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We study an optimal boundary control problem (OCP) associated to a linear
elliptic equation −div (∇y + A(x)∇y) = f describing di�usion in a turbulent �ow.
The characteristic feature of this equation is the fact that, in applications, the
stream matrix A(x) = [aij(x)]i,j=1,...,N is skew-symmetric, aij(x) = −aji(x), measurable,
and belongs to L2-space (rather than L∞). An optimal solution to such problem
can inherit a singular character of the original stream matrix A. We show that
optimal solutions can be attainable by solutions of special optimal boundary control
problems.

Key words: di�usion equations, boundary control, variational convergence, �ctitious control,
direct method in the Calculus of Variations.

1. Introduction

In this paper we deal with an optimal control problem (OCP) for linear
di�usion elliptic equation with unbounded coe�cients in the main part of elliptic
operator. The characteristic feature of this problem is the fact that, in applications,
the stream matrix A(x) = [aij(x)]i,j=1,...,N is skew-symmetric, aij(x) = −aji(x),
measurable, and belongs to L2-space (rather than L∞). The existence, uniqueness,
and variational properties of the weak solution to such boundary value problems
usually are drastically di�erent from the corresponding properties of solutions to
the elliptic equations with L∞-matrices in coe�cients. In most cases, the situation
can change dramatically for the stream matrices with unremovable singularity in
matrix A. Typically, in such cases, boundary value problem may admit in�nitely
many weak solutions which can be divided into two classes: approximable and non-
approximable solutions. Following Zhikov [11], a function y = y(u) is called an
approximable solution to the above boundary value problem if it can be attained
by weak solutions to the similar boundary value problem with L∞-approximated
matrix A. However, this type of solutions do not exhaust the set of all weak
solutions to the above problem. There is another type of weak solutions, which
�����������������
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cannot be approximated by the weak solutions of regularized problems. Usually,
such solutions are called non-variational [11].

The aim of this work is to study the existence of optimal controls to this class
of OCPs and propose the scheme of their approximation. We give the su�cient
conditions for elements of the stream matrix A ∈ L2

(
Ω; SN

)
which guarantee

that non-variational optimal solutions can be attained through special sequence
of optimal solutions to corresponding OCPs in perforated domains with �ctitious
boundary controls on the holes.

The main technical di�culty, which is related with the study of the asymptotic
behaviour of OCPs in perforated domains as ε → 0, deals with the identi�cation of
the limit limε→0

{〈
v0
ε , y

0
ε

〉
H− 1

2 (Γε);H
1
2 (Γε)

}
ε>0

of two weakly convergent sequences,
where {y0

ε}ε>0 is a sequence of optimal states, {v0
ε}ε>0 is a sequence of �ctitious

controls on the holes, Γε is a boundary of hole for every ε > 0. Due to the special
properties of the skew-symmetric matrix A ∈ L2

(
Ω;SN

)
( those we call matrices

of the funnel type) we show that this limit can be recovered in an explicit form
and it is not equal to the product of the corresponding weak limits.

2. Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 3) with Lipschitz
boundary. We assume that Ω contains the origin and its boundary consists of two
disjoint parts ∂Ω = ΓD ∪ ΓN . Let the sets ΓD and ΓN have positive (N − 1)-
dimensional measures. Let χE be the characteristic function of a subset E ⊂ Ω,
i.e. χE(x) = 1 if x ∈ E, and χE(x) = 0 if x 6∈ E. For any subset E ⊂ Ω we denote
by |E| its N -dimensional Lebesgue measure LN (E).

Let C∞
0 (RN ; ΓD) =

{
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on ΓD

}
. We de�ne the Banach

space H1
0 (Ω; ΓD) as the closure of C∞

0 (RN ; ΓD) with respect to the norm ‖y‖ =(∫
Ω ‖∇y‖2

RN dx
)1/2. Let H−1(Ω; ΓD) be the dual space to H1

0 (Ω; ΓD).
For any vector �eld v ∈ L2(Ω;RN ), the divergence of v can be de�ned as an

element div v of the space H−1(Ω) if v and div v are related by the formula [5]

〈div v, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫

Ω
(v,∇ϕ)RN dx, ∀ϕ ∈ C∞

0 (Ω). (2.1)

Here, H−1(Ω) is the dual space to the classical Sobolev space H1
0 (Ω).

We denote by SN the set of all skew-symmetric matrices C = [cij ]Ni,j=1, i.e.,
C is a square matrix whose transpose is also its negative. Thus, if C ∈ SN then
cij = −cji and, hence, cii = 0. The set SN can be identi�ed with the Euclidean
space R

N(N−1)
2 . Let L2(Ω)

N(N−1)
2 = L2

(
Ω;SN

)
be the space of measurable square-

integrable functions whose values are skew-symmetric matrices.
Let

(OCPε) : min {Iε(u, y) : (u, y) ∈ Ξε} , (2.2)
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be a parameterized OCP, where ε is a small parameter, Iε : Uε×Yε → R is a cost
functional, Yε is a space of states, Uε is a space of controls, and

Ξε ⊂ {(uε, yε) ∈ Uε × Yε : u ∈ Uε, Iε(u, y) < +∞}
is a set of all admissible pairs linked by some state equation. Hereinafter, we
associate to every OCP (2.2) the corresponding constrained minimization problem:

(CMPε) :
〈

inf
(u,y)∈Ξε

Iε(u, y)
〉

. (2.3)

Since the sequence of constrained minimization problems (2.3) lives in variable
spaces Uε × Yε, we assume that there exists a Banach space U× Y with respect
to which a τ -convergence in the scale {Uε × Yε}ε>0 is de�ned.

In order to study the asymptotic behavior of a family of (CMPε), the passage
to the limit in (2.3) as the small parameter ε tends to zero has to be realized. The
expression �passing to the limit" means that we have to �nd a kind of �limit cost
functional" I and �limit set of constraints" Ξ with clearly de�ned structure such
that the limit object

〈
inf(u,y)∈Ξ I(u, y)

〉
could be interpreted as some OCP.

