Выводы. Проведены исследования динамической задачи, связанной с продольными колебаниями стальных канатов шахтных систем. Сформулирована задача о динамике подъемной установки с точки зрения напряжений в сечениях главных стальных канатов (упругого стержня) во времени. Установлены закономерности влияния характера отраженных волн от подвижного и неподвижного концов упругой нити, необходимые для оптимальной работы подъемной системы.

Библиографические ссылки

1. Воеводин В. В. Численные методы в прикладном пакете sage / В. В.Воеводин – Спб, 2011. – 257 с.

2. **Ильин С.Р.** Математическая модель продольных колебаний струны и отвеса каната мобильной подъемной установки / С.Р. Ильин // Научные труды ДонНТУ. -2011. – Вып. 16(143). – С. 122 – 138.

3. **Ильин В.А.** Граничное управление процессом колебаний на двух концах в терминах обобщенного решения волнового уравнения. 2009. Т. 36. № 11. – С. 153 – 158.

4. **Коряшкіна** Л.С. Чисельні методи / Л.С. Коряшкіна, М.М. Одновол. – Дніпропетровськ: Вид-во ДГУ. – 2007. – 219 с.

5. **Ostapenko V.A**. Dynamic field of displacements in rods of variable length. // Proceedings of 8^{th} International Conference on Dynamical Systems Theory and Applications. Lodz, 2011. – P. 316 – 323.

6. **Razdolsky A. G.** Propagation of longitudinal deformation wave along a lifting rope of variable length //International journal of solids and structures. $-2011. - T. 48. - N_{\odot}. 24. - P. 359-364.$

7. Fritzkowski P., Kamiński H. Dynamics of a rope modeled as a discrete system with extensible members //Computational Mechanics. $-2009. - T. 44. - N_{\odot}. 4. - C. 473 - 480.$

Надійшла до редколегії 01.11.2013.

УДК 532.5

О.Г. Гоман, В.А. Катан

Днепропетровский национальный университет им. Олеся Гончара

УДАРНОЕ ВЗАИМОДЕЙСТВИЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ И ВЕРТИКАЛЬНОЙ ПЛАСТИНЫ, ПЛАВАЮЩЕЙ НА ЕЕ ПОВЕРХНОСТИ, В УСЛОВИЯХ ОБРАЗОВАНИЯ ОДНОЙ ЗОНЫ ОТРЫВА И НАЛИЧИИ ВРАЩЕНИЯ

Розглянуто задачу про ударну взаємодію з відривом нестисливої рідини та вертикальної пластини, що плаває на її вільній поверхні при наявності обертання. Поставлена задача зведена до задачі Келдиша-Сєдова відносно комплексного потенціалу течії. Визначені гідродинамічні характеристики в умовах утворення однієї зони відриву течії.

Ключові слова: удар по тілу, що плаває на поверхні рідини, задача Келдиша-Сєдова..

Рассмотрена задача об ударном взаимодействии с отрывом несжимаемой жидкости и вертикальной пластины, плавающей на ее свободной поверхности при наличии вращения. Поставленная задача сводится к задаче Келдыша-Седова для комплексного потенциала течения. Определены гидродинамические характеристики при образовании одной зоны отрыва.

© О.Г. Гоман, В.А. Катан, 2013

Ключевые слова: удар по телу, плавающему на поверхности жидкости, задача Келдыша-Седова.

The problem for the impact incompressible fluid and the vertical plate on free surface is considered. The solution is received as the result by the Keldish-Sedov's problem.

Key words: impact incompressible fluid and the solid of revolution on free surface, the Keldish-Sedov's problem.

Введение. Обзор и библиография по вопросам ударного взаимодействия жидкости и плавающих на ее поверхности твердых тел содержится в [1 – 3]. В [4] содержится постановка ударных задач в плоском приближении как при налички, так и в отсутствии отрыва течения и для их решения используются методы теории функций комплексного переменного.

