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We study the bilinear forms on the space of measurable square-integrable func-
tions which are generated by skew-symmetric matrices with unbounded coefficients.
We show that in the case when a skew-symmetric matrix contains L*-elements, the
corresponding quadratic forms can be alternative. Since these questions are closely
related with the existence of a unique solution for linear elliptic equations with
unbounded coefficients, we show that the energy identities for weak solutions can
be studied in the framework of the corresponding alternative quadratic forms. To
this end, we discuss the problems of integration by parts for measurable functions

and give a generalization of some formulae for the non-Lipschitz case.
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1. Introduction

We denote by SV the set of all skew-symmetric matrices A = [aij]%‘:p ie.,
A is a square matrix whose transpose is also its negative. Thus, if A € SV then

a;; = —aj; and, hence, a;; = 0. Therefore, the set SV can be identified with
N(N— N(N-1)
2

1)
the Euclidean space R . Let L*(Q)" = = L2(S") be the space of
measurable square-integrable functions whose values are skew-symmetric matrices
and it is endowed with the norm

1<i<j<N

1/2
HAHLz(Q;SN)—( ma [ (o) d:r) .

Let A € L? (Q; SN ) be an arbitrary skew-symmetric matrix. In what follows,
we always associate A with the alternating form

B()a: L2 RY) x L2 (;RY) - R

following the rule

B(E,m)a = /Q ((x), A@)E(@)) o dr, VEme AQGRY).  (L1)
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Here, L?(Q;RYN) = L2(Q)V stands for the space of measurable vector-valued
functions such that

1/2
ol o) = ( /Q o) |2 da:) < oo,

It is easy to see that this form is unbounded on L?(Q; RY), since, in general, the
'integrand’ (§(x), A(:U)n(x))RN is not integrable on . This motivates to introduce
of the following set. We say that an element & € L2(€;RY) belongs to the set
D(A) C L?(;RY) if

1/2
|B<s,n>A|sC<y,A></Q Inl]?wdx> VEECR@QRY)  (12)

with some constant ¢ depending on y and A. As a result, having set

B(E, ) = /Q (1, AE) g d,  YE € D(A), ¥y € C(4RY),

we observe that the bilinear form B(&,n)4 can be defined for all n € L2(Q;RY)
using the standard rule

B(&,n)a = lim B(&,n:)a, (1.3)

where {1:}.., C C5°(2;RY) and 1. — n strongly in L?(Q; RY). In this case the
value B(£, 1) is finite for every £ € D(A), although the ’integrand’ (1, Af)
need not be integrable, in general. This fact leads us to the conclusion

[B(&,£)al < +oo, V&€ D(A). (1.4)

At the same time, if we temporary assume that A € L>(€;SV), then the corres-
ponding bilinear form B(&,7n)4 is obviously bounded on L?(Q;RY), i.e. in this
case D(A) = L2(Q;RY). Indeed, in view of the Bunjakowski inequality, we get

|B(&,m) Al SHAHLOO(Q;SN)/Q||5HRN||77||RN dx
<Al Lo sy 1€l L2imm) 171 L2 (0sm vy

Moreover, if £ = n then

B(£.€)a = /Q (6, A€) y dz = — /Q (A€,€) oy di = —B(€,6)a,

and, therefore, B(£,€)4 = 0 for all £ € L?(Q;RY). However, as it is shown
in Section 3, there exist skew-symmetric L?-matrices A such that the equality
|B(£,€)a|l = B(£,£)a does not hold true for some £ € D(A). Thus, the main goal
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of this paper is to discuss the extra conditions on matrix A € L? (Q;SN) that
would suffice to assert the validity of relation

/Q (6(x), C0)E(x)) gy di + B(E,E)a £0, V&€ D(A), €0

for any symmetric positive defined matrix C' € L®(Q; RNWNV+D/2 1t is worth
to notice that this problem is closely related with solvability and uniqueness of
solutions to the boundary value problem

—div (C(z)Vy + A(z)Vy) = f in Q, (1.5)
y =0 on 012,

where f € H~1(Q) is a given distribution.
2. Notation and Preliminaries

Let Q be a bounded open connected subset of RV (N > 2) with Lipschitz
boundary. For any subset £ C © we denote by |E| its N-dimensional Lebesgue
measure LV (E).