Following the scheme of the direct variational convergence [7], we adopt the
following de�nition for the convergence of minimization problems in variable
spaces.
De�nition 2.1. A problem

〈
inf(u,y)∈Ξ I(u, y)

〉
is a variational limit of sequence

(2.3) as ε → 0
(
in symbols,

〈
inf

(u,y)∈Ξε

Iε(u, y)
〉

Var−−−→
ε→0

〈
inf

(u,y)∈Ξ
I(u, y)

〉 )

if and only if the following conditions are satis�ed:
(d) The space U×Y possesses the weak τ -approximation property with respect

to the scale of spaces {Uε × Yε}ε>0, that is, for every δ > 0 and every
pair (u, y) ∈ U × Y, there exist a pair (u∗, y∗) ∈ U × Y and a sequence
{(uε, yε) ∈ Uε × Yε}ε>0 such that

‖u−u∗‖U+ ‖y− y∗‖Y ≤ δ and (uε, yε)
τ−→ (u∗, y∗) in Uε×Yε. (2.4)

(dd) If sequences {εk}k∈N and {(uk, yk)}k∈N are such that εk → 0 as k → ∞,
(uk, yk) ∈ Ξεk

∀ k ∈ N, and (uk, yk)
τ−→ (u, y) in Uεk

× Yεk
, then

(u, y) ∈ Ξ; I(u, y) ≤ lim inf
k→∞

Iεk
(uk, yk). (2.5)

(ddd) For every (u, y) ∈ Ξ ⊂ U × Y and any δ > 0, there are a constant ε0 > 0
and a sequence {(uε, yε)}ε>0 (called a (Γ, δ)-realizing sequence) such that

(uε, yε) ∈ Ξε, ∀ ε ≤ ε0, (uε, yε)
τ−→ (û, ŷ) in Yε, (2.6)

‖u− û‖U + ‖y − ŷ‖Y ≤ δ, (2.7)
I(u, y) ≥ lim sup

ε→0
Iε(uε, yε)− Ĉδ, (2.8)
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with some constant Ĉ > 0 independent of δ.

Then the following result takes place [7].

Theorem 2.1. Assume that the constrained minimization problem
〈

inf
(u,y)∈Ξ0

I0(u, y)
〉

(2.9)

is the variational limit of sequence (2.3) in the sense of De�nition 2.1 and this
problem has a unique solution (u0, y0) ∈ Ξ0. For every ε > 0, let (u0

ε, y
0
ε) ∈ Ξε

be a minimizer of Iε on the corresponding set Ξε. If the sequence {(u0
ε, y

0
ε)}ε>0 is

relatively compact with respect to the τ -convergence in Uε × Yε, then

(u0
ε, y

0
ε)

τ−→ (u0, y0) in Uε × Yε, (2.10)
inf

(u,y)∈Ξ0

I0(u, y) = I0

(
u0, y0

)
= lim

ε→0
Iε(u0

ε, y
0
ε) = lim

ε→0
inf

(uε,yε)∈Ξε

Iε(uε, yε). (2.11)

3. Setting of the Optimal Control Problem

Let f ∈ H−1(Ω; ΓD) be a given distribution and let A ∈ L2
(
Ω;SN

)
be a given

matrix. The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution yd ∈ H1

0 (Ω,ΓD) and a solution y of the
boundary value problem for the stationary di�usion equation in turbulent �ow
(see [2])

−div
(∇y + A(x)∇y

)
= f in Ω, (3.1)

y = 0 on ΓD, ∂y/∂νA = u on ΓN . (3.2)

by choosing an appropriate boundary control u ∈ L2(ΓN ). Here,

∂y

∂νA
=

N∑

i,j=1

(
δij + aij(x)

) ∂y

∂xj
cos(ν, xi),

δij is the Kronecker's delta, cos(n, xi) is the i-th directing cosine of ν, and ν is
the outward unit normal vector at ΓN to Ω.

More precisely, we are concerned with the following OCP

Minimize I(u, y) = ‖y − yd‖2
H1

0 (Ω;ΓD) + ‖u‖2
L2(ΓN ) (3.3)

subject to the constraints (3.1)�(3.2) and u ∈ L2(ΓN ). (3.4)

The characteristic feature of this problem is the fact that the matrix A is only
measurable and belongs to the space L2

(
Ω;SN

)
(rather than the space of bounded

matrices L∞
(
Ω;SN

)
). In order to make a precise meaning of the OCP setting, we

begin with the following concept.
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De�nition 3.1. We say that a function y = y(A, f, u) is a weak solution to
boundary value problem (3.1)�(3.2) for a �xed control u ∈ L2(ΓN ) and given
distributions f ∈ H−1(Ω; ΓD) and A ∈ L2

(
Ω;SN

)
if y ∈ H1

0 (Ω; ΓD) and the
integral identity
∫

Ω

(∇ϕ,∇y + A(x)∇y
)
RN dx = 〈f, ϕ〉H−1(Ω;ΓD);H1

0 (Ω;ΓD) +
∫

ΓN

uϕdHN−1 (3.5)

holds for any ϕ ∈ C∞
0 (RN ; ΓD).

Remark 3.1. Note that by H�older inequality this de�nition makes sense for any
matrix A ∈ L2

(
Ω; SN

)
. At the same time, the matrix I+A(x) de�nes an unbounded

bilinear form on L2(Ω;RN ). This motivates an introduction of the following set.
De�nition 3.2. We say that an element y ∈ H1

0 (Ω; ΓD) belongs to the set D if
∣∣∣∣
∫

Ω

(∇ϕ,A(x)∇y
)
RN dx

∣∣∣∣ ≤ c(y)
(∫

Ω
|∇ϕ|2RN dx

)1/2

∀ϕ ∈ C∞
0 (RN ; ΓD) (3.6)

with some constant c(y) depending on y.
Note that having set

[y, ϕ] =
∫

Ω

(∇ϕ,A(x)∇y
)
RN dx, ∀ y ∈ D, ∀ϕ ∈ C∞

0 (RN ; ΓD),

we can de�ne the bilinear form [y, ϕ] for all ϕ ∈ H1
0 (Ω; ΓD) using the rule

[y, ϕ] = lim
ε→0

[y, ϕε], (3.7)

where {ϕε}ε>0 ⊂ C∞
0 (RN ; ΓD) and ϕε → ϕ strongly in H1

0 (Ω; ΓD). In this case the
value [v, v] is �nite for every v ∈ D, although the "integrand"

(∇v(x), A(x)∇v(x)
)
RN

can be not integrable in general.
Proposition 3.1. Let u ∈ L2(ΓN ) be a given control. If y ∈ H1

0 (Ω; ΓD) is a weak
solution to the boundary value problem (3.1)�(3.2) in the sense of De�nition 3.1,
then y ∈ D.
Proof. In order to verify this assertion it is enough to rewrite integral identity
(3.5) in the form

[y, ϕ] = −
∫

Ω

(∇y,∇ϕ
)
RN dx + 〈f, ϕ〉H−1(Ω);H1

0 (Ω) + 〈u, ϕ〉
H− 1

2 (ΓN );H
1
2 (ΓN )

(3.8)

and apply the H�older inequality, the Trace Sobolev Theorem (see [9]), and the
compactness of the embeddings H

1
2 (ΓN ) ↪→ L2(ΓN ) ↪→ H− 1

2 (ΓN ) to the right-
hand side of (3.8). As a result, we have

∣∣∣[y, ϕ]
∣∣∣ ≤

(
‖y‖H1

0 (Ω;ΓD) + ‖f‖H−1(Ω;ΓD) + C(Ω)‖u‖L2(ΓN )

