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∗∗ Department of Di�erential Equations Dnipropetrovsk National University Naukovastr., 13, 49050 Dnipropetrovsk, Ukraine E-mail: p.kogut�i.uaIn this paper we study the optimal ontrol problem assoiated to a lineardegenerate ellipti equation with mixed boundary onditions. We adopt a weightoe�ient in the main part of ellipti operator as ontrol in BV (Ω). Sine theequations of this type an exhibit the Lavrentie� phenomenon and non-uniquenessof weak solutions, we show that this optimal ontrol problem is regular. Using thediret method in the Calulus of variations, we disuss the solvability of the aboveoptimal ontrol problems in the lass of weak admissible solutions.Key words. Optimal ontrol problem, degenerate ellipti equation, mixed boundary onditions,Lavrentie� phenomenon, weak admissible solutions.1. IntrodutionThe aim of this work is to study the existene of optimal solutions in oe�-ients assoiated to a linear degenerate ellipti equation with mixed boundaryondition. By ontrol variable we mean the weight oe�ient in the main partof the ellipti operator. The preise answer of existene or none-existene of an
L1-optimal solutions is heavily depending on the lass of admissible ontrols. Hereare the main questions: what is the right setting of optimal ontrol problem with
BV -ontrols in oe�ients, and what is the right lass of admissible solutions tothe above problem? Using the diret method in the Calulus of variations, wedisuss the solvability of the above optimal ontrol problem in the so-alled lassof weak admissible solutions.The optimal ontrol problem we onsider in this paper is losely related withthe optimal reinforement of an elasti membranes [2℄. Reinforing an elastistruture subjeted to a given load is a problem whih arises in several appliations.The literature on the topi is very wide; for a lear desription of the problemfrom a mehanial point of view and a related bibliography we refer for instaneto the beautiful paper by Villaggio [6℄.In the simplest ase when we have an elasti membrane oupying a domain
Ω and subjeted to a given exterior load f ∈ L2(Ω), the shape u of the membranein the equilibrium on�guration is haraterized as the solution of the partialdi�erential equation
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94 I. G. BALANENKO, P. I. KOGUTtogether with the orresponding Dirihlet and Neumann boundary onditions on
∂Ω. The reinforement of the membrane is usually performed by the additionof suitable sti�eners, whose total amount is presribed. Mathematially, this isdesribed by a nonnegative oe�ient ρ(x) whih ats in Ω and is assoiatedwith some weight oe�ient in the main part of ellipti operator. As a result, theproblem of �nding an optimal reinforement for the membrane then onsists inthe determination of a weight ρ(x) ≥ 0 whih optimizes a given ost funtional.In ontrast to the pioneer paper in this �eld (see [2℄), we do not restrit of ouranalysis to the partiular ase of the reinforement problems. We also do not makeuse any relaxations for the original optimal ontrol problem.2. Notation and PreliminariesIn this setion we introdue some notation and preliminaries that will be usefullater on.Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipshitz boundary.We assume that the boundary of Ω is made of two disjoint parts

∂Ω = ΓD ∪ ΓNwith Dirihlet boundary onditions on ΓD, and Neumann boundary onditions on
ΓN . Let χE be the harateristi funtion of a subset E ⊆ Ω, i. e. χE(x) = 1 if
x ∈ E, and χE(x) = 0 if x 6∈ E.Let

C∞
0 (RN ; ΓD) =

{
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on ΓD

}
.The spaeW 1,1(Ω; ΓD) is the losure of C∞

0 (RN ; ΓD) in the lassial Sobolev spae
W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its N -dimensional Lebesguemeasure LN (E).Hereinafter a loally integrable funtion ρ on RN suh that ρ(x) ≥ 0 for a. e.
x ∈ RN is alled a weight funtion. As a matter of fat every weight ρ gives riseto a measure on the measurable subsets of RN through integration. This measurewill also be denoted by ρ. Thus ρ(E) =

∫
E ρ dx for measurable sets E ⊂ RN .Let ρ be a weight. We will use the standard notation L2(Ω, ρ dx) for the setof measurable funtions f on Ω suh that