Let C$°(RY) be the set of all infinitely differentiable functions ¢ : RV — R
with compact supports in RY. We define the Banach space H&(Q) as the closure
of C§°(RY) with respect to the norm (see [1])

1/2
lolas e = ( P dx) |

Let H~1(2) be the dual space to HE ().
We define the divergence div A of a skew-symmetric matrix A € L? (Q; sV ) as
a vector-valued distribution d € H~1(; RY) by the following rule

<dia 90>H—1(Q),H&(Q) = - /Q(GMVQD)RN d:l?, VSO € CSO(Q)’ (21)

where a; stands for the i-th row of the matrix A. We say that a matrix A €
L?(€%;SY) belongs to the space H(€,div;S") if d := div A € L' (4 RY), that is,
H(Q,div;SV) = {A |A e L*(Q;SY), divA € LYQ;RY) .

For given subset @ C RY and s € [0, +-00), we denote H*(Q) the s-dimensional
Hausdorff measure of Q on RY. The idea is that Q is an ’s-dimensional subset’
of RV, if 0 < H*(Q) < +oo, even if Q is very complicated geometrically. In
particular, if s = k is an integer, then H*-measure agrees with ordinary ’k-
dimensional surface area’ on nice sets. For the details we refer to [4, p.60].

Let g : © — R be a Lipschitz function, i.e. there exists a constant C' such that
lg(z) — g(y)| < C|lx — y||gy for all z,y € . By a well-know theorem [4, p.80],
this function can be extended to RY with the same Lipschitz constant. Moreover,
by Rademacher’s Theorem, the extended function g is differentiable £V-almost
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everywhere in RY. This is surprising fact since the inequality |g(z) — g(y)| <
C||z—yl||g~ apparently says nothing about the possibility of locally approximating

t
g by a linear map. So, the gradient Vg(z) = [ag(x) ag—(gj)} € RY is well

ox1 ' dxr N

defined for a.e. z € RY. Moreover, following classical definition of the Jacobian

Jg(x) := det ([Vg(a)]' - Vg(z))"?,

in our particular case we have

Jg(x) = (Vg(x), Vg(@)in = [Vg(@)|av. (2.2)

In what follows, we make use of the well-known result (see the change of
variables formula in [4, p.117]).

Theorem 2.1. Let g : RY — R be a Lipschitz function. Then for each LN -
integrable function f:RY — R, we have

f’ ™ is HN"Lointegrable for £L-almost all y, (2.3)
9y

|, 1@~ [ j [ / L 16 d’HN‘1] ay, (2.4)

where g~ H{y} stands for the following set

gyt = {e € RY ¢ gla) =y} (2.5)

Remark 2.1. Hereinafter, for each measurable function f € L}, (R), by value f(z)
we mean the following one

= 1 dy := li y)d
f(l‘) riIEO B(z,r) f(y) Y riIErIO |B x, 1“ |/ (z,r) Y

provided x is a Lebesgue point of f. Here, B(xz,r) is a ball of radius r centered at
x, and x is called to be a Lebesgue point of f if

lim [f(y) = f(z)|dy =0

r—+0 B(z,r)
Remark 2.2. We note that in view of the Lipschitz property of g, for each y € R,
the set g~ '{y}, given by (2.5), is closed. Hence, this set is %" ~!-measurable and,
therefore, the second integral in (2.4) is well defined.