)
‖ϕ‖H1

0 (Ω;ΓD).
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Remark 3.2. Due to Proposition 3.1, De�nition 3.1 can be reformulated as follows:
y is a weak solution to problem (3.1)�(3.2) if and only if y ∈ D and

∫

Ω

(∇y,∇ϕ
)
RN dx + [y, ϕ]

= 〈f, ϕ〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) +

∫

ΓN

uϕdHN−1 ∀ϕ ∈ H1
0 (Ω; ΓD). (3.9)

Moreover, as immediately follows from (3.9), every weak solution y ∈ D to the
problem (3.1)�(3.2) satis�es the energy equality

‖y‖2
H1

0 (Ω;ΓD) + [y, y] = 〈f, y〉H−1(Ω;ΓD);H1
0 (Ω;ΓD) +

∫

ΓN

uy dHN−1. (3.10)

It is well know that boundary value problem (3.1)�(3.2) is ill-posed, in general.
It means that there exists a matrix A ∈ L2

(
Ω; SN

)
such that for every admissible

control u ∈ L2(ΓN ) the corresponding state y ∈ H1
0 (Ω; ΓD) may be not unique.

It is clear that in this case, it is not possible to write y = y(u). To avoid this
situation, we adopt the following notion.

De�nition 3.3. We say that (u, y) is an admissible pair to OCP (3.3)�(3.4) if
u ∈ L2(ΓN ), y ∈ D ⊂ H1

0 (Ω; ΓD), and (u, y) are related by integral identity (3.9).
We denote by Ξ the set of all admissible pairs for OCP (3.3)�(3.4).

We say that a pair (u0, y0) ∈ L2(ΓN )×D is optimal for problem (3.3)�(3.4) if

(u0, y0) ∈ Ξ and I(u0, y0) = inf
(u,y)∈Ξ

I(u, y).

As follows from the de�nition of the bilinear form [y, ϕ], the value [y, y] is not
constant-sign for all y ∈ D. Hence, energy equality (3.10) does not allow us to
derive any a priory estimate in H1

0 -norm for the weak solutions. In spite of this,
the following result indicates that OCP (3.3)�(3.4) is well-posed (see [8]).

Theorem 3.1. Assume that OCP (3.3)�(3.4) is regular, i.e. Ξ 6= ∅. Then this
problem has a unique solution for each f ∈ H−1(Ω; ΓD), A ∈ L2

(
Ω;SN

)
, and

yd ∈ H1
0 (Ω; ΓD).

Proof. Since the original problem is regular and the cost functional is bounded
below on Ξ, it follows that there exists a minimizing sequence {(uk, yk)}k∈N ⊂ Ξ
for OCP (3.3)�(3.4); that is,

I(uk, yk) −−−→
k→∞

Imin ≡ inf
(u,y)∈Ξ

I(u, y) ≥ 0.

Hence, supk∈N I(uk, yk) ≤ C, where the constant C is independent of k. Since

sup
k∈N

[
‖yk‖2

H1
0 (Ω;ΓD) + ‖uk‖2

L2(ΓN )

]
≤ 2‖yd‖2

H1
0 (Ω;ΓD) + 2 sup

k∈N
I(uk, yk) ≤ 2(C1 + C),
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it follows that passing to a subsequence if necessary, we may assume that

uk ⇀ u0 in L2(ΓN ), yk ⇀ y0 in H1
0 (Ω; ΓD), I(u0, y0) < +∞.

Using the fact that

[yk, ϕ] =
∫

Ω

(∇ϕ,A(x)∇yk

)
RN dx = −

∫

Ω

(
A∇ϕ,∇yk

)
RN dx = −[ϕ, yk]

and Aϕ ∈ L2(Ω;RN ) for any ϕ ∈ C∞
0 (Ω; ΓD), we can pass to the limit in integral

identity (3.5) with u = uk and y = yk as k → ∞. As a result, we obtain: the
pair (u0, y0) is related by identity (3.5). Hence, y0 ∈ D by Proposition 3.1. Thus,
(u0, y0) is an admissible pair to problem (3.3)�(3.4). Using the property of lower
semicontinuity for I with respect to the product of the weak topologies for L2(ΓN )
and H1(Ω), we get

0 ≤ I(u0, y0) ≤ lim
k→∞

I(uk, yk) = Imin.

Thus, the pair (u0, y0) is optimal for problem (3.3)�(3.4). The uniqueness of the
optimal pair is the direct consequence of the strict convexity of the cost functional
I on L2(ΓN )×H1

0 (Ω; ΓD). The proof is complete.

4. On attainability of non-variational solutions to OCP
(3.3)�(3.4)

We begin this section with some auxiliary results and notions. Let ε be a
small parameter. Assume that the parameter ε varies within a strictly decreasing
sequence of positive real numbers which converge to 0. When we write ε > 0, we
consider only the elements of this sequence.

Let for every ε > 0, Tε : R→ R be the truncation function de�ned by

Tε(s) = max
{
min

{
s, ε−1

}
,−ε−1

}
. (4.1)

The following property of Tε is well-known (see [6]). Let f ∈ L2(Ω) be an arbitrary
function. Then we have:

Tε(f) ∈ L∞(Ω) ∀ ε > 0 and Tε(f) → f strongly in L2(Ω). (4.2)

Let A ∈ L2
(
Ω;SN

)
be a stream matrix. For a given sequence {ε > 0} we de�ne

the cut-o� operators Tε : SN → SN as follows Tε(A) = [Tε(aij)]
N
i,j=1 for every

ε > 0. We associate with such operators the following set of subdomains {Ωε}ε>0

of Ω
Ωε = Ω \Qε, ∀ ε > 0, (4.3)

where

Qε = closure
{

x ∈ Ω : ‖A(x)‖SN := max
i,j=1,...,N

|aij(x)| ≥ ε−1

}
. (4.4)
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De�nition 4.1. We say that a stream matrix A ∈ L2
(
Ω;SN

)
is of the funnel-

type if there exists a strictly decreasing sequence of positive real numbers {ε}
converging to 0 such that the corresponding collection of sets {Ωε}ε>0, de�ned by
(4.3), possesses the following properties:
(i) Ωε are open connected subsets of Ω with Lipschitz boundaries for which

there exists a positive value δ > 0 such that

∂Ω ⊂ ∂Ωε and dist (Γε, ∂Ω) > δ, ∀ ε > 0,

where Γε = ∂Ωε \ ∂Ω.