Пусть вертикальная пластина длины b плавает на свободной поверхности несжимаемой идеальной жидкости, находящейся в покое и занимающей нижнее полупространство. Ось Oy системы декартовых координат направлена по нормали к невозмущенной свободной поверхности жидкости внутрь последней, а плоскость xOz совпадает со свободной поверхностью. Предполагается, что ударные импульсы подействовали так, что после удара пластина имеет только компоненту скорости вдоль оси Ox, а также угловую скорость вокруг оси Oz. Возникшее в результате удара течение жидкости будет потенциальным и описывается комплексным потенциалом

$$w = \varphi(z) + i \psi(z),$$

где $\varphi(z)$ – потенциал течения, $\psi(z)$ – функция тока. В результате удара тело приобретает скорость $\overline{V} = (U_0 - \omega_z y)\overline{i}$, где U_0 – поступательная скорость полюса – точки В, а ω_z – угловая скорость тела относительно полюса.

В предположении о наличии отрыва течения условие безотрывности течения распространяется только на участок контура BDC (причем положение точки С заранее неизвестно) и имеет вид

$$\left.\frac{\partial \varphi}{\partial n}\right|_{BDC} = \overline{V} \cdot \overline{n}$$

Рис. 1. Схема ударного взаимодействия вертикально погруженной пластинки с жидкостью

Учитывая различное направление нормали на участках BD и DC, оно сводится на указанных участках к одному м тому жевыражению, а именно:

$$v_{x} = \frac{\partial \varphi}{\partial n}\Big|_{BD} = U_{0} - \omega_{z}y \text{ is } v_{x} = -\frac{\partial \varphi}{\partial n}\Big|_{DC} = U_{0} - \omega_{z}y$$

Так как компоненты скорости выражаются через производные функции тока, то на участках BD и DC

$$\frac{\partial \psi}{\partial v} = v_x = U_0 - \omega_z y \,,$$

откуда с точностью до несущественной константы имеем

$$\psi = U_0 y - \omega_z \frac{y^2}{2}.$$

На свободной границе – оси Ох и участке отрыва СВ имеем условие равенства нулю импульсного давления, что приводит к условию

$$\varphi = 0$$

В предыдущей работе авторов [5] поставленная задача сведена к задаче Келдыша – Седова и получено ее аналитическое решение

$$\Psi(t) = \frac{U_0}{\pi} \left[\sqrt{t^2 - b^2} \ln \frac{\sqrt{\frac{2b}{b+q}} + \sqrt{\frac{t+b}{t+q}}}{\sqrt{\frac{2b}{b+q}} - \sqrt{\frac{t+b}{t+q}}} - \sqrt{(t+q)(t-b)} \ln \frac{\sqrt{\frac{2b}{b+q}} + 1}{\sqrt{\frac{2b}{b+q}} - 1} \right] + \frac{\omega_z}{2} \left(t^2 - b^2 - \left(t + \frac{b-q}{2} \right) \sqrt{(t+q)(t-b)} \right).$$

Из требования непрерывности горизонтальной скорости жидкости [4] получено следующее уравнение для определения положения точки отрыва

<u></u>

$$\ln \frac{1-\sqrt{\frac{1+\lambda}{2}}}{1+\sqrt{\frac{1+\lambda}{2}}} + 2\sqrt{\frac{2}{1+\lambda}} + \Lambda \frac{\pi}{8}(3\lambda - 1) = 0,$$

где $\lambda = \frac{q}{h}$ – безразмерная координата точки отрыва; $\Lambda = \frac{\omega_z b}{U}$ – безразмерный ки-

нематический параметр.

Полученное уравнение совпадает с уравнением Седова для горизонтального удара вертикальной пластинки без вращения [4]. Численное исследование полученного уравнение показывает, что оно имеет единственное решение при значениях кинематического параметра $\Lambda \leq 2.653$. При больших значениях кинематического параметра уравнение имеет три корня, что указывает на неприменимость выбранной модели расположения отрывных зон.