88 P. 1. KOGUT

3. Motivating Example

Let 2 be the unit ball in R?, @ = {z € R* : ||z||gs < 1}. Our main intention
in this section is to show that for a given positive scalar value a € R there exist
a skew-symmetric matrix A € L?(€;S?) and a function yq € Hj(€2) such that

Vya € D(A) and  B(Vyg, Viya)a = —% <0, (3.1)

where the bilinear form B(£,n) 4 is defined by (1.1).
We divide our analysis into several steps. At the first step we define a skew-
symmetric matrix A as follows

0 a(x) 0
A(z)=| —a(x) 0 —b(z) |, (3.2)
0 b(x) 0
T1 .
where a(x) = m and b(z) = m. Since

2
I
lallZ2 0 = / <>
2@ = Jo\2]e]2,
1 27 T 2 2 .92
:/0/0 /Opr%mwwdwp“oo’

it follows that a € L?(£2). By analogy, it can be shown that b € L?(£2). Moreover,
it is easy to see that the skew-symmetric matrix A, define by (3.2), satisfies the
property A € H(Q,div;S?), i.e. A € L?(Q;S?) and divA € L'(Q;R?). Indeed,
in view of the definition of the divergence div A of a skew-symmetric matrix, we

di '
have divA = | ds |, where d; = diva; = ||:UZ|3|342 and a; is i-th column of A. As
ds Tllgs

a result, we get
. NPT PP file,Y) sinpsing
[|div aiHLl(Q) = 1
0 JO 0 p

for the corresponding f; = f;(¢,v) (i = 1,2, 3). Therefore, div A € L' (;R3).
Step 2 deals with the choice of the function y4 € H{ (). We define it by the

rule
Yd = va (1 - ||lzl|2s) \/47r — atan2 ( 2 e ) in Q, (3.3)
7r

H$HR3’ ||| gs

y,x) is defined as follows

p?sin dip do dp < +oo,

—~

where the two-argument function atan2

(arctan (¥) + 7, <0,
arctan (%) + 27w, y <0,z >0,
) arctan (%) , y>0,2>0,
atan2 (y,z) = /2, y> 0.2 —0.
37/2, y<0,z=0,
0, y=0,r=0.
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It is easy to see that the range of atan2(y, ) is [0, 27| and

(i) = 2 (1 (o)) - S

v = T — atan2 , =—={Adr—¢p), Veel0,2r
el = 72 el el ) ) ~ 72 027

with respect to the spherical coordinates. Hence, vy € C*°(9f), and, as immediately
follows from (3.3), it provides that

yq € L*(Q) and y4=0 on 9.

By direct computations, we get

o) 0
. ) g?j (lllgs — 2%) — gzgﬂflxz
VUO( ) = % (||z||2; — 23) — Qg1 Va #0. (3.4)
lles) = TG, | o Ul = 78) Gt |

Ovg
_TZ)$1$3 - ,972332373
Hence, there exists a constant C* > 0 such that
x c*
Voo (s
]| gs

rs [llre

Thus,

Vyallrs <

()| IV (0 el o
+ (1= ol | T ()

As a result, we infer that Vy, € L?(Q;R3), i.e. we finally have yq € HE(Q).
Step 3. We show that the function y4, which was introduced before, belongs
to the set D(A). To do so, we have to prove the estimate

<01+i

R3 H:EH]R3‘

~ 1/2
< Clyq) (/Qywyf@) Ve O (). (3.5)

To this end, we make use of the following transformations

/Q (V, AV) gy daz = —(div (AVY), 90>H*1(Q);H5(Q)

/Q (th, A(w)Vyd) gs A

(al)zvlﬁ
= (di v ,
< v Ezigtvi S0>1‘1‘1(Q);1‘f§(9)
3 ' o)
= ;<dlvai,@awi> 1, Hl /;;( z]ax Oz >

0
since AE€L2(Q;S3)

(due to the fact that div A € L*(Q;R3))