(ii) The surface measure of the boundaries of holes Qε = Ω\Ωε is small enough
in the following sence:

HN−1(Γε) = o(ε) ∀ ε > 0. (4.5)

(iii) For any element h ∈ D there is a constant c(h) depending on h and
independent of ε such that

∣∣∣∣∣
∫

Ω\Ωε

(∇ϕ,A(x)∇h
)
RN dx

∣∣∣∣∣ ≤ c(h)

√
|Ω \ Ωε|

ε

(∫

Ω\Ωε

|∇ϕ|2RN dx

)1/2

(4.6)
for all ϕ ∈ C∞

0 (RN ; ΓD).
Thus, if A is of the funnel-type then each of the sets Ωε is locally located

on one side of its Lipschitz boundary ∂Ωε. Moreover, in this case the boundary
∂Ωε can be divided into three parts ∂Ωε = ΓD ∪ ΓN ∪ Γε. Observe also that
condition (ii) of De�nition 4.1 excludes the appearance of self-similar domains Ωε

with some fractal behavior of the boundaries. Moreover, if A ∈ L∞
(
Ω; SN

)
then

estimate (4.6) is obvious.
Remark 4.1. As immediately follows from De�nition 4.1, the sequence {Ωε}ε>0 is
monotonically expanding, i.e., Ωεk

⊂ Ωεk+1
for all εk > εk+1, and perimeters of

Qε tend to zero as ε → 0. Moreover, because of the initial supposition, we have
1
ε2
|Ω \ Ωε| ≤

∫

Ω\Ωε

‖A(x)‖2
SN dx, ∀ ε > 0 and lim

ε→0
‖A‖L2(Ω\Ωε;SN ) = 0.

This entails the property: |Ω \ Ωε| = o(ε2) and, hence, limε→0 |Ωε| = |Ω|. Besides,
in view of assumption (ii) of De�nition 4.1, which plays an important role in our
further analysis, we have the following estimate

εHN−1(Γε)
|Ω \ Ωε| = O(1). (4.7)

It should be also stressed that as obvious consequence of condition (4.5), we
have the following one: the support of singularities of the funnel type matrices,
i.e., the limit of the boundaries Γε in the Hausdor� topology, may have non-zero
capacity in general [4].
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Remark 4.2. As follows from [3], the funnel-type property implies the so-called
strong connectedness of the sets {Ωε}ε>0 which means the existence of extension
operators Pε from H1

0 (Ωε; ΓD) to H1
0 (Ω; ΓD) such that for some positive constant

C independent of ε,

‖∇ (Pεy)‖L2(Ω;RN ) ≤ C ‖∇y‖L2(Ωε;RN ) , ∀ y ∈ H1
0 (Ωε; ΓD). (4.8)

As a direct consequence of De�nition 4.1, we have the following result.
Proposition 4.1. Assume that A ∈ L2

(
Ω;SN

)
is of the funnel-type. Let {Ωε}ε>0

be a sequence of perforated subdomains of Ω associated with matrix A and let
{χΩε}ε>0 be the sequence of their characteristic functions. Then

χΩε → χΩ strongly in L2(Ω). (4.9)

Proof. As immediately follows from De�nition 4.1, the sequence {χΩε}ε>0 is mono-
tonically increasing, i.e., χΩεk

≤ χΩεk+1
almost everywhere in Ω provided εk >

εk+1. Taking into account the following equality for the cut-o� operators

‖Tε(A(x))‖SN = χΩε(x)‖A(x)‖SN + (1− χΩε(x))ε−1, ∀ ε > 0.

and condition (4.2)2, we may suppose, within a subsequence, that
(
χΩε(x)‖A(x)‖SN + (1− χΩε(x))ε−1

)
→ ‖A(x)‖SN a.e. in Ω as ε → 0,

and |Ω \ Ωε| := LN (Ω \ Ωε)
by Remark 4.1

= o(ε2) → 0 as ε → 0.

Hence, in view of the monotonicity property of {χΩε}ε>0, we �nally obtain (see [7])

χΩε → χΩ a.e. in Ω, and, hence, χΩε → χΩ strongly in L1(Ω).

Since the strong convergence of characteristic functions in L1(Ω) implies their
strong convergence in L2(Ω), this concludes the proof.

De�nition 4.2. We say that a sequence
{
yε ∈ H1

0 (Ωε; ΓD)
}

ε>0
is weakly convergent

in variable space H1
0 (Ωε; ΓD) if there exists an element y ∈ H1(Ω; ΓD) such that

lim
ε→0

∫

Ωε

(∇yε,∇ϕ)RN dx =
∫

Ω
(∇y,∇ϕ)RN dx, ∀ϕ ∈ C∞

0 (Ω; ΓD)

Remark 4.3. Since∫

Ω
(∇y,∇ϕ)RN dx = lim

ε→0

∫

Ωε

(∇yε,∇ϕ)RN dx = lim
ε→0

∫

Ω
(∇ (Pεyε) ,∇ϕ)RN χΩε dx

by (4.9) and (4.8)
=

∫

Ω
(∇y∗,∇ϕ)RN dx, ∀ϕ ∈ C∞

0 (Ω; ΓD),

where y∗ ∈ H1
0 (Ω; ΓD) is a weak limit in H1

0 (Ω; ΓD) of the extended functions{
Pεyε ∈ H1

0 (Ω; ΓD)
}

ε>0
, it follows that the weak limit in the sense of De�nition 4.2

does not depend on a choice of extension operators Pε : H1
0 (Ωε; ΓD) → H1

0 (Ω; ΓD)
with properties (4.8).
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Let us consider the following sequence of regularized OCPs associated with
domains Ωε { 〈

inf
(u,v,y)∈Ξε

Iε(u, v, y)
〉

, ε → 0
}

, (4.10)

where

Iε(u, v, y) := ‖y − yd‖2
H1

0 (Ωε;ΓD) + ‖u‖2
L2(ΓN ) +

1
εα
‖v‖2

H− 1
2 (Γε)

, (4.11)

Ξε =





(u, v, y)

∣∣∣∣∣∣∣∣∣∣

−div
(∇y + A∇y

)
= f in Ωε,

y = 0 on ΓD, ∂y/∂νA = u on ΓN ,

∂y/∂νA = v on Γε,

u ∈ L2(ΓN ), v ∈ H− 1
2 (Γε), y ∈ H1

0 (Ωε; ΓD).





(4.12)

Here, yd ∈ H1
0 (Ω, ΓD) and f ∈ L2(Ω) are given functions, ν is the outward normal

unit vector at ΓN and Γε to Ωε, v ∈ H− 1
2 (Γε) is considered as a �ctitious control,

and α is a positive number such that

ε−αHN−1(Γε) → 0 as ε → 0 (see (4.5)). (4.13)

Using the fact that A ∈ L∞(Ωε; SN ) for every ε > 0, we arrive at the following
obvious result.