Представим полученное уравнение в безразмерном виде, вводя безразмерные геометрический и кинематический параметры

$$\lambda = \frac{q}{b}$$
 и $\Lambda = \frac{\omega_z b}{U_0}$,

получим

$$F(\lambda,\Lambda) \equiv \frac{4}{\pi} \left\{ \ln \frac{\sqrt{\frac{2}{1+\lambda}}+1}{\sqrt{\frac{2}{1+\lambda}}-1} - 2\sqrt{\frac{2}{1+\lambda}} \right\} + \Lambda(1-3\lambda) = 0.$$

Выразим кинематический параметр через геометрический и исследуем полученную функцию

Рис. 2. Зависимость кинематического параметра Λ от геометрического λ

Построенная функция определена на интервале $\lambda \in (-1; 1)$ и имеет три особые точки $\lambda = -1; \quad \frac{1}{3}; \quad 1$, в которых принимает бесконечные значения, а именно, $\lim_{\lambda \to -1+0} \Lambda = +\infty, \quad \lim_{\lambda \to \frac{1}{3} = 0} \Lambda = +\infty, \quad \lim_{\lambda \to \frac{1}{3} + 0} \Lambda = -\infty$ и $\lim_{\lambda \to 1-0} \Lambda = +\infty$. В точке $\lambda = -0,145$

функция имеет локальный минимум, равный $\Lambda_{\min} = 1,3264$. График функции состоит из двух ветвей. На первом рисунке показан общий вид графика, а на втором – его часть вблизи экстремума.

Построенная функция позволяет сделать заключение о корнях данного уравнения: при значениях кинематического параметра, меньших минимума функции, то есть при $\Lambda < \Lambda_{\min}$, уравнение имеет один корень, а при больших значениях – три корня, *что свидетельствует о неприменимости выбранной схемы течения*.

Положение мгновенной оси вращения η , т.е точки в которой, приобретенная в результате удара скорость равна нулю, определяется равенством

1

$$\gamma = \frac{U_0}{\omega_z}$$

В безразмерном виде $\eta = \frac{\eta}{b} = \frac{U_0}{\omega_z b} = \frac{1}{\Lambda}$.

Для значений кинематического параметра, при которых существует один корень, определены во вспомогательной плоскости *t* положение точки отрыва λ , в физической плоскости *z* положения точки отрыва $\overline{c} = c/b$ и мгновенной оси вращения η , которые приведены в таблице.

Таблица 1

N⁰	Λ	λ	$\overline{c} = c/b$	η
1.	-10	0,3393	0,9407	-0,1
2.	-5	0,3441	0,9389	-0,2
3.	-1	0,3640	0,9314	-1
4.	-0,5	0,3730	0,9278	-2
5.	0	0,3896	0,9210	×
6.	0,5	0,4290	0,9033	2
7.	1,0	0,5789	0,8154	1
8.	1,3	0,7576	0,6527	0,7692

Положение точки отрыва $\overline{\mathcal{C}}$ от кинематического параметра Λ

Зависимости положения точки отрыва во вспомогательной и физической плоскостях от кинематического параметра представлены на графиках.

Рассмотрим в физической плоскости некоторые случаи взаимного расположения точки отрыва $\overline{c} = c/b$ и мгновенной оси η . При отрицательных и положительных, меньших единицы, значениях кинематического параметра скорость после удара на передней стороне пластины направлена только в сторону положительного направления оси Ox, что и создает предпосылки для образования только одной зоны отрыва на задней стороне пластины. Такое же состояние сохраняется и при положительных значениях параметра при условии $\Lambda < \Lambda_{min} = 1,3264$.

При больших значениях кинематического параметра положение мгновенной оси разделяет распределение скорости на две части, которые действуют в разных направлениях, что и приводит к образованию двух отрывных зон на задней и передней сторонах пластины, однако при этом вторая зона отрыва охватывает точку D и располагается как на передней, так и задней сторонах пластины, что физически неправдоподобно.