= /(diVA,Vz/J)Rg pdz,
Q
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which are obviously true for all ¢, p € C5°(£2). Since

/ (div A, Vi)ps pdx
Q

/Q(V% AVY) s dz| < Cll Al 2oz, ) 1] m ()

it follows that, using the continuation principle, we can extend the previous
equality with respect to ¢ to the following one

/ (Vp, AVyq)ps dz = / @ (div A, Vyg)ps dz Ve € C°(Q). (3.6)
Q Q

Let us show that (div A, Vyg)gs € L*(£2). In this case, relation (3.6) implies
the estimate

/ (Vo AVya)gs da
Q

< v A4, V)~ [ Il da

B 1/2
<Clya) ( /Q \wrﬁw) Vo € CERY),

which means that the element y4 belongs to the set D(A).
Indeed, as follows from (3.4), we have the equality

X X
Voo [ —— ) = 0. (3.7)
< (HaﬁHRs) 2135 / g

Thus, the gradient of the function Vvo(m) is orthogonal to the vector field
R
Q = x/||z||35 outside the origin. Therefore,

(Vya, div A)gs := (V [(1 — |ll|gs) UO( - )] - 0 >R3

(S I P S

T T To
= (v (1 - ||1‘H%3) 5 3 > UO( )
[2lgs /s Mzlrs/ lo]|rs

+(1—||x|]%3) <Vv0( x ) x3 > T2 =1+ D,
zllrs /" 1zl13s / s [12lrs
(3.8)

where I = 0 by (3.7). Since V (1 — [|z]|55) = —5||z|3s, waliﬁks
respect to the spherical coordinates, and function vy is smooth, it follows that
there exists a constant Cy > 0 such that [(Vyg, div A)gs| < Cpy almost everywhere
in Q. Thus, (div A4, Vyg)gs € L>(2) and we have obtained the required property.

Step 4. Using results of the previous steps, we show that the function yq4
satisfies the condition B(Vyg, Vyg)a = —5 < 0. Indeed, let {¢c}._,o C C5°(Q)
be a sequence such that ¢. — y4 strongly in H& (©). Then by continuity, we have

= sin ¢ siny with

B(Vy V) =limy [ (Ve AV da

by (3.6) ,. .
y (3:6) liny ¢ (div A, Vyg)gs da
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Since (div A, Vya)gs € L>=(Q) and ¢, — yg4 strongly in H}(£2), we can pass to
the limit in the right-hand side of this relation. As a result, we get

. 1 .
B(Vya,Vyi)a = /de (div A, Vyg)gs dx = 2/9 (dlvA,Vyg)R3 dx. (3.9)

Let Q. = {z € R® | e < [|z||gs < 1} and let I'. = {||z||[gs =€} be the sphere of
radius € centered at the origin. Then

in :
/ (divA, Vy?l)]R3 dz " yd—eHO(Q)/ (div A, v)gs y?l dH?

€ €

_ v A (1 — e 2 2
/E (le ay)Rd( HxHR?’) UO(HxHR3> dH
= iv A, 1) v2(—— ) dH? + o(1

/E (div A, v)gs UO(HI’HR3>dH +0o(1)

X x T2 2 X 2
= - v dH* + o(1)
/ra <HﬂfHRs ( ||$||R3)>R3 ]| s 0<||fUHR3)

2 T2 2( z ) 2
=—¢ v dH* + o(1)
/FE EaNE

_ _/Fbo(x)vg(x) dH? + o(1),

where by = sin ¢ siny and v§ = % (47 — ). Since

2w T
/ bov(z)d’HQZO;/ sin p (47 — @) dcp/ sin? ) dyp = a > 0,
a0 ™ Jo 0
it remains to combine this result with (3.9) and relation

/Q (div A, Vys)R3 dr = ?g{l} 0. (div A, Vyﬁ)lR3 dz.