Theorem 4.1. For every ε > 0 there exists a unique minimizer (u0
ε, v

0
ε , y

0
ε) ∈ Ξε

to the problem
〈
inf(u,v,y)∈Ξε

Iε(u, v, y)
〉
.

In order to study the asymptotic behavior of the sequences of admissible
solutions

{
(uε, vε, yε) ∈ L2(ΓN )×H− 1

2 (Γε)×H1
0 (Ωε; ΓD)

}
ε>0

in the scale of variable
spaces, we adopt the following concept.

De�nition 4.3. We say that a sequence {(uε, vε, yε) ∈ Ξε}ε>0 weakly converges
to (u, y) ∈ L2(ΓN )×H1

0 (Ω; ΓD) in the scale of spaces
{

L2(ΓN )×H− 1
2 (Γε)×H1

0 (Ωε; ΓD)
}

ε>0
, (4.14)

if

uε ⇀ u in L2(ΓN ), yε ⇀ y in H1
0 (Ωε; ΓD), (4.15)

and sup
ε>0

1
HN−1(Γε)

‖vε‖2

H− 1
2 (Γε)

< +∞. (4.16)

Now we are in a position to state the main result of this section.

Theorem 4.2. Let A ∈ L2
(
Ω;SN

)
be a funnel-type stream matrix such that

the equality [y, y] = 0 does not hold in D. (4.17)
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Let {Ωε}ε>0 be a sequence of perforated subdomains of Ω associated with matrix
A. Then problem

〈
inf(u,y)∈Ξ I(u, y)

〉
, where yd ∈ H1

0 (Ω, ΓD) and f ∈ L2(Ω) are
given functions, is a variational limit of sequence (4.10)�(4.12) as the parameter
ε tends to zero.
Remark 4.4. Condition (4.17) implies an existence of at least one element h∗ ∈ D
such that h∗ 6∈ L∞(Ω) and h∗ is a solution to the homogeneous problem

−div
(∇y + A∇y

)
= 0 in Ω,

y = 0 on ΓD, ∂y/∂νA = 0 on ΓN .
(4.18)

It means that the linear form

[h∗, ϕ] =
∫

Ω

(∇ϕ, A(x)∇h∗
)
RN dx, ∀ϕ ∈ C∞

0 (RN ; ΓD)

can have a non-trivial extension onto the entire set D using the rule

[h∗, ϕ] = lim
ε→0

[h∗, ϕε], ∀ϕ ∈ D ⊂ H1
0 (Ω; ΓD), (4.19)

where {ϕε}ε>0 ⊂ C∞
0 (RN ; ΓD) and ϕε → ϕ strongly in H1

0 (Ω; ΓD).
Let L be the following subspace of H1

0 (Ω; ΓD)

L =
{

h ∈ D :
∫

Ω

(∇ϕ,∇h + A(x)∇h
)
RN dx = 0 ∀ϕ ∈ C∞

0 (RN ; ΓD)
}

, (4.20)

i.e., L is the set of all weak solutions of homogeneous problem (4.18).

Proof. Since each of the optimization problems
〈
inf(u,v,y)∈Ξε

Iε(u, v, y)
〉
lives in

the corresponding space L2(ΓN )×H− 1
2 (Γε)×H1

0 (Ωε; ΓD), we have to show that
in this case all conditions of De�nition 2.1 hold true. To do so, we divide this
proof into three steps.

Step 1. We show that the space L2(ΓN ) × H1
0 (Ω; ΓD) possesses the weak

approximation property with respect to the weak convergence in scale of spaces
(4.14). Indeed, let δ = 0 and let (u, y) ∈ L2(ΓN )×H1

0 (Ω; ΓD) be an arbitrary pair.
Let h ∈ C∞

0 (Ω; ΓD) be such that div (∇h + A(x)∇h) ∈ L2(Ω). We construct the
sequence {

(uε, vε, yε) ∈ L2(ΓN )×H− 1
2 (Γε)×H1

0 (Ωε; ΓD)
}

ε>0

as follows
uε = u, vε =

∂h

∂νA

∣∣∣∣
Γε

, and yε = y, ∀ ε > 0.

In view of (4.9), we have χΩε

∗
⇀ χΩ in L∞(Ω). Hence,

lim
ε→0

∫

Ωε

(∇ϕ,∇yε)RN dx = lim
ε→0

∫

Ω
(∇ϕ,∇y)RN χΩε dx

=
∫

Ω
(∇ϕ,∇y)RN dx ∀ϕ ∈ C∞

0 (Ω; ΓD),
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i.e., yε ⇀ y in H1
0 (Ωε; ΓD) as ε → 0.

It remains to show that the sequence
{

vε ∈ H− 1
2 (Γε)

}
ε>0

is bounded in the
sense of De�nition 4.3. To do so we make use of the Green formula. As a result,
we obtain

∣∣∣∣∣
〈

∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣∣∣ ≤
∣∣∣∣
∫

Qε

div (∇h + A(x)∇h) ϕdx

∣∣∣∣

+
∣∣∣∣
∫

Qε

(∇ϕ,∇h + A(x)∇h)RN dx

∣∣∣∣

≤
(∫

Qε

|div (∇h + A(x)∇h) |2 dx

)1/2

‖ϕ‖L2(Qε) + ‖∇h‖L2(Qε;RN )‖∇ϕ‖L2(Qε;RN )

by (4.6)
+ c(h)

√
|Ω \ Ωε|

ε

(∫

Ω\Ωε

|∇ϕ|2RN dx

)1/2

≤ (I1 + I2 + I3) ‖ϕ‖H1(Ω\Ωε).

Since |Ω \ Ωε| = o(ε2) by the funnel type properties of A, it follows that there
exists a suitable change of variables and a constant C > 0 independent of ε such
that

I2 = ‖∇h‖L2(Qε;RN ) =

(
C
|Ω \ Ωε|

ε

∫

Ω\Ω1

‖∇h(y)‖2
RN dy

)1/2

by (4.7)
≤ C1

√
HN−1(Γε)‖h‖H1(Ω;ΓD)

Following the similar arguments, we get:

I1 =
∥∥∥div (∇h + A(x)∇h)

∥∥∥
L2(Qε)

≤ C2(h)
√
HN−1(Γε).

As a result, summing up the previous inequalities, we come to the following
conclusion: there exists a constant C = C(h) independent of ε such that

1√
HN−1(Γε)

〈
∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

≤ C(h)‖ϕ‖H1(Ω\Ωε) ∀ϕ ∈ C∞
0 (Ω; ΓD).