‖f‖L2(Ω,ρ dx) =

(∫

Ω
f2ρ dx

)1/2

< +∞.We say that a weight funtion ρ : RN → R+ is degenerate on Ω if
ρ+ ρ−1 ∈ L1

loc(R
N ), (2.1)that is, the sum ρ + ρ−1 does not belong to L∞(Ω). Note that in this ase thefuntions in L2(Ω, ρ dx) are integrable on Ω.With eah of the degenerate weight funtions ρ we will assoiate two weightedSobolev spaes Wρ = W (Ω, ρ dx) and Hρ = H(Ω, ρ dx), where Wρ is the set offuntions y ∈W 1,1(Ω; ΓD) for whih the norm

‖y‖ρ =

(∫

Ω

(
y2 + ρ |∇y|2

)
dx

)1/2 (2.2)



ON WEAK OPTIMAL BV -CONTROLS FOR ELLIPTIC PROBLEMS 95is �nite, and Hρ is the losure of C∞
0 (Ω; ΓD) inWρ. Note that due to the estimates

∫

Ω
|y| dx ≤

(∫

Ω
|y|2 dx

)1/2

|Ω|1/2 ≤ C‖y‖ρ, (2.3)
∫

Ω
|∇y| dx ≤

(∫

Ω
|∇y|2ρ dx

)1/2 (∫

Ω
ρ−1 dx

)1/2

≤ C‖y‖ρ, (2.4)the spaeWρ is omplete with respet to the norm ‖·‖ρ. It is lear that Hρ ⊆Wρ,and Wρ, Hρ are Hilbert spaes. If ρ is a non-degenerate weight funtion, thatis, ρ is bounded between two positive onstants, then it is easy to verify that
Wρ = Hρ. However, for a "typial" degenerate weight ρ the spae of smoothfuntions C∞

0 (Ω) is not dense in Wρ. Hene the identity Wρ = Hρ is not alwaysvalid (for the orresponding examples we refer to [3, 7, 8℄.Weak Compatness Criterion in L1(Ω). Throughout the paper we will oftenuse the onepts of the weak and strong onvergene in L1(Ω). Let {aε}ε>0 be asequene in L1(Ω). We reall that {aε}ε>0 is alled equi-integrable if for any δ > 0there is τ = τ(δ) suh that ∫S |aε| dx < δ for every measurable subset S ⊂ Ω ofLebesgue measure |S| < τ .Then the following assertions are equivalent:(i) a sequene {aε}ε>0 is weakly ompat in L1(Ω);(ii) the sequene {aε}ε>0 is equi-integrable;(iii) given δ > 0 there exists λ = λ(δ) suh that sup
ε>0

∫

{|aε|>λ}
|aε| dx < δ.Theorem 1 (Lebesgue's Theorem). If a sequene {aε}ε>0 ⊂ L1(Ω) is equi-integ-rable and aε → a almost everywhere in Ω then aε → a in L1(Ω).Radon measures. By a nonnegative Radon measure on Ω we mean a nonnega-tive Borel measure whih is �nite on every ompat subset of Ω. The spae of allnonnegative Radon measures on Ω will be denoted by M+(Ω). Aording to theRiesz theory, eah Radon measure µ ∈ M+(Ω) an be interpreted as element ofthe dual of the spae C0(Ω) of all ontinuous funtions vanishing at in�nity. Let

M(Ω; RN ) denotes the spae of all RN -valued Borel measures. Then
µ = (µ1, . . . , µN ) ∈M(Ω; RN ) ⇔ µi ∈ C ′

0(Ω), i = 1, . . . , N.If µ is a nonnegative Radon measure on Ω, we will use Lr(Ω, dµ), 1 ≤ r ≤
∞, to denote the usual Lebesgue spae with respet to the measure µ with theorresponding norm

‖f‖Lr(Ω,dµ) =

(∫

Ω
|f(x)|r dµ

)1/r

.Funtions with Bounded Variation. Let f : Ω → R be a funtion of L1(Ω).De�ne
∫

Ω
|Df | = sup

{∫

Ω
f divϕdx : ϕ = (ϕ1, . . . , ϕN ) ∈ C1

0 (Ω; RN ),

|ϕ(x)| ≤ 1 for x ∈ Ω
}
,
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divϕ =

