(
1− ‖x‖5

R3

) ∥∥∥∥∇v0

( x

‖x‖R3

)∥∥∥∥
R3

≤ C1 +
C2

‖x‖R3

.

As a result, we infer that ∇yd ∈ L2(0, T ;L2(Ω;R3)), i.e. we finally have yd ∈
L2(0, T ;H1

0 (Ω)).
Step 3. We show that the function yd, which was introduced before, belongs to the

set D(A). To do so, we have to prove the estimate∣∣∣∣ˆ T

0

ˆ
Ω

(
∇ϕ,A(x)∇yd

)
R3 dxdt

∣∣∣∣ ≤ C̃

(ˆ T

0

ˆ
Ω

|∇ϕ|2R3 dxdt

)1/2

,

for all ϕ ∈ C∞([0, T ];C∞0 (Ω)).
To this end, we make use of the following transformations

ˆ T

0

ˆ
Ω

(
∇ϕ, A∇ψ

)
R3 dxdt = −

ˆ T

0

〈
div (A∇ψ) , ϕ

〉
H−1(Ω);H1

0 (Ω)
dt

=

ˆ T

0

〈
div

 (a1)t∇ψ
(a2)t∇ψ
(a3)t∇ψ

 , ϕ〉
H−1(Ω);H1

0 (Ω)
dt

=

ˆ T

0

3∑
i=1

〈
div ai, ϕ

∂ψ

∂xi

〉
H−1(Ω);H1

0 (Ω)

dt+

ˆ T

0

ˆ
Ω

3∑
i=1

3∑
j=1

(
aij

∂2ψ

∂xi∂xj

)
ϕdx︸ ︷︷ ︸

=0
since A∈L2(Ω;S3)

dt

(due to the fact that divA ∈ L1(Ω;R3))

=

ˆ T

0

ˆ
Ω

( divA,∇ψ)R3 ϕdxdt,

11
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which are obviously true for all ψ, ϕ ∈ C∞([0, T ];C∞0 (Ω)). Since∣∣∣∣ˆ T

0

ˆ
Ω

( divA,∇ψ)R3 ϕdxdt

∣∣∣∣ =

∣∣∣∣ˆ T

0

ˆ
Ω

(
∇ϕ, A∇ψ

)
R3 dxdt

∣∣∣∣
≤ C ‖A‖L2(Ω;S3

skew)‖ψ‖L2(0,T ;H1
0 (Ω)),

it follows that, using the continuation principle, we can extend the previous equality
with respect to ψ to the following one

ˆ T

0

ˆ
Ω

(∇ϕ,A∇yd)R3 dxdt =

ˆ T

0

ˆ
Ω

ϕ (divA,∇yd)R3 dxdt, (4.6)

∀ϕ ∈ C∞([0, T ];C∞0 (Ω)).

Let us show that (divA,∇yd)R3 ∈ L∞((0, T )×Ω). In this case, relation (4.6) implies
the estimate∣∣∣ˆ T

0

ˆ
Ω

(∇ϕ,A∇yd)R3 dxdt
∣∣∣ ≤ ‖(divA,∇yd)R3‖L∞((0,T )×Ω)

ˆ T

0

ˆ
Ω

|ϕ| dxdt

≤ C̃

(ˆ T

0

ˆ
Ω

|∇ϕ|2RN dxdt

)1/2

, ∀ϕ ∈ C∞([0, T ];C∞0 (Ω)), (4.7)

which means that the element yd belongs to the set D(A).
Indeed, as follows from (4.5), we have the equality(

∇v0

( x

‖x‖R3

)
,

x

‖x‖3
R3

)
R3

= 0. (4.8)

Thus, the gradient of the function ∇v0( x
‖x‖R3

) is orthogonal to the vector field Q =

x/‖x‖3
R3 outside the origin. Therefore,

(∇yd, divA)R3 := t

(
∇
[(

1− ‖x‖5
R3

)
v0

( x

‖x‖R3

)]
,

x

‖x‖3
R3

x2

‖x‖R3

)
R3

= t

(
∇
(
1− ‖x‖5

R3

)
,

x

‖x‖3
R3

)
R3

v0

( x

‖x‖R3

) x2

‖x‖R3

+ t
(
1− ‖x‖5

R3

)(
∇v0

( x

‖x‖R3

)
,

x

‖x‖3
R3

)
R3

x2

‖x‖R3

= I1 + I2,

where I2 = 0 by (4.8). Since ∇
(
1− ‖x‖5

R3

)
= −5‖x‖3

R3x, x2

‖x‖R3
= sinϕ sinψ with

respect to the spherical coordinates, and function v0 is smooth, it follows that there
exists a constant C0 > 0 such that |(∇yd, divA)R3 | ≤ C0 almost everywhere in (0, T )×
Ω. Thus,

(divA,∇yd)R3 ∈ L∞((0, T )× Ω)

and we have obtained the required property.
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Step 4. Using results of the previous steps, we show that the function yd satisfies the
condition [yd, yd] = −α < 0. Indeed, let {ϕε}ε→0 ⊂ C∞([0, T ];C∞0 (Ω)) be a sequence
such that

ϕε → yd strongly in L2(0, T ;H1
0 (Ω)). (4.9)

Then by continuity, we have

[yd, yd] = lim
ε→0

ˆ T

0

ˆ
Ω

(∇ϕε, A∇yd)R3 dxdt
by (4.6)

= lim
ε→0

ˆ T

0

ˆ
Ω

ϕε (divA,∇yd)R3 dxdt.