Hence,

sup
ε>0

(
1√

HN−1(Γε)

∥∥∥ ∂h

∂νA

∥∥∥
H− 1

2 (Γε)

)
≤ C. (4.21)

Thus, the week approximation property is proved.
Remark 4.5. Note that the funnel-type properties of the stream matrix A together
with Sobolev Trace Theorem [1] imply the following estimate

‖ϕ‖L2(Γε) ≤
C√

HN−1(Γε)
‖ϕ‖H1

0 (Ωε;ΓD), ∀ϕ ∈ C∞
0 (Ω; ΓD) (4.22)

with some constant C independent of ε.
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Step 2.We show on this step that condition (ddd) of De�nition 2.1 holds true
with δ = 0. Let (u∗, y∗) ∈ Ξ be any admissible pair to original OCP (3.3)�(3.4).
Note that the set L, de�ned in (4.20), is not a singleton in this case. Indeed, if L
is a singleton in D then h ≡ 0 is its unique element and we come into con�ict with
(4.17). So, we suppose that the set L contains at least one non-trivial element of
D ⊂ H1

0 (Ω; ΓD). Then, obviously, L is a linear subspace of H1
0 (Ω; ΓD). Let h ∈ D

be any element of the set L such that h is a non-trivial solution of homogeneous
problem (4.18). We construct a (Γ, 0)-realizing sequence {(uε, vε, yε) ∈ Ξε}ε>0 as
follows:

uε := u∗ and vε := wε +
∂h

∂νA
∀ ε > 0, (4.23)

where functions wε are such that

sup
ε>0

(
1√

HN−1(Γε)
‖wε‖

H− 1
2 (Γε)

)
≤ C (4.24)

with some C independent of ε.
Let

{
yε ∈ H1

0 (Ωε; ΓD)
}

ε>0
be a sequence of weak solutions of boundary value

problems (4.12) under the corresponding controls u = uε and v = vε. In view of
the Lax-Milgram lemma and the superposition principle this sequence is de�ned
in a unique way and for every ε > 0 we have the following decomposition yε =
yε,1 + yε,2, where yε,1 and yε,2 are elements of H1

0 (Ωε; ΓD) such that

∫

Ω

(∇ϕ,∇yε,1 + A(x)∇yε,1

)
RN χΩε dx =

∫

Ω
fχΩεϕdx +

∫

ΓN

uεϕdHN−1

+ 〈wε, ϕ〉
H− 1

2 (Γε);H
1
2 (Γε)

, ∀ϕ ∈ C∞
0 (Ω; ΓD), (4.25)

∫

Ω

(∇ϕ,∇yε,2 + A(x)∇yε,2

)
RN χΩε dx

=
〈

∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

, ∀ϕ ∈ C∞
0 (Ω; ΓD). (4.26)

Remark 4.6. Hereinafter, we suppose that the functions yε of H1
0 (Ωε, ΓD) are

extended by operators Pε outside of Ωε and, therefore, considered as de�ned in
the whole of Ω.

Since A(x) = Tε(A(x)) whenever x ∈ Ωε for every ε > 0, it means that
A ∈ L∞(Ωε; SN ). Hence, by the skew-symmetry property of A, we have

∫

Ω

(∇yε,i, A(x)∇yε,i

)
RN χΩε dx = 0, i = 1, 2.
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Then (4.25)�(4.26) lead us to the energy equalities
∫

Ω

∥∥∇yε,1

∥∥2

RN χΩε dx =
∫

Ω
fχΩεyε,1 dx

+
∫

ΓN

uεyε,1 dHN−1 + 〈wε, yε,1〉
H− 1

2 (Γε);H
1
2 (Γε)

, (4.27)
∫

Ω

∥∥∇yε,2

∥∥2

RN χΩε dx =
〈

∂h

∂νA
, yε,2

〉

H− 1
2 (Γε);H

1
2 (Γε)

. (4.28)

Since h ∈ L, condition (iii) of De�nition 4.1 implies that
∣∣∣∣∣
〈

∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω\Ωε

(∇ϕ,∇h + A(x)∇h
)
RN dx

∣∣∣∣∣

≤
√
|Ω \ Ωε|

ε
(C1(h) + C2(h)) ‖ϕ‖H1(Ω\Ωε)

by (4.5)
≤ C(h)

√
HN−1(Γε)‖ϕ‖H1(Ω\Ωε), ∀ϕ ∈ H1

0 (Ω; ΓD)

with some constant C(h) independent of ε. Hence,

sup
ε>0

(HN−1(Γε)
)−1

∥∥∥ ∂h

∂νA

∥∥∥
2

H− 1
2 (Γε)

< +∞. (4.29)

Thus,
∣∣∣ 〈wε, yε,1〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣ ≤ C ‖yε,1‖L2(Γε)

(HN−1(Γε)
) 1

2

by (4.22)
≤ C1 ‖yε,1‖H1

0 (Ωε;ΓD), (4.30)
∣∣∣
〈

∂h

∂νA
, yε,2

〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣ ≤ C ‖yε,2‖L2(Γε)

(HN−1(Γε)
) 1

2

by (4.22)
≤ C1‖yε,2‖H1

0 (Ωε;ΓD). (4.31)

As a result, we come to the a priori estimates
(∫

Ω

∥∥∇yε,1

∥∥2

RN χΩε dx

)1/2

≤ ‖f‖L2(Ω) + C
(‖uε‖L2(ΓN ) + 1

)
, (4.32)

(∫

Ω

∥∥∇yε,2

∥∥2

RN χΩε dx

)1/2

≤ C. (4.33)

Hence, the sequences
{
yε,1 ∈ H1

0 (Ωε; ΓD)
}

ε>0
and

{
yε,2 ∈ H1

0 (Ωε; ΓD)
}

ε>0
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are weakly compact with respect to the weak convergence in variable spaces [10],
i.e., we may assume that there exists a couple of functions ŷ1 and ŷ2 in H1

0 (Ω; ΓD)
such that

lim
ε→0

∫

Ω

(∇ϕ,∇yε,i

)
RN χΩε dx =

∫

Ω

(∇ϕ,∇ŷi

)
RN , dx, ∀ϕ ∈ C∞

0 (Ω; ΓD) (4.34)

for i = 1, 2.
Now we can pass to the limit in integral identities (4.25)�(4.26) as ε → 0.