N∑

i=1

∂ϕi

∂xi
.Then Df is a measure, in general. Aording to the Radon-Nikodym theorem, if

∫

Ω
|Df | < +∞then there exist a vetor-valued funtion ∇f ∈ [L1(Ω)]N and a measure Dsf ,singular with respet to the N -dimensional Lebesgue measure LN⌊Ω restrited to

Ω, suh that
Df = ∇fLN⌊Ω +Dsf.De�nition 1. A funtion f ∈ L1(Ω) is said to have bounded variation in Ω if

∫

Ω
|Df | <∞.By BV (Ω) we denote the spae of all funtions in L1(Ω) with bounded variation.Under the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

∫

Ω
|Df |,

BV (Ω) is a Banah spae. It is well-known the following ompatness result for
BV -funtions:Proposition 1. The uniformly bounded sets in BV -norm are relatively ompatin L1(Ω).De�nition 2. A sequene {fk}∞k=1 ⊂ BV (Ω) weakly onverges to some f ∈
BV (Ω), and we write fk ⇀ f i� the two following onditions hold: fk → fstrongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in M(Ω; RN ).In the proposition below we give a ompatness result related to this onver-gene, together with the lower semiontinuity property (see [4℄):Proposition 2. Let {fk}∞k=1 be a sequene in BV (Ω) strongly onverging to some
f in L1(Ω) and satisfying supk∈N

∫
Ω |Dfk| < +∞. Then(i) f ∈ BV (Ω) and ∫

Ω
|Df | ≤ lim inf

k→∞

∫

Ω
|Dfk|;(ii) fk ⇀ f in BV (Ω).Convergene in variable spaes. Let {µk}k∈N

, µ be Radon measures suh that
µk

∗
⇀ µ in M+(Ω), i. e.,

lim
k→∞

∫

Ω
ϕdµk =

∫

Ω
ϕdµ ∀ϕ ∈ C0(R

N ), (2.5)where C0(RN ) is the spae of all ompatly supported ontinuous funtions. Thetypial example of suh measures is
dµk = ρk(x) dx, dµ = ρ(x) dx, where 0 ≤ ρk ⇀ ρ in L1(Ω).Let us reall the de�nition and main properties of onvergene in the variable

L2-spae (see [7℄).
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} is alled bounded if

lim sup
k→∞

∫

Ω
|vk|2 dµk < +∞.2. A bounded sequene {vk ∈ L2(Ω, dµk)

} onverges weakly to v ∈ L2(Ω, dµ)if
lim

k→∞

∫

Ω
vkϕdµk =

∫

Ω
vϕdµ for any ϕ ∈ C∞

0 (Ω),and it is written as vk ⇀ v in L2(Ω, dµk).3. The strong onvergene vk → v in L2(Ω, dµk) means that v ∈ L2(Ω, dµ) and
lim

k→∞

∫

Ω
vkzk dµk =

∫

Ω
vz dµ as zk ⇀ z in L2(Ω, dµk). (2.6)The following onvergene properties in variable spaes hold:(a) Compatness riterium : if a sequene is bounded in L2(Ω, dµk), then thissequene is ompat in the sense of the weak onvergene;(b) Property of lower semiontinuity : if vk ⇀ v in L2(Ω, dµk), then

lim inf
ε→0

∫

Ω
|vk|2 dµk ≥

∫

Ω
v2 dµ; (2.7)() Criterium of strong onvergene : vk → v if and only if vk ⇀ v in L2(Ω, dµk)and

lim
k→∞

∫

Ω
|vk|2 dµk =

∫

Ω
v2 dµ. (2.8)3. Setting of the Optimal Control ProblemLet m ∈ R+ be some positive value, and let ξ1, ξ2 be given elements of L1(Ω)satisfying the onditions

ξ1(x) ≤ ξ2(x) a.e. in Ω, ξ−1
1 ∈ L1(Ω). (3.1)To introdue the lass of admissible BV -ontrols we adopt the following onept:De�nition 3. We say that a nonnegative weight ρ is an admissible ontrol to theboundary value problem

−div ρ(x)∇y + y = f in Ω, (3.2)
y = 0 on ΓD, ρ(x)

∂y

∂ν
= 0 on ΓN , (3.3)(it is written as ρ ∈ Rad) if

ρ ∈ BV (Ω),

∫

Ω
ρ dx = m, ξ1(x) ≤ ρ(x) ≤ ξ2(x) a.e. in Ω. (3.4)Here f ∈ L2(Ω) is a given funtion.