Рис. 5. Случай знакопеременного распределения скорости на передней стороне

Однако этот вопрос требует дальнейшего изучения. Отдельно следует рассмотреть случай чисто вращательного движения. В случае чисто вращательного движения зона отрыва расположена на задней стороне пластины и граница зоны отрыва не зависит от угловой скорости. Хотя в случае положительной угловой ско-

рости такое течение физически невозможно, так как зона отрыва расположена на «фактической» передней стороне пластины. В этом случае граница зоны отрыва равна во вспомогательной плоскости $\lambda = \frac{1}{3}$, а в физической соответственно

$$\overline{c} = \frac{2\sqrt{2}}{3} = 0,9428.$$

Рис. 6. Распределение скорости при чисто вращательном движении

Для записи полученных параметров течения в безразмерном виде введем в дополнение к кинематическому и геометрическому параметрам следующие безразмерные переменные

$$\overline{\xi} = \frac{\xi}{b}, \quad \overline{v}_x = \frac{v_x}{U_0}, \quad \overline{v}_y = \frac{v_y}{U_0}.$$

Тогда импульсивное давление на поверхности пластинки в безразмерном виде равно

$$\overline{p}_{t} = \frac{p_{t}}{\rho U_{0} b} = \frac{1}{\pi} \left[\sqrt{1 - \overline{\xi}^{2}} \ln \frac{\sqrt{\frac{2}{1+\lambda}} + \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}}}{\sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} - \sqrt{\frac{2}{1+\lambda}}} + \sqrt{(\overline{\xi} + \lambda)(1 - \overline{\xi})} \ln \frac{\sqrt{\frac{2}{1+\lambda}} - 1}{\sqrt{\frac{2}{1+\lambda}}} \right] - \frac{\Lambda}{2} \left(\overline{\xi} + \frac{1-\lambda}{2} \right) \sqrt{(\overline{\xi} + \lambda)(1 - \overline{\xi})}, \qquad \overline{\xi} \in [-\lambda, 1].$$

Некоторые характерные случаи распределения импульсивного давления для фиксированных значений кинематического параметра Λ показаны рис. 7.

Для вертикальной компоненты скорости \overline{v}_{v} получим

$$\begin{split} \overline{v}_{y} &= \frac{1}{\pi} \left[\ln \frac{\sqrt{\frac{2}{1+\lambda}} - \sqrt{\frac{\overline{\xi}+1}{\overline{\xi}+\lambda}}}{\sqrt{\frac{2}{1+\lambda}} + \sqrt{\frac{\overline{\xi}+1}{\overline{\xi}+\lambda}}} + \frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi}+1}{\overline{\xi}+\lambda}} \left(\left(\overline{\xi} - \frac{1-\lambda}{2}\right) \ln \frac{\sqrt{\frac{2}{1+\lambda}} + 1}{\sqrt{\frac{2}{1+\lambda}} - 1} + \sqrt{2(1+\lambda)} \right) \right] + \\ &+ \Lambda \left(\sqrt{\overline{\xi}^{2} - 1} + \frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi}+1}{\overline{\xi}+\lambda}} \left(\overline{\xi}^{2} - \frac{1-\lambda}{2} \overline{\xi} - \frac{(1+\lambda)^{2}}{8} \right) \right), \qquad \overline{\xi} \in (-\infty, -1] \\ &\quad \overline{v}_{y} = 0, \qquad \overline{\xi} \in [-1, -\lambda], \end{split}$$