As a result, we infer B(Vyg, Vyg)a = —a/2 < 0. This concludes our analysis.
4. On Formula of Integration by Parts for Measurable Functions

Let u € LY(Q), g € LY(Q2), and f € C§°(R) be given functions. We assume
that g(x) > 1 almost everywhere in Q. The main goal of this section is to proof
of the following formula

[u@ i@y =— [~ r [ ) drdr (4.1

which can be viewed as a particular case of the integration by parts in the Lebesgue
theory. Here, the set F) is defined as follows

Fy=qxeQ : lim g(y)dy < X, (4.2)
r—+0 B(z,r)
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Hereafter in this section we assume that g : RV — R be a Lipschitz function.
Then, g is continuous and, hence,

Fy={xe€Q : g(z) <A}. (4.3)

Following the standard formula of integration by parts [5, p.375], we get

/Ooof/(A)/FAu(x)dxd)\: lim Kf/()\)/ w(z) da d\

K—oo J Fy
:—/OKf(A)ddA </n u(:n)d:v) d/\] . (44)

~ lim [<f()\) /F u(z) d:n)

In view of our initial assumptions on g, we obviously have

( FOV /F X u(z) dw)

Moreover, since f has a compact support in R and the function d()\) := fF)\ u(x) dx
is monotonic, it follows that

Jim. < O /F ) d:n)

As a result, combining formulae (4.1) and (4.4), we obtain

_/Ooo 7O /F u(z) ddi:/Ooo ) </F u(:z‘)dx) . (45)

Further, we see that

$(Lﬂ®ﬂ0:[)“wv%%MdWV1 (45)

for £1-almost all A € (0,00). Indeed, taking into account the definition of the set
F and the fact that Jg(z) = ||[Vg(s)|r~, we get

= x __u@) x) dx
/}?Au(x)dx—/RNx,\( : Jg(x) da, (4.7)

=0.
A=0

=0.
A=K

Vg(2)||r

where x) stands for the characteristic function of the set F) (here we used the
fact that functions u/||Vg(s)||gy and Jg are extended by zero to Q¢ = RY \ Q.
As a result, having applied Theorem 2.1 to the right-hand side of (4.7), we arrive
at the relation

Y s u(s) N-1(g
IA“@“‘Kmlémﬁ“WW@mwm <J“

= /A / w1 | (4.8)
—oo | Jg-1(ey IVg(8)||rn ’ '
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which immediately leads us to the formula (4.6).
In view of (4.8), formula (4.5) can be justified as follows

—/OOO ) </a u(z) dx) i
:/OO ) [/_I{A}Hv;(%dHNl(s)] dA

u(s) N-1(g
[ AL w0 () ™ “] »

e [ (fwm( )uv;%v)

£ [ fgta)

Thus, relation (4.1) is definitely true provided g € L*(Q) is a Lipschitz function.
Our goal is to extend of this formula to a wider class of integrable functions
g:Q—R.

Jg(z) dx

A=g(z)

5. On substantiation of formula (4.1) for a non-Lipschitz case

To begin with, we introduce the following notion.
Definition 5.1. We say that a function g € L'(Q) is singular if there exists a
subset A(g) € R such that £1(A(g)) # 0 and, for each A\ € A(g), the level set

e : lim g(y) dy = X p has a nonzero £V -measure.
r——+0 B(z,r)

Following Titchmarsh [5, p.366], singular functions in L(2) can be defined
by means of an appropriate Cantor’s subsets of (2.
We are now in a position to prove the first result.

Theorem 5.1. Equality (4.1) holds true for each non-singular function g €
LY(9).

