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Some generalizations of a method of nonlocal transformations are proposed: a

connection of given equations via prolonged nonlocal transformations and �nding

of an adjoint solution to the solutions of initial equation are considered. A concept

of nonlocal transformation with additional variables is introduced, developed and

used for searching symmetries of di�erential equations. A problem of inversion

of the nonlocal transformation with additional variables is investigated and in

some cases solved. Several examples are presented. Derived technique is applied

for construction of the algorithms and formulae of generation of solutions. The

formulae derived are used for construction of exact solutions of some nonlinear

equations.
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1. Introduction

Wide range of e�ective methods for study and solving the nonlinear partial
di�erential equations are developed up today. Substantial part of them have in the
base the fundamental idea of symmetry of DE, and, thus, to the group theoretical
method of Lie [1�3] belongs. Such methods got numerous useful generalizations
by the present moment. Among most important of them there are approaches
based on study of conditional (nonclassical), weak symmetries [4�6] and nonlocal
symmetries of di�erential equations [7�14]. We do not claim to give complete
references for all the known results in this text. A description of the main results
of development in the speci�ed �eld can be found, e.g., in [9, 11�13].

However, in a great number of cases important for applications the information
obtained by classical group-theoretical method and its generalizations is quite
poor. Therefore a development other approaches that provide searching new sym-
metries and methods of solution these equations stay topical.

Here we note, besides the others, two important sources of creation of new
approaches. First idea is very old and is based on use of additional variables,
�����������������
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particularly, when the point transformations are using for integration of di�eren-
tial equations. Remind, for instance, the Bernoulli substitution y(x) = u(x)v(x)
for solving ODEs, the Fourier substitution u(x, t) = g(x)v(t) in the method of
separation of variables to PDEs or Lagrange's method of variation of arbitrary
constants for construction of a general solution y(x) = C1(x)y1(x)+C2(x)y2(x) to
inhomogeneous second order (for example) ODE from two known partial solutions
y1(x), y2(x) of appropriate homogeneous equation. One can continue a list of
examples this type [15,16].

Essentially other approach is based on the use of a nonlocal correspondence
between two given equations. Well-known method of B�acklund transformations
(BT) to this approach belongs and, being powerful tool for study of nonlinear
PDEs, is widely used nowadays. Particular cases of application this method to
geometrical researches were considered by Bianki, Ribokur, Darboux. Later this
method was studied and generalized in works of B�acklund and others [7]. Renewal
of interest to this method in 70th of past century resulted in active development
the theory of integrability for nonlinear di�erential equations.

� B�acklund transformations, ... too are transformations in which the (indepen-
dent and dependent) variables as well as their derivatives are involved, but each of
them makes sense, and is well de�ned, only for an associated special set of partial
di�erential equations and its image under this transformation.� [7]. According
to [7] a BT connecting the surface elements (x1, x2, u, u1, u2) and (y1, y2, v, v1, v2)
is determined as a set of four equations

Λi(x
1, x2, u, u1, u2; y1, y2, v, v1, v2) = 0, i = 1, ..., 4, (1.1)

solving which with respect to u1, u2 and x
j one gets the explicit solutions

ui = Hi(y
1, y2, v, v1, v2;u), i = 1, 2, (1.2)

and
xj = hj(y1, y2, v, v1, v2;u), j = 1, 2. (1.3)

Subscripts of functions denote di�erentiation with respect to the corresponding
arguments. In the case of two independent variables we also will use the special
notation of the variables: x1 = x, x2 = t and thus ut = ∂u/∂t = ∂tu, ux =
∂u/∂x = ∂xu.

The integrability condition for (1.2) is

∂x2H1 = ∂x1H2. (1.4)

Notice that it may be thought of as the zero curvature condition for suitable
connections [7]. If (1.4) generates the relation

∂x2H1 − ∂x1H2

∣∣∣∣F1(y1, y2, v(k))
≡ 0,

where
F1(y1, y2, v(k)) = 0,
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and the reversion of this procedure leads to the equation for u

F0(x1, x2, u(k)) = 0,

it is said that the B�acklund transformation connects (establish a correspondence
between) given equations and each of functions u and v have to obey the corres-
ponding di�erential equation. Here a symbol u(r) denotes the tuple of derivatives
of the function u from order zero up to order r ≤ k.

An approach uniting the B�acklund transformations and the theory of poten-
tials was generalized by Wahlquist and Estabrook via introducing new auxiliary
variables. It allows them to develop a method of pseudopotentials known also as
a method of prolongations of structures [17�22]. In the case of two independent
variables x1 = x, x2 = t they supposed an existence other potentials forming the
pseudopotential V = (vI, vII, ..., vM) such that a system

vJ
x = φJt(x, t, u(r), V ), vJ

t = −φJx(x, t, u(r), V ), J = (I, II, ...,M), (1.5)

replaces (1.2) [22]. So auxiliary variables (vII, vIII, ..., vM) may be thought of as
additional dependent variables introduced into the structure of the BT operating
in the space of two independent variables (x, t).