98 I. G. BALANENKO, P. I. KOGUTHereinafter we assume that the set Rad is nonempty.Remark 1. In view of the property (3.1), we have the boundary value problemfor the degenerate ellipti equation. It means that for some admissible ontrols
ρ ∈ Rad the boundary value problem (3.2)�(3.3) an exhibit the Lavrentie�phenomenon, the nonuniqueness of the weak solutions as well as other surprisingonsequenes.The optimal ontrol problem we onsider in this paper is to minimize thedisrepany between a given distribution yd ∈ L2(Ω) and the solution of boundaryvalued problem (3.2)�(3.3) by hoosing an appropriate weight funtion ρ ∈ Rad.More preisely, we are onerned with the following optimal ontrol problemMinimize {

I(ρ, y) =

∫

Ω
|y(x) − yd(x)|2 dx

+

∫

Ω
|∇y(x)|2

RN ρ dx+

∫

Ω
|Dρ|

} (3.5)subjet to the onstraints (3.2)�(3.4).De�nition 4. We say that a funtion y = y(ρ, f) ∈ Wρ is a weak solution tothe boundary value problem (3.2)�(3.3) for a �xed ontrol ρ ∈ Rad if the integralidentity ∫

Ω
((∇y,∇ϕ)

RN ρ+ yϕ) dx =

∫

Ω
fϕdx (3.6)holds for any ϕ ∈ C∞

0 (Ω; ΓD).It is lear that the question of uniqueness of a weak solution leads us tothe problem of density of the subspae of smooth funtions C∞
0 (Ω; ΓD) in Wρ.However, as was indiated in [9℄, for a "typial" degenerate weight funtion ρ thesubspae C∞

0 (Ω; ΓD) is not dense inWρ, and hene there is no uniqueness of weaksolutions (for more details and another types of solutions we refer to [1, 5, 7, 9℄).Thus the mapping ρ 7→ y(ρ, f) is multivalued, in general. Taking this fat intoaount, we introdue the following set
ΞW = {(Bρ, y) | ρ ∈ Rad, y ∈Wρ, (ρ, y) are related by (3.6)} . (3.7)Note that the set ΞW is always nonempty. Indeed, let Vρ be some intermediatespae with Hρ ⊆ Vρ ⊆ Wρ. We say that a funtion y = y(ρ, f) ∈ Vρ is a Vρ-solution or variational solution to the boundary value problem (3.2)�(3.3) if theintegral identity (3.6) holds for every test funtion ϕ ∈ Vρ. Hene, in this ase theenergy equality ∫

Ω

(
|∇y|2

RNρ+ y2
)
dx =

∫

Ω
fy dx (3.8)must be valid. Sine

∣∣∣∣
∫

Ω
fy

∣∣∣∣ ≤
(∫

Ω
f2 dx

)1/2(∫

Ω
y2 dx

)1/2

≤ C‖y‖ρfor every �xed f ∈ L2(Ω), it follows that the existene and uniqueness of a Vρ-solution are the diret onsequene of the Riesz Representation Theorem. Thus



ON WEAK OPTIMAL BV -CONTROLS FOR ELLIPTIC PROBLEMS 99every variational solution is also a weak solution to the problem (3.2)�(3.3). Hene
ΞW 6= ∅ and therefore the orresponding minimization problem

〈
inf

(ρ,y)∈ΞW

I(ρ, y)

〉 (3.9)is regular. In view of this, we adopt the following onept:De�nition 5. We say that a pair
(ρ0, y0) ∈ L1(Ω) ×W 1,1(Ω; ΓD)is a weak optimal solution to the problem (3.4)�(3.5) if (ρ0, y0) is a minimizer for〈

inf
(ρ,y)∈ΞW

I(ρ, y)