$$\begin{split} \overline{v}_{y} &= \frac{1}{\pi} \Biggl[\ln \frac{\sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} - \sqrt{\frac{2}{1 + \lambda}}}{\sqrt{\frac{2}{1 + \lambda}} + \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}}} + \frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} \Biggl[\left(\overline{\xi} - \frac{1 - \lambda}{2}\right) \ln \frac{\sqrt{\frac{2}{1 + \lambda}} + 1}{\sqrt{\frac{2}{1 + \lambda}}} + \sqrt{2(1 + \lambda)}} \Biggr] \Biggr] + \\ &+ \Lambda \Biggl(\frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} \Biggl[\overline{\xi}^{2} - \frac{1 - \lambda}{2} \overline{\xi} - \frac{(1 + \lambda)^{2}}{8} \Biggr] \Biggr], \qquad \overline{\xi} \in [-\lambda, 1], \\ \overline{v}_{y} &= \frac{1}{\pi} \Biggl[\ln \frac{\sqrt{\frac{2}{1 + \lambda}} - \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}}}{\sqrt{\frac{2}{1 + \lambda}}} + \frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} \Biggl[\left(\overline{\xi} - \frac{1 - \lambda}{2}\right) \ln \frac{\sqrt{\frac{2}{1 + \lambda}} + 1}{\sqrt{\frac{2}{1 + \lambda}}} + \sqrt{2(1 + \lambda)}} \Biggr] \Biggr] - \\ &- \Lambda \Biggl(\sqrt{\overline{\xi}^{2} - 1} - \frac{1}{\overline{\xi}} \sqrt{\frac{\overline{\xi} + 1}{\overline{\xi} + \lambda}} \Biggl[\overline{\xi}^{2} - \frac{1 - \lambda}{2} \overline{\xi} - \frac{(1 + \lambda)^{2}}{8} \Biggr] \Biggr], \qquad \overline{\xi} \in [1, +\infty). \end{split}$$

Горизонтальная составляющая скорости $\overline{\nu}_{\!x}\,$ будет равна

$$\begin{split} \overline{v}_{x} &= 0, \qquad \overline{\xi} \in \left(-\infty, -1\right], \\ \overline{v}_{x} &= \frac{1}{\pi} \Biggl[2 \operatorname{arctg} \Biggl(\sqrt{\left|\frac{1+\overline{\xi}}{\lambda+\overline{\xi}}\right|} \sqrt{\frac{1+\lambda}{2}} \Biggr) - \frac{1}{\overline{\xi}} \sqrt{\left|\frac{1+\overline{\xi}}{\lambda+\overline{\xi}}\right|} \Biggl(\Biggl(\overline{\xi} - \frac{1-\lambda}{2}) \ln \frac{\sqrt{\frac{2}{1+\lambda}} + 1}{\sqrt{\frac{2}{1+\lambda}} - 1} + \sqrt{2(1+\lambda)} \Biggr) \Biggr] - \\ - \Lambda \Biggl(\sqrt{1-\overline{\xi}^{2}} + \frac{1}{\overline{\xi}} \sqrt{\left|\frac{1+\overline{\xi}}{\lambda+\overline{\xi}}\right|} \Biggl(\overline{\xi}^{2} - \frac{1-\lambda}{2} \overline{\xi} - \frac{(1+\lambda)^{2}}{8} \Biggr) \Biggr), \qquad \overline{\xi} \in [-1, -\lambda], \\ \overline{v}_{x} &= 1 - \Lambda \sqrt{1-\overline{\xi}^{2}}, \qquad \xi \in [-\lambda, 1], \\ \overline{v}_{x} &= 0, \qquad \overline{\xi} \in [1, +\infty). \end{split}$$

Некоторые характерные случаи распределения компонент скорости для фиксированных значений кинематического параметра Λ показаны на рис. 8.

Для распределения компоненты скорости v_y характерны значительные различия в ее максимальных значениях на отдельных участках оси ξ , поэтому для случая нулевой угловой скорости $\Lambda = 0$ изменения составляющей скорости v_y показаны на отдельных рисунках. На свободной поверхности сзади пластинки при $\xi \in (-\infty, -b)$ и перед пластинкой при $\xi \in (b, +\infty)$ распределение имеет вид.

В отрывной зоне на задней стороне пластинки при $\xi \in (-b, -q)$ компонента скорости v_v сохраняет постоянное нулевое значение.

в отрывной зоне

В зоне безотрывного обтекания на задней стороне пластинки при $\xi \in (-q,0)$ и на передней стороне при $\xi \in (0,b)$ распределение составляющей скорости v_y имеет вид. В точке $\xi = 0$, что соответствует в физической плоскости погруженному краю пластинки (точка D), происходит разворот течения и компонента скорости имеет особенность и меняет знак.

Для более детального и наглядного анализа полученных результатов перейдем в физическую плоскость z. Построим зависимости безразмерного импульсного давления в виде распределения на передней и задней стороне пластинки для характерных значений кинематического параметра Λ (рис. 12).