On the other hand a number of interesting results for nonlinear equations
connected among themselves by the nonlocal transformations are obtained for
today and the formulae generating solutions or nonlocal nonlinear superposition
are constructed. This approach is intended for search of the nonlocal symmetries
admitted by PDEs and is based on the nonlocal transformations technic [23,25,26].
A nonlocal transformation

T : xi = hi(y, v(k)), i = 1, . . . , n, uK = HK(y, v(k)), K = 1, . . . ,m

allows mapping a given initial (source) equation into another (target) equation.
We will describe a basic concept of this method in the beginning of the following
section. Note that formulae of nonlocal nonlinear superposition obtained may
be understood also as an ABT with an additional variable satisfying the same
equation [12].

The two approaches are entirely di�erent. The main di�erence between the
B�acklund correspondence of two given equations (systems of equations) and a
nonlocal transformation connecting the same equations, roughly speaking, is re-
duced to the using in the BT of the conjugate di�erential equations, depending
on two types of the dependent variables, that guarantee an integrability of the
complete system with respect to each family of variables.

Suppose we know only one subset of equations forming the BT system and
connecting a given DEs. Then a lack of conjugate subset of di�erential equations
forming whole B�acklund transformation sometimes can be restored from the
known one, being used as a nonlocal transformation connecting these equations.

For example, consider the Cole-Hopf substitution

u = −2 ∂x ln |v|, (1.6)
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connecting the Burgers equation

ut + u ux − uxx = 0 (1.7)

and the linear heat equation
vt − vxx = 0. (1.8)

We aim to construct the lacking conjugate part of the BT. Di�erentiating the
Cole-Hopf substitution with respect to x we get

ux + 2 v−1vxx − 2 v−2vx
2 = 0.

Substituting into this result vxx = vt and vx = −2−1u v, we �nd an expression

ux + 2 v−1vt − 2−1u2 = 0.

It is well-known second (conjugate) equation in the BT, which connects two given
equations [22].

Finite nonlocal transformations are e�ectively used for investigation of the
nonlinear di�erential equations for a long time. See, e.g., publications [10�12,27�
29] devoted to various applications of these transformations.

The usage of auxiliary dependent variables for deriving helpful information
about nonlinear PDEs is a widespread technique. One of immediate and obvious
generalizations of the nonlocal transformations approach assumes the subsequent
connection of equation F1 by new nonlocal transformation T1 with new equation
F2, then F2 by T2 with F3 and so on..., and use of the properties of these auxiliary
equations for information about symmetries and solutions of the initial equation
[10�12].

Within the potential symmetries approach note some results based on intro-
duction next potential variables applying some iterating technique when previous
potential is known. Such results were obtained by Akhatov, Gasisov and Ibragimov
[30] and were used in more recent paper of King [31] where a tree of nonlocally
related PDEs were constructed. The similar multipotentialisation has allowed
Euler construct the iterating-solution formulae for Krichever-Novikov equation
and others in [29]. The method of construction of a tree of nonlocally related
PDE systems for a given PDE system has been generalised in series of recent
publications of Bluman, Cheviakov and Ivanova [32�35].

The aim of present work is further generalization and development of the
methods based on nonlocal transformations of variables for study and integration
of nonlinear di�erential equations. In the current paper we use the classical group-
theoretical method of Lie [1�3] and the method of nonlocal transformations of
variables [10, 11,23,25,26].

The paper is organized as follows.
In the next section we begin with some preliminary remarks to the method of

nonlocal transformations and propose its generalizations. We consider an appli-
cation of prolonged nonlocal transformations to the prolonged PDEs that do not
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admit the direct correspondence under appropriate nonlocal transformations in
one step but admit such procedure in several steps using the auxiliary intermediate
equations.

An existence of the operator equation connecting a source equation with a
target one has allowed us to o�er in [36] a method of deriving a solution adjoint

to solutions of the initial equation. In the present paper we solve this problem
di�erently.

In Section 3 the concept of the nonlocal transformations with additional
variables is introduced. The basic formulae of prolongations of them are derived
using this notion and di�erent modes of connection of the partial di�erential
equations via such transformations are considered.

Having introduced the concepts above, we establish new algorithms and derive
the formulae of generation of solutions to nonlinear equations using transforma-
tions with additional variables (Section 4).

An inversion of the nonlocal transformation with additional variables is the
subject of Section 5.