Using (4.23)1, (4.34), (4.29), and L2-property of A(x), we �nally obtain
∫

Ω

(∇ϕ,∇ŷ1 + A(x)∇ŷ1

)
RN dx =

∫

Ω
fϕ dx +

∫

ΓN

u∗ϕ dHN−1, (4.35)
∫

Ω

(∇ϕ,∇ŷ2 + A(x)∇ŷ2

)
RN dx = 0 (4.36)

for every ϕ ∈ C∞
0 (Ω; ΓD). Hence, ŷ1 and ŷ2 are weak solutions to the boundary

value problem (3.1)�(3.2) and (4.18), respectively. Hence, ŷ2 ∈ L and ŷ1 ∈ D
by Proposition 3.1. As a result, we arrive at the conclusion: the pair (u∗, ŷ1 + h)
belongs to the set Ξ, for some h ∈ L. Since by the initial assumptions (u∗, y∗) ∈ Ξ,
it follows that having put in (4.23)

h = y∗ − ŷ1, (4.37)

we obtain

h ∈ L and yε = yε,1 + yε,2 ⇀ y∗ in H1
0 (Ωε; ΓD) as ε → 0. (4.38)

Therefore, properties (2.6)�(2.7) hold true.
It remains to prove inequality (2.8). To do so, it is enough to show that

I(u∗, y∗) := ‖y∗ − yd‖2
H1

0 (Ω;ΓD) + ‖u∗‖2
L2(ΓN ) = lim

ε→0
Iε(uε, vε, yε)

= lim
ε→0

[
‖yε − yd‖2

H1
0 (Ωε;ΓD) + ‖uε‖2

L2(ΓN ) +
1
εα
‖vε‖2

H− 1
2 (Γε)

]
, (4.39)

where the sequence {(uε, vε, yε) ∈ Ξε}ε>0 is de�ned by (4.23) and (4.37).
In view of this, we make use the following relations

‖vε‖2

H− 1
2 (Γε)

≤ 2‖wε‖2

H− 1
2 (Γε)

+ 2
∥∥∥ ∂h

∂νA

∥∥∥
2

H− 1
2 (Γε)

< +∞,

limε→0
1
εα ‖wε‖2

H− 1
2 (Γε)

by (4.24)
≤ C limε→0

HN−1(Γε)
εα = 0,

limε→0
1
εα ‖ ∂h

∂νA
‖2

H− 1
2 (Γε)

by (4.29)
≤ C limε→0

HN−1(Γε)
εα = 0,

‖uε‖2
L2(ΓN ) = ‖u∗‖2

L2(ΓN ) ∀ ε > 0,

lim
ε→0

∫

Ω

(∇yd,∇yε

)
RN χΩε dx

by (4.38)
=

∫

Ω

(∇yd,∇y∗
)
RN dx.





(4.40)
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In order to obtain the convergence

lim sup
ε→0

‖yε‖2
H1

0 (Ωε;ΓD) = ‖y∗‖2
H1

0 (Ω;ΓD) (4.41)

we make use of the following energy equality which comes from the condition
(u∗, y∗) ∈ Ξ

‖y∗‖2
H1

0 (Ω;ΓD) :=
∫

Ω

∥∥∇y∗
∥∥2

RN dx

= −[y∗, y∗] +
∫

Ω
fy∗ dx +

∫

ΓN

u∗y∗ dHN−1. (4.42)

As for the integral identity for the triplet (uε, vε, yε), we use the following trick.
It is easy to see that the integral identity for the weak solutions yε to boundary

value problems (4.12) can be represented in the so-called extended form
∫

Ω

(∇ϕ,∇yε + A(x)∇yε

)
RN χΩε dx =

∫

Ω
fχΩεϕdx +

∫

ΓN

uεϕdHN−1

+ 〈wε, ϕ〉
H− 1

2 (Γε);H
1
2 (Γε)

+
〈

∂h

∂νA
, ϕ

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
∫

Ω

(∇ψ,∇h∗
)
RN dx− [h∗, ψ], ∀ϕ,ψ ∈ C∞

0 (Ω; ΓD), (4.43)

where h∗ is an arbitrary element of L. Indeed, because of the equality
∫

Ω

(∇ψ,∇h∗
)
RN dx + [h∗, ψ]

by (4.20)
= 0, ∀ψ ∈ C∞

0 (Ω; ΓD),

we have an equivalent identity to the classical de�nition of the weak solutions of
boundary value problem (4.12).

As follows from property (4.38)2 and Sobolev Trace Theorem, the sequences

{
〈wε, yε〉

H− 1
2 (Γε);H

1
2 (Γε)

}
ε>0

and
{〈

∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

}

ε>0

are bounded. Therefore, we can assume, passing to a subsequence if necessary,
that there exists a value ξ1 ∈ R such that

〈wε, yε〉
H− 1

2 (Γε);H
1
2 (Γε)

+
〈

∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

−→ ξ1 as ε → 0. (4.44)

Since yε ⇀ y∗ weakly in H1
0 (Ωε; ΓD) and y∗ ∈ D, it follows that there exists a

sequence of smooth functions {ψε ∈ C∞
0 (Ω; ΓD)}ε>0 such that ψε → y∗ strongly

in H1
0 (Ωε; ΓD). Therefore, following extension rule (4.19), we have

lim
ε→0

∫

Ω

(∇ψε,∇h∗
)
RN dx =

∫

Ω

(∇y∗,∇h∗
)
RN dx, lim

ε→0
[h∗, ψε] = [h∗, y∗]. (4.45)
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Because of initial supposition (4.17) (see Remark 4.4), we can assume that the
element h∗ ∈ L is such that

[h∗, y∗] +
∫

Ω

(∇y∗,∇h∗
)
RN dx 6= 0.

Otherwise, we come into con�ict with (4.17). So, due to this observation, we
specify the choice of element h∗ ∈ L as follows

ĥ∗ =
ξ1 + [y∗, y∗]

ξ2 + ξ3
h∗, ∀ ε > 0,

where
ξ3 :=

∫

Ω

(∇y∗,∇h∗
)
RN dx, ξ2 := [h∗, y∗],

or, in other words, we aim to ensure the condition

ξ1 − ξ2 − ξ3 + [y∗, y∗] = 0.

As a result, we have: ĥ∗ is an element of L such that

lim
ε→0

∫

Ω

(∇ψε,∇ĥ∗
)
RN dx = ξ2

ξ1 + [y∗, y∗]
ξ2 + ξ3

,

lim
ε→0

[ĥ∗, ψε] = ξ3
ξ1 + [y∗, y∗]

ξ2 + ξ3
.