Рис. 11. Распределение вертикальной компоненты скорости в безотрывной зоне

ис. 13. Эпюры компонентов скорости на передней и задн сторонах пластинки $\Lambda=-1$ и $\Lambda=0$

Распределение безразмерных компонент скоростей v_x и v_y на передней и задней стороне пластинки для характерных значений кинематического параметра Λ показаны на рисунках. Левая часть соответствует задней стороне пластины, а правая – передней. На этих рисунках на передней и задней стороне пластинки использованы разные масштабы для безразмерных физических переменных (давления и компонент скорости), которые отложены по горизонтальной оси. На вертикальной оси представлена линейная координата по ширине пластинке. В точке D погруженного края пластинки давление остается непрерывным, а компонента скорости v_y , т.е. компонента скорости вдоль пластинки, скорости имеет особенность и меняет знак. Горизонтальная компонента скорости v_x непрерывно изменяется на задней и передней сторонах пластинки.

Рис. 14. Эпюры компонентов скорости на передней и задней сторонах пластинки $\Lambda=1$

Для определения присоединенных масс введем единичные потенциалы

$$\varphi = U_0 \varphi_1 + \omega_z \varphi_6; \qquad \psi = U_0 \psi_1 + \omega_z \psi_6$$

Введенные единичные потенциалы будут зависеть от формы тела и положения зоны отрыва. Тогда

$$\varphi_{1} = \frac{1}{\pi} \left[\sqrt{b^{2} - \xi^{2}} \ln \frac{\sqrt{\frac{\xi + b}{\xi + q}} - \sqrt{\frac{2b}{b + q}}}{\sqrt{\frac{2b}{b + q}} + \sqrt{\frac{\xi + b}{\xi + q}}} + \sqrt{(\xi + q)(b - \xi)} \ln \frac{\sqrt{\frac{2b}{b + q}} + 1}{\sqrt{\frac{2b}{b + q}} - 1} \right]$$

$$\begin{split} \psi_1 &= \sqrt{b^2 - \xi^2} ,\\ \varphi_6 &= \frac{1}{2} \bigg(\xi + \frac{b-q}{2} \bigg) \sqrt{(\xi+q)(b-\xi)} \ \text{M} \ \psi_6 &= \frac{1}{2} \big(\xi^2 - b^2 \big). \end{split}$$

Формула для присоединенных масс в случае плоского течения имеет вид

$$\lambda_{ik} = -\rho \int_C \varphi_i d\psi_k ,$$

при этом контур C обходится против движения часовой стрелки. В нашем случае это будет интегрирование по верхнему берегу разреза вдоль отрезка $\xi \in [-q,b]$ от точки $\xi = b$ до точки $\xi = -q$.