〉, i. e.,
(ρ0, y0) ∈ ΞW and I(ρ0, y0) = inf

(ρ,y)∈ΞW

I(ρ, y).The main question to be answered on the optimal ontrol problem (3.4)�(3.5)in this paper is about its solvability in the lass of the weak solutions. It shouldbe noted that to the best knowledge of the authors, the existene of optimal pairsto the above problem in the sense of De�nition 5 has not been onsidered in theliterature.4. Existene Theorem for Weak Optimal SolutionsOur prime interest in this setion deals with the solvability of optimal ontrolproblem (3.4)�(3.5) in the lass of the weak solutions. To begin with we establishsoma auxiliary results that will be useful later. Let {(ρk, yk) ∈ ΞW}k∈N
be anysequene of the weak admissible solutions.Lemma 1. Let {ρk}k∈N

be a sequene in Rad suh that ρk → ρ in L1(Ω) as
k → ∞. Then

(ρk)
−1 → ρ−1 in the variable spae L2(Ω, ρkdx).Proof. To proof this result we make use some ideas of the paper [9℄. By theproperties of the set of admissible ontrols Rad, we have
∫

Ω

∣∣ρ−1
k

∣∣ dx ≤
∫

Ω

∣∣ξ−1
1

∣∣ dx ∀ k ∈ N,that is the sequene {ρ−1
k

}
k∈N

is equi-integrable on Ω. Note that, up to a subse-quene, we have ρk → ρ a.e. in Ω. Sine
ξ−1
2 ≤ ρ−1

k ≤ ξ−1
1 ,Lebesgue Theorem implies

ρ−1
k → ρ−1 in L1(Ω). (4.1)



100 I. G. BALANENKO, P. I. KOGUTLet ϕ ∈ C∞
0 (Ω) be a �xed funtion. Then the equality

∫

Ω
ρ−1

k ϕρkdx ≡
∫

Ω
ϕdx =

∫

Ω
ρ−1ϕρdx ∀k ∈ Nleads us to the weak onvergene ρ−1

k ⇀ ρ−1 in L2(Ω, ρkdx). It should be stressedhere that, by the initial assumptions, ρkdx
∗
⇀ ρdx in the spae of Radon measures

M+(Ω) (see (2.5)). However, taking into aount the strong onvergene ρ−1
k →

ρ−1 in L1(Ω) and the fat that Ω is a bounded domain, we get
lim

k→∞

∫

Ω
|ρk|−2 ρkdx ≡ lim

k→∞

∫

Ω
ρ−1

k dx =

∫

Ω
ρ−1dx ≡

∫

Ω
|ρ|−2 ρdx.Hene, by the riterium of the strong onvergene in variable spae L2(Ω, ρkdx),we just ome to the required onlusion. The proof is omplete.Our next intension deals with the study of topologial properties of the set ofweak admissible solutions ΞW to the problem (3.2)�(3.5). To do so, we introduethe following onepts:De�nition 6. A sequene {(ρk, yk) ∈ ΞW}k∈N

is alled to be bounded if
sup
k∈N

[
‖ρk‖BV (Ω) + ‖yk‖L2(Ω) + ‖∇yk‖L2(Ω,ρkdx)N

]
< +∞.De�nition 7. We say that a bounded sequene {(ρk, yk) ∈ ΞW}k∈N

of the weakadmissible solutions τ -onverges to a pair (ρ, y) ∈ BV (Ω) ×W 1,1(Ω) if(a) ρk ⇀ ρ in BV (Ω);(d) yk ⇀ y weakly in L2(Ω);(e) ∇yk ⇀ ∇y ∋ L2(Ω, ρ dx)N in the variable spae L2(Ω, ρkdx)
N .Note that due to the suppositions (3.1), (3.4), and estimates like (2.3)�(2.4),the inlusion y ∈W 1,1(Ω) is obvious.Lemma 2. Let {(ρk, yk) ∈ ΞW}k∈N

be a bounded sequene. Then there is a pair
(ρ, y) ∈ BV (Ω)×W 1,1(Ω) suh that, up to a subsequene, (ρk, yk)

τ−→ (ρ, y) and
y ∈Wρ.Proof. To begin with, we note that by Proposition 1 and the ompatness riteriumof the weak onvergene in variable spaes, there exist a subsequene of

{(ρk, yk) ∈ ΞW}k∈N
,still denoted by the su�x k, and funtions ρ ∈ BV (Ω), y ∈ L2(Ω), and v ∈