(4.46)

Having put ϕε = yε and h∗ = ĥ∗ in (4.43) and used the skew-symmetry
property

∫
Ω

(∇yε, A(x)∇yε

)
RN χΩε dx = 0, we arrive at the following energy

equality for boundary value problem (4.12)
∫

Ω

(∇yε,∇yε

)
RN χΩε dx =

∫

Ω
fχΩεyε dx +

∫

ΓN

uεyε dHN−1

+ 〈wε, yε〉
H− 1

2 (Γε);H
1
2 (Γε)

+
〈

∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

−
∫

Ω

(∇ψε,∇ĥ∗
)
RN dx− [ĥ∗, ψε]. (4.47)

Further we note that

lim
ε→0

∫

ΓN

uεyε dHN−1 = lim
ε→0

∫

ΓN

u∗yε dHN−1 by (4.38)
=

∫

ΓN

u∗y∗ dHN−1. (4.48)

As a result, making use of properties (4.9), (4.38), (4.46), (4.48), we can pass
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to the limit as ε → 0 in (4.47). This yields

lim
ε→0

‖yε‖2
H1

0 (Ωε;ΓD) = lim
ε→0

∫

Ω
fχΩεyε dx + lim

ε→0

∫

ΓN

uεyε dHN−1

+ lim
ε→0

〈wε, yε〉
H− 1

2 (Γε);H
1
2 (Γε)

+ lim
ε→0

〈
∂h

∂νA
, yε

〉

H− 1
2 (Γε);H

1
2 (Γε)

− lim
ε→0

∫

Ω

(∇ψε,∇ĥ∗
)
RN dx− lim

ε→0
[ĥ∗, ψε]

by (4.46)
=

∫

Ω
fy∗ dx +

∫

ΓN

u∗y∗ dHN−1 − [y∗, y∗]
by (4.42)

= ‖y∗‖2
H1

0 (Ω;ΓD) . (4.49)

Hence, turning back to (4.39), we see that this relation is a direct consequence of
(4.40) and (4.49). Thus, the sequence {(uε, vε, yε) ∈ Ξε}ε>0, which is de�ned by
(4.23) and (4.37), is (Γ, 0)-realizing. The property (ddd) is established.

Step 3. We prove the property (dd) of De�nition 2.1. Let {(uk, vk, yk)}k∈N be
a sequence such that (uk, vk, yk) ∈ Ξεk

for some ε → 0 as k →∞,

uk ⇀ u∗ in L2(ΓN ), yk ⇀ y∗ in H1
0 (Ωεk

; ΓD),

and the sequence of �ctitious controls
{

vk ∈ H− 1
2 (Γεk

)
}

k∈N
satis�es inequality

(4.16). Our aim is to show that

(u∗, y∗) ∈ Ξ; I(u∗, y∗) ≤ lim inf
k→∞

Iεk
(uk, vk, yk). (4.50)

Since the integral identity
∫

Ω

(∇ϕ,∇yk + A(x)∇yk

)
RN χΩεk

dx =
∫

Ω
fχΩεk

ϕdx

+
∫

ΓN

ukϕdHN−1 + 〈vk, ϕ〉
H− 1

2 (Γεk
);H

1
2 (Γεk

)
, ∀ϕ ∈ C∞

0 (Ω; ΓD) (4.51)

holds true for every k ∈ N, we can pass to the limit in (4.51) as k → ∞ using
De�nition 4.3 and estimate
∣∣∣ 〈vε, ϕ〉

H− 1
2 (Γε);H

1
2 (Γε)

∣∣∣ ≤ C(Ω) ‖ϕ‖H1
0 (Ω;ΓD)

(HN−1(Γε)
) 1

2 , ∀ϕ ∈ C∞
0 (Ω; ΓD)

coming from inequality (4.16). Then proceeding as on the Step 2, it can easily
be shown that the limit pair (u∗, y∗) is admissible to OCP (3.3)�(3.4). Hence,
condition (4.50)1 is valid. As for the inequality (4.50)2, it immediately follows
from the lower semicontinuity of the norms ‖ · ‖H1(Ω;ΓD) and ‖ · ‖L2(ΓN ) with
respect to the weak convergence and the following estimate

1
εk

α
‖vk‖2

H− 1
2 (Γεk

)
≤ C

HN−1(Γεk
)

εk
α

→ 0 as k →∞.

The proof is complete.
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Taking into account this result and the main properties of variational convergence
of constrained minimization problems (see Theorem 2.1), we arrive at the following
variational properties of OCPs (4.10)�(4.12).

Theorem 4.3. Let A ∈ L2
(
Ω;SN

)
be a funnel-type stream matrix such that

the equality [y, y] = 0 does not hold in D. (4.52)

Let yd ∈ H1
0 (Ω, ΓD) and f ∈ L2(Ω) be given functions. Let

{
(u0

ε, y
0
ε) ∈ Ξε

}
ε>0

be a sequence of optimal solutions to regularized problems (4.10)�(4.12). Then a
unique optimal solution to OCP (3.3)�(3.4) is attainable in the following sense

u0
ε ⇀ u0 in L2(ΓN ), y0

ε ⇀ y0 in H1
0 (Ωε; ΓD), (4.53)

inf
(u,y)∈Ξ

I(u, y) = I
(
u0, y0

)
= lim

ε→0
Iε(u0

ε, v
0
ε , y

0
ε). (4.54)

Proof. In order to show that this result is a direct consequence of Theorem 2.1, we
have to establish the compactness property for the sequence of optimal solutions{
(u0

ε, v
0
ε , y

0
ε) ∈ Ξε

}
ε>0

in the sense of De�nition 4.3.
Let u∗ ∈ L2(ΓN ) and h ∈ C∞

0 (Ω; ΓD) be non-trivial functions. We assume
that

div (∇h + A(x)∇h) ∈ L2(Ω).

We set
uε = u∗ and vε =

∂h

∂νA

∣∣∣∣
Γε

∈ H− 1
2 (Γε).

In view of the initial suppositions and estimate (4.21), there is a constant C > 0
independent of ε such that

‖uε‖2
L2(ΓN ) ≤ C,

∥∥∥ ∂h

∂νA

∥∥∥
2

H− 1
2 (Γε)

≤ CHN−1(Γε).

Let yε = yε(uε, vε) ∈ H1
0 (Ωε; ΓD) be a corresponding solution to boundary

value problem (4.12). Then following (4.32), we come to the estimate ‖yε‖2
H1

0 (Ωε;ΓD)

≤ C̃, where this constant is also independent of ε. As a result, we obtain

Iε(u0
ε, v

0
ε , y

0
ε) =

∥∥y0
ε − yd

∥∥2

H1
0 (Ωε;ΓD)

+ ‖u0
ε‖2

L2(ΓN ) +
1
εα
‖v0

ε‖2

H− 1
2 (Γε)

≤ Iε(uε, vε, yε) ≤ 2C̃ + 2‖yd‖2
H1

0 (Ω;ΓD) + C + C
HN−1(Γε)

εα
.

Since ε−αHN−1(Γε) → 0 as ε → 0, it follows that the minimal values of cost
functional (4.11) bounded above uniformly with respect to ε. Thus, the sequence of
optimal solutions

{
(u0

ε, v
0
ε , y

0
ε)

}
ε>0

to problems (4.10)�(4.12) uniformly bounded
in

L2(ΓN )×H− 1
2 (Γε)×H1

0 (Ωε; ΓD)

and, hence, it is relatively compact with respect to the weak convergence in the
sense of De�nition 4.3. For the rest of proof, it remains to apply Theorem 2.1.
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