Коэффициенты присоединенных масс равны

$$\begin{split} \bar{\lambda}_{11} &= \frac{\lambda_{11}}{\rho b^{2}} = \frac{\rho}{\pi} \Biggl\{ (b+q)b - \frac{b-q}{2} \Biggl[\sqrt{2b(b+q)} + \frac{3b+q}{4} \ln \frac{\sqrt{\frac{2b}{b+q}} - 1}{\sqrt{\frac{2b}{b+q}} + 1} \Biggr] \ln \frac{\sqrt{\frac{2b}{b+q}} - 1}{\sqrt{\frac{2b}{b+q}} + 1} \Biggr\} \\ &= \frac{1}{\pi} \Biggl\{ (1+\lambda) + \frac{1-\lambda}{2} \Biggl[\sqrt{2(1+\lambda)} - \frac{3+\lambda}{4} \ln \frac{\sqrt{\frac{2}{1+\lambda}} + 1}{\sqrt{\frac{2}{1+\lambda}} - 1} \Biggr] \ln \frac{\sqrt{\frac{2}{1+\lambda}} + 1}{\sqrt{\frac{2}{1+\lambda}} - 1} \Biggr\}, \\ &= \frac{\rho(b+q)}{8} \Biggl[\frac{b^{2} - q^{2}}{2} \ln \frac{\sqrt{\frac{2b}{b+q}} + 1}{\sqrt{\frac{2b}{b+q}} - 1} - \frac{5b - 3q}{3} \sqrt{2b(b+q)} \Biggr] \\ &= \frac{\rho(b+q)}{\sqrt{\frac{2b}{b+q}} - 1} \Biggr\}, \\ &= \frac{\rho(b+q)}{8} \Biggl[\frac{1-\lambda^{2}}{2} \ln \frac{\sqrt{\frac{2b}{b+q}} + 1}{\sqrt{\frac{2b}{b+q}} - 1} - \frac{5b - 3q}{3} \sqrt{2b(b+q)} \Biggr] \\ &= \frac{(1+\lambda)}{8} \Biggl[\frac{1-\lambda^{2}}{2} \ln \frac{\sqrt{\frac{2}{1+\lambda}} + 1}{\sqrt{\frac{2}{1+\lambda}} - 1} - \frac{5-3\lambda}{3} \sqrt{2(1+\lambda)} \Biggr], \\ &= \frac{\lambda_{66}}{\rho b^{4}} = \frac{\frac{\pi\rho}{256} (b+q)^{2} (9b^{2} - 14bq + 9q^{2})}{\rho b^{4}} = \frac{\pi}{256} (1+\lambda)^{2} (9 - 14\lambda + 9\lambda^{2}), \end{split}$$

где геометрический параметр λ определяется в зависимости от кинематического параметра Λ при $\Lambda \in (-\infty, 1,3264]$ после решения приведенного выше уравнения.

В таблице помещены значения коэффициентов присоединенных масс в зависимости для характерных значений кинематического параметра Λ .

Таблица 2

Λ	$\overline{\lambda}_{11}$	$\overline{\lambda_{16}}$	$\overline{\lambda}_{66}$
-10	0,3570	-0,1931	0,1164
-5	0,3570	-0,1931	0,1164
-1	0,3570	-0,1931	0,1164
-0,5	0,3570	-0,1931	0,1164
0	0,3570	-0,1931	0,1164
0,5	0,3570	-0,1931	0,1165
1	0,3595	-0,1958	0,1197
1,3	0,3806	-0,2138	0,1349

Значения коэффициентов присоединенных масс

Графики изменения коэффициентов присоединенных масс в зависимости от кинематического параметра Л приведены на рис.15.

Выводы. Получено точное решение задачи об ударе с вращением пластинки, вертикально погруженной в несжимаемую жидкость. Полученное решение позволяет сделать заключение о наличии зоны отрыва при ударном взаимодействии несжимаемой жидкости и вертикальной пластины, плавающей на ее поверхности, и определить её расположение на пластинке в зависимости от кинематических параметров.

Библиографические ссылки

1. **Гуревич М.И.** Теория течений со свободными границами /М.И. Гуревич // Итоги науки. Гидромеханика. – 1971. – Т. 5. – С. 32 – 114.

2. **Григолюк Э.И.** Взаимодействие упругих конструкций с жидкостью (удар и погружение) / Э.И. Григолюк, А.Г. Горшков. – Л., 1976. – 200 с.

З. Логвинович Г.В. Гидродинамика течений со свободными границами. / Г.В. Логвинович. – Киев, 1969. – 216 с.

4. Седов Л.И. Плоские задачи гидродинамики и аэродинамики / Л.И. Седов. – М., 1980. – 448 с.

5. Гоман О.Г. Математическое моделирование взаимодействия несжимаемой жидкости и вертикальной пластины, плавающей на ее поверхности при ударе с вращениемв условиях отрыва / О.Г.Гоман, В.А. Катан. Вісник Дніпропетр. ун - ту, 2012, Т. 20, № 5. Серія «Механіка», вип. 16 т.1. – С. 87 – 93.

6. **Мусхелишвили Н.И.** Сингулярные интегральные уравнения / Н.И. Мусхелишвили. – М., 1968. – 512 с.

Надійшла до редколегії 22.10.13.