Since (divA,∇yd)R3 ∈ L∞((0, T ) × Ω), in view of the property (4.9), we can pass to
the limit in the right-hand side of this relation. As a result, we get

[yd, yd] =

ˆ T

0

ˆ
Ω

yd (divA,∇yd)R3 dxdt =
1

2

ˆ T

0

ˆ
Ω

(
divA,∇y2

d

)
R3 dxdt. (4.10)

Let Ωε = {x ∈ R3 | ε < ‖x‖R3 < 1} and let Γε = {‖x‖R3 = ε} be the sphere of radius
ε centered at the origin. Then

ˆ T

0

ˆ
Ωε

(
divA,∇y2

d

)
R3 dxdt =

ˆ T

0

ˆ
Γε

(divA, ν)R3 y
2
d dH2dt

=

ˆ T

0

[ˆ
Γε

(divA, ν)R3

(
1− ‖x‖5

R3

)2
v2

0

( x

‖x‖R3

)
dH2

]
t2dt

=
T 3

3

ˆ
Γε

(divA, ν)R3 v
2
0

( x

‖x‖R3

)
dH2 + o(1)

=
T 3

3

ˆ
Γε

(
x

‖x‖3
R3

,
(
− x

‖x‖R3

))
R3

x2

‖x‖R3

v2
0

( x

‖x‖R3

)
dH2 + o(1)

= − T
3

3ε2

ˆ
Γε

x2

‖x‖R3

v2
0

( x

‖x‖R3

)
dH2 + o(1)

= −T
3

3

ˆ
Γ

b0(x)v2
0(x) dH2 + o(1), (4.11)

where b0 = sinϕ sinψ and v2
0 = 52α

πT 3(1−exp(−2π))
sin4 ϕ exp(−ϕ). Since

ˆ
∂Ω

b0v
2
0 dH2 =

52α

πT 3(1− exp(−2π))

(ˆ 2π

0

sin5 ϕ e−ϕ dϕ

ˆ π

0

sin2 ψ dψ

)
= 6αT−3 > 0,

it remains to combine this result with (4.10), (4.11), and relation
ˆ T

0

ˆ
Ω

(
divA,∇y2

d

)
R3 dxdt = lim

ε→0

ˆ T

0

ˆ
Ωε

(
divA,∇y2

d

)
R3 dxdt.

As a result, we finally infer [yd, yd] = −α < 0.
However, as was shown before, the value [y, y] is not of constant sign on D(A).

Hence, energy equality (3.8) does not allow us to derive any a priory estimate for

13
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the admissible solutions. In spite of this, the following result proves that OCP (3.1)–
(3.5) is well-posed under the special choice of distributions yd ∈ L2(0, T ;H1

0 (Ω)), ud ∈
L2(0, T ;L2(ΓN)), y0 ∈ L2(Ω), and f ∈ L2(0, T ;H−1(Ω)).

Theorem 3. Let A ∈ L2
(
Ω;S3

)
and yd ∈ L2(0, T ;H1

0 (Ω)) be defined by (4.2) and
(4.3), respectively. Assume that y0 ≡ 0 in Ω and distributions f ∈ L2(0, T ;H−1(Ω))
and ud ∈ L2(0, T ;L2(ΓN)) are given by the rule

f := (yd)t − div (∇yd + A∇yd) and ud := γ1
ΓN

(yd), (4.12)

where γ1
ΓN

: L2(0, T ;H1
0 (Ω; ΓD))→ L2(0, T ;H−1/2(ΓN)) is the trace operator such that

γ1
ΓN

(y) =
∂y

∂νA

∣∣∣∣
ΓN

:=
3∑

i,j=1

(
δij + aij(x)

) ∂y
∂xj

cos(ν, xi)

provided y ∈ L2(0, T ;H1
0 (Ω; ΓD)) ∩ L2(0, T ;C1(Ω)).

Then the pair (u0, y0) := (ud, yd) ∈ L2(0, T ;L2(ΓN))×D(A) is a unique solution to
OCP (3.1)–(3.5).

Proof. As follows from (4.3), the function yd is smooth near the boundary ∂Ω and
(yd)t ∈ L2(0, T ;H1

0 (Ω)). Hence, ud := γ1
ΓN

(yd) ∈ L2(ΓN) and yd ∈ W (see (4.4)).
Moreover, the inclusion yd ∈ D(A) (see estimate (4.7)) implies:

div (A∇yd) ∈ L2(0, T ;H−1(Ω)).

Therefore, in view of the inclusion (yd)t ∈ L2(0, T ;H1
0 (Ω)), we have f ∈

L2(0, T ;H−1(Ω)). Since yd(0, ·) = 0 in Ω and
ˆ T

0

〈f, ϕ〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) dt =

ˆ T

0

ˆ
Ω

(yd)tϕdxdt

+

ˆ T

0

ˆ
Ω

(
∇ϕ,∇yd + A(x)∇yd

)
RN dxdt−

ˆ T

0

ˆ
ΓN

γ1
ΓN

(yd)ϕdH2dt

for all ϕ ∈ C∞([0, T ];C∞0 (Ω; ΓD)), it follows that the pair (ud, yd) satisfies relations
(3.6)–(3.7). Thus, (ud, yd) is an admissible solution to OCP (3.1)–(3.5) in the sense of
Definition 1. To conclude the proof, it is enough to note that

I(u, y) ≥ 0 ∀ (u, y) ∈ Ξ, I(ud, yd) = 0,

and the cost functional I : Ξ→ R is strictly convex.
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