Proof. Let g € L*(Q) be a given non-singular function. Since the space C§°(Q) is
dense in L'(Q), we can suppose that there exists a sequence of smooth functions
{¢c}. o such that p. — g strongly in L'(2) and, hence, p.(z) — g(z) LN-
almost everywhere in Q. As the sets {x € Q : @-(x) = A} have zero measure for
L'-almost all A € R, we get that

XF. .\ (T) = xF, (T) LY -almost everywhere in €,
where F, y = {z € Q : ¢.(z) < A}. Hence,
XE. 5 (T)u(z) = X Py (2)u() LY -almost everywhere in €,
XF.» (T)u(r) < xo(r)u(n) LN -almost everywhere in .
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Therefore, xr. ,u — xr,(2)u in L'(Q) as ¢ — 0 by Dominated Convergence
Theorem. Taking this fact into account, we can pass to the limit as € — 0 in
relation
o
[u@)stende = [0 [ utw)dsin
Q 0 FE,)\

which is obviously true for each £ > 0 by arguments of the previous section. As a
result, we arrive at the desired formula (4.1). The proof is complete. O

Our next intention is to discuss of the formula (4.1) for the case when the
function g € LY(Q) is closely related to function u € L'(£). Namely, let us
suppose that u = ||y[|Z~, where y is an element of H(£2). Having assumed that
y and its gradient Vy are extended by zero to RV \ Q, we define function g as
follows

g(r) = max {sup][ IVy(s)||rn~ ds, |Z(x)| } , LY. e inQ, (5.1)
B(z,r)

r>0

where d(x) is the distance from z to the boundary of €.
Since y € H} (), it follows that

sup ][ ly(s) [l ds € L2(9).
r>0J B(z,r)

Moreover, in view of our initial assumptions and the Hardy inequality

N —2\? 2
/HVyH%Nd:c>( ) / Ve, Vit e o,
Q 2 allz —z*[|gx

we obviously have |u(z)|/d(z) € L?(Q2) and, hence, g € L*(). It is worth to note
that due to the definition of function g (see (5.1)), we have

g(z) = lim g(y)dry, for £LN-almost all z € Q.
r—+0 B(z,r)

Therefore, hereafter we associate g € L?(2) and A > 0 with the set F which is
defined by (4.4).

Theorem 5.2. Lety € HE(Q) and f € C§°(R) be given functions. Let g € L*(Q)
be defined by (5.1). Then the relations

/ IVy(@) 2 o) do = — /Oof’(A) / V(@) dedy, (5.2)
Q 0 Fy
/ @) |Vy(@)lan f(g(a)) do = / e / (@) Vylan dedr  (53)
0 0 Q\Fx

hold true for all { € L*(Q2).
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Proof. Since ¢||Vy|lgy € L1(2), it follows that equality (5.3) is a complementary
version of (5.2). Therefore, we concentrate at the proof of (5.2). To do so, it is
enough to show that the function ¢ is not singular in L'(£2). Indeed, the level
set {x € Q : g(z) = A} is a subset of Q where the sum ||Vy(z)|g~y + y(x)]/d(x)
is strictly separated from zero. Consequently (see Brezis [3, p.195], it ensures
that the sets {z € Q : |y(z)| = Cd(z)} and {z € Q : ||Vy(z)||gyv = C} have
zero LN -measure for £'-almost all C' > 0. Thus, g is not singular in the sense of
Definition 5.1 and in order to end of the proof it remains to apply Theorem 5.1. [

6. Proof of the Uniqueness Result

Theorem 6.1. Let A € L? (Q;SN) be a skew-symmetric matriz such that

1
lim

p—)—l—oo;HAHLp(Q%SN) = 0. (61)

Let C € LOO(Q;RN(NH)/Z) be a symmetric positive defined matriz satisfying
condition (¢,C(z)¢)gy > BIC|ZN for all ¢ € RN with B > 0. Assume that a
function y € D(A) C H}(Q) is related with matrices C and A as follows

—div (C(z)Vy) =div (A(x)Vy) in Q (in the sense of distributions).  (6.2)

Then the equality
| (99(2).C@)Vy(a) g da + B3, Vi)a = 0 (63)

implies y = 0.