L2(Ω, ρ dx)N suh that
ρk → ρ in L1(Ω), ρk dx

∗
⇀ ρdx in M+(Ω), (4.2)

yk ⇀ y in L2(Ω), ∇yk ⇀ v in the variable spae L2(Ω, ρk dx). (4.3)



ON WEAK OPTIMAL BV -CONTROLS FOR ELLIPTIC PROBLEMS 101Let us show that y ∈ W 1,1(Ω), and v = ∇y. Sine ξ1 ≤ ρk ≤ ξ2 for every k ∈ N,the laim (4.2) and Lemma 1 imply the property (see (4.1))
ρ−1

k → ρ−1 in L1(Ω), ξ1 ≤ ρ ≤ ξ2 a.e. in Ω. (4.4)This yields that the sequene {∇yk}k∈N
is weakly ompat in L1(Ω)N . Indeed,the property of its equi-integrability immediately follows from the inequality

∫

Ω
|∇yk| dx ≤

(∫

Ω
ρ−1

k dx

)1/2(∫

Ω
|∇yk|2ρk dx

)1/2

≤ C

(∫

Ω
ρ−1

k dx

)1/2

.As a result, using the strong onvergene (ρk)
−1 → ρ−1 in the variable spae

L2(Ω, ρkdx) (see Lemma 1) and its properties, we obtain
lim

k→∞

∫

Ω
(∇yk, ψ)

RN dx = lim
k→∞

∫

Ω
ρ−1

k (∇yk, ψ)
RN ρk dx

=

∫

Ω
ρ−1 (v, ψ)

RN ρ dx =

∫

Ω
(v, ψ)

RN dxfor all ψ ∈ C∞
0 (Ω)N . Thus∇yk ⇀ v in L1(Ω)N . Sine by estimate (2.3) y ∈ L1(Ω),this implies that y ∈ W 1,1(Ω) and ∇y = v. As for the inlusion y ∈ Wρ this isimmediately follows from the laims (4.2)�(4.3). The proof is omplete.The next result is ruial for our analysis.Theorem 2. For every f ∈ L2

loc(R
N ) the set ΞW is sequentially losed with respetto the τ -onvergene.Proof. Let {(ρk, yk)}k∈N ⊂ ΞW be a bounded τ -onvergent sequene of weakadmissible pairs to the optimal ontrol problem (3.2)�(3.5). Let (ρ0, y0) be its

τ -limit. Our aim is to prove that (τ0, y0) ∈ ΞW .By Lemma 2 we have
ρk → ρ0 in L1(Ω), ρ0 ∈ BV (Ω), ξ1 ≤ ρ0 ≤ ξ2 a.e. in Ω. (4.5)Then passing to the limit as k → ∞ in the relation ∫Ω ρk dx = m, we just ometo the onlusion: ρ0 ∈ Rad, i. e. the limit weight funtion ρ0 is an admissibleontrol.It remains to show that the pair (ρ0, y0) is related by the integral identity(3.6) for all ϕ ∈ C∞

0 (Ω; ΓD). For every �xed k ∈ N we denote by (ρ̂k, ŷk) ∈
BVloc(RN )×W 1,1

loc (RN ) an extension of the funtions (ρk, yk) ∈ ΞW to the wholeof spae RN suh that the sequene {(ρ̂k, ŷk)}k∈N satis�es the properties:
ρ̂k ∈ BV (Q), ξ1 ≤ ρ̂k ≤ ξ2 a.e. in Q, (4.6)

sup
k∈N

[
‖ρ̂k‖BV (Q) + ‖ŷk‖L2(Q) + ‖∇ŷk‖L2(Q,ρ̂kdx)N

]
< +∞. (4.7)�r any bounded domain Q in RN . Hene, by analogy with Lemma 2 it an beproved that for every bounded domain Q ⊂ RN there exist funtions ρ̂0 ∈ BV (Q)and ŷ0 ∈Wρ̂0

= W (Q, ρ̂0 dx) suh that
ρ̂k ⇀ ρ̂0 in L1(Q), ŷk ⇀ ŷ0 in L2(Q), (4.8)

∇ŷk ⇀ ∇ŷ0 ∋ L2(Ω, ρ̂0 dx)
N in the variable spae L2(Ω, ρ̂kdx)

N . (4.9)



102 I. G. BALANENKO, P. I. KOGUTIt is important to note that in this ase we have
ŷ0 = y0 and ρ̂0 = ρ0 a.e. in Ω. (4.10)In what follows, we rewrite the integral identity (3.6) in the equivalent form

∫

RN

((∇ŷk,∇ϕ)
RN ρ̂k + ŷkϕ)χΩ(x) dx

=

∫

RN

fϕχΩ(x) dx ∀ϕ ∈ C∞
0 (RN ,ΓD), (4.11)and pass to the limit in (4.11) as k → ∞. Using the properties (4.8)�(4.9), andthe fat that χΩ → χΩ strongly in the variable spae L2(Q, ρ̂k dx), i. e.

∫

RN

χ2
Ωρ̂k dx =

∫

RN

χΩρ̂k dx −→
∫

RN

χΩρ̂0 dx =

∫

RN

χ2
Ωρ̂0 dxwe just ome to the relation

∫

RN

((∇ŷ0,∇ϕ)
RN ρ̂0 + ŷ0ϕ)χΩ(x) dx =

∫

RN

fϕχΩ(x) dx ∀ϕ ∈ C∞
0 (RN ,ΓD)whih is equivalent to the following one

∫

Ω
((∇ŷ0,∇ϕ)

RN ρ̂0 + ŷ0ϕ) dx =

∫

Ω
fϕdx ∀ϕ ∈ C∞

0 (Ω,ΓD).As a result, taking into aount (4.10) and the fat that ŷ0 ∈Wρ̂0
(by Lemma 2),we onlude: y0 is a weak solution to the boundary valued problem (3.2)�(3.3)under ρ = ρ0. Thus the τ -limit pair (τ0, y0) belongs to set ΞW , and this onludesthe proof.Now we are in a position to state the existene of weak optimal pairs to theproblem (3.2)�(3.5).Theorem 3. Let ξ1 ∈ L1

loc(R
N ) and ξ2 ∈ L1

loc(R
N ) be suh that ξ1 ≤ ξ2 a.e.in

RN and ξ−1
1 ∈ L1

loc(R
N ). Let f ∈ L2

loc(R
N ) and yd ∈ L2(Ω) be given funtions.Then the optimal ontrol problem (3.2)�(3.5) admits at least one weak solution

(ρopt, yopt) ∈ ΞW ⊂ L1(Ω) ×W 1,1(Ω,ΓD), yopt ∈W (Ω, ρopt dx)if and only if Rad 6= ∅.Proof. Beause the onverse statements is obvious, we suppose that the set ofadmissible ontrols Rad is nonempty. Then the minimization problem (3.9) isregular (i. e. ΞW 6= ∅). Let {(ρk, yk) ∈ ΞW}k∈N
be a minimizing sequene to (3.9).Then as follows from the inequality

inf
(ρ,y)∈ΞW

I(ρ, y) = lim
k→∞

[∫

Ω
|yk(x) − yd(x)|2 dx

+

∫

Ω
|∇yk(x)|2RNρk dx+

∫

Ω
|Dρk|

]
< +∞, (4.12)
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sup
k∈N

‖yk‖L2(Ω) ≤ C, sup
k∈N

‖∇yk‖L2(Ω,ρkdx)N ≤ C,

∫

Ω
|Dρk| ≤ C.Hene, in view of the de�nition of the lass of admissible ontrols Rad, thesequene {(ρk, yk) ∈ ΞW}k∈N

is bounded in the sense of De�nition 6. Hene, byLemma 2 there exist funtions ρ∗ ∈ BV (Ω) and y∗ ∈ W (Ω, ρ∗ dx) suh that,within a subsequene, (ρk, yk)
τ−→ (ρ∗, y∗). Sine the set ΞW is sequentiallylosed with respet to the τ -onvergene (see Theorem 2), it follows that the

τ -limit pair (ρ∗, y∗) is an admissible weak solution to optimal ontrol problem(3.2)�(3.5) (i. e. (ρ∗, y∗) ∈ ΞW ). To onlude the proof it is enough to observethat by property (2.7) and Proposition 2, the ost funtional I is sequentiallylower τ -semiontinuous. Thus
I(ρ∗, y∗) ≤ lim inf

k→∞
I(ρk, yk) = inf

(ρ, y)∈ΞW
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