Remark 6.1. The direct calculations show that a skew-symmetric matrix A €
L?(€%;SY) with entries a;; having behavior as In (In ||z||g~), satisfies the property
(6.1). Hence, the fulfilment of the condition (6.1) does not imply that A €
L™ (Q;SN).

Proof. Let y € D(A) be defined by (6.2). Then the integral identity

[ (96,019 + A) V) ds =0 (6.4

holds true for all ¢ € C§°(12). Having assumed that y and Vy are extended by
zero to Q¢ = RN \ Q, we define the function g and the set F) by (5.1) and (4.4),
respectively. Since y € H}(Q), it follows that (see [4, p. 255]) |y(z) — y(s)| <
cA||lz — s||gy for LN-almost all z,s € F), where the constant ¢ > 1 depends
only on N. Moreover, |y(z)| < Ad(z) on F\ by construction. Hence, the function
y(m)’FAUQC satisfies the Lipschitz condition with the same constant c\, and by a
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well-know result [4, p.80] it can be extended to RY with the Lipschitz constant
preserved. As a result, we obtain a function y, such that

yr € Hy(Q), yr=y LN-ae. in F),

6.5
Vyr=Vy LY-ae in F\, |[Vyallgy <cX LV-ae. in Q. (6.5)

Since the function y £N-a.e. in Fy coincides with a continuous function in Q, we
can take by continuity ¢ = y, in (6.4). Then, using the skew-symmetry property
of A and positiveness of the matrix C, we get

/Q(Vy,\,CVy)RNd:L‘:/ (Vy,\,CVy)RNdm

Fy

+/ (vy)\a va)RN d.’]l',
O\Fy
| (O CV)guidz= [ (0.CTy)g o

Fy\ Fy

5[ IVyEy d < / (V. C V) o,
Py Py

/F (T A V) o = /F (9 ATy gy

—/ (Vy,A(x)Vy)RN dr = / (A(x)Vy, Vy)RN dxr = 0.
Fy Fy

Taking these relations into account, integral identity (6.4) with ¢ = y, leads us
to the inequality

5/ IVyl2n do < —/ (Vyn, €+ AVy),y da
Fy Q\Fy
< ex / (IA@)llsx + 1C@) lgnovsns) [Vyllay de
Q\F
< ex / (IA@)lsv + 87) [ Vyllew de, (6.6)
O\Fy

where 8% = [[C(2)|| poo (e (v+1)/2). Therefore, by analogy with [6], for each 0 <
e < 1, we can reduce the inequality (6.6) to the following form

g [ a0 [ 9yl doar
0 F
<e / A / (IA@)lls~ + 87 [IVyllgw dzdr (6.7)
0 Q\Fy

We are now in a position to apply Theorem 5.2. To this end, we set

1

f(/\):—é)\*e in (52) and f(N) = -

A7 in (5.3),
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and observe that

JAESEE / [Vy|2y drax® / 19yl g~ de,
/ / 2) IVyllay dodr ’

where ((z) = ||A(x)||gv +B*. As a result, we can rewrite inequality (6.7) as follows

6 $7

/ Vol g™ do < 2o /Q IA@)lsx + 67) [ Vyllgn 9 dz.  (6.8)

Now it remains to apply the Holder inequality to the right-hand side of (6.8) with
conjugates p = 2/e, r =2, and ¢ = 2/(1 — ¢). One gets

€/2
/ (1A@)llsv + B) IVYllpw 9" da < (/ I1A@)llsn + B[ dx)
@ Q

1/2 (1—-¢)/2
X </ I Vy|zn dx) (/ g° dx) .
) 9)

As a result, we finally get

' o g ¢ by(68) ¢
lim /Q V9l Ty de < ZIV8lzamn 9l ey

e/2
x lim ~ (/ A(z)|lgn + B%|%/° da:) by (6:1) .

e—0 ¢

Hence, y = 0 and the proof is complete. O
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