2. Some generalizations to nonlocal transformation approach

2.1. Basic concepts of a method of nonlocal transformations

The systematical using of the nonlocal transformations [10, 23, 25, 26, 38] has
shown that wide family of known soluble equations admit an adequate interpre-
tation within the framework of a given approach.

Our main goal in this section is to recall the main concepts of the method of
nonlocal transformations. Suppose a given nonlocal transformation

T : xi = hi(y, v(k)), uK = HK(y, v(k)),

i = 1, . . . , n, K = 1, . . . ,m.
(2.1)

maps an initial equation
F0(x, u(n)) = 0 (2.2)

into an equation Φ(y, v(q)) = 0 of order q = n + k, which admits a factorization
to another, we call them a target, equation

F1(y, v(s)) = 0, (2.3)

i.e.,
Φ(y, v(q)) = λF1(y, v(s)). (2.4)

λ is a di�erential operator of order n + k − s. Then we shall say that equations
F0(x, u(n)) = 0 and F1(y, v(s)) = 0 are connected by the nonlocal transformation
T . Thus, obviously, the identity

T F0(x, u(n))
∣∣∣∣
DF1

≡ 0.
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is ful�lled. Here and in what follows the symbol u(r) denotes the tuple of partial
derivatives of the function u from order zero up to order r. In the case of two
independent variables we use the special notation of the variables: x1 = x, x2 = t
and thus ut = ∂u/∂t = ∂tu, ux = ∂u/∂x = ∂xu.

If the target equation (2.3) coincides with the sours equation (2.2) then T is
a nonlocal invariance transformation of equation (2.2) and we can directly use T
for the construction of a formula generating solutions to this equation.

When (2.3) is linear then we can construct the formulae of nonlinear nonlocal
superposition of solutions of equation (2.2). Such formulae allow �nding a new
solution of equation (2.2) from two known ones and may be thought of as an
auto-B�acklund transformations (ABT) with additional nonlocal variable. Notice
also that a nonlocal transformation can map a given sours equation to a target
equation which admits additional Lie symmetries. This connection can be used
for construction of nonlocal symmetries of the initial equation.

The inversion of a nonlocal transformation is not trivial. Consider two possible
approaches solving this problem.

First is based on the integration of the nonlocal substitution as a PDE with
respect to a conjugate dependent variable. Let's explain told on a simple example.
Given the Cole-Hopf substitution (1.6). To search of a nonlocal substitution in the
form v = H(x, u(±k)), one can integrate (1.6) as di�erential equation for unknown
v with respect to x �nding

v = e−1/2
´
u(x,t)dx.

Substituting this result into the linear heat equation (1.8) we get an integro-
di�erential expression. Di�erentiating it with respect to x and simplifying the
result we obtain the Burgers equation (1.7).

Often it appears technically impossible to integrate a given substitution with
respect to a conjugate dependent variable. Then taking into account that a BT
connects given equations in both directions one can try to construct the correspon-
ding BT emanating only from known nonlocal substitution.

So, this approach provides the algebraic resolving of the nonlocal substitution
with respect to a derivative of a conjugate dependent variable. Then substitution
of the result obtained and its di�erential consequences into the target equation
and solving this for another derivative of the same dependent variable. In such a
way one can �nd the conjugate equation restoring the B�acklund transformation.
The veri�cation of the integrability condition by cross di�erentiation of obtained
expressions must generate the manifold de�ned by the sours equation.

Assume we have a nonlocal substitution which cannot be solved with respect
to the desirable derivative and we aim to receive the BT connecting the given
equations. In this case the use of di�erential consequences of the initial substi-
tution is necessary. For instance, let`s derive the BT determined by a system of
di�erential equations of the form (1.2), that is

ux = Hx(x, v(k)), ut = Ht(x, v(k)),
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which connects the Burgers equation and the linear heat equation (1.8). Di�eren-
tiating (1.6) with respect to x and taking into account (1.6) and (1.8) we �nd

ux = −2 v−2
(
v vxx − 4−1u2v2

)
.

Substituting above expression into the right side of (1.7) and taking into account
(1.6), (1.8) again, we get

ut = −v−1 (2 v vxt + uvt) .

A cross di�erentiation of obtained expressions and exclusion of ux, ut after simpli-
�cation, with taking into account of substitution (1.6) in the form vx = −2−1uv,
allows to �nd an expression λ(vt − vxx).

2.2. Connection of PDEs by prolonged nonlocal transformations

The e�ciency of application the nonlocal transformations for study of non-
linear PDEs were noted above. Nevertheless the invariance of such important
equations as Korteweg-de Vries (KdV) equation, sine-Gordon (SG) equation and
of others with respect to appropriate nonlocal transformations has appeared
possible only by several steps, i.e., using appropriate intermediate equations,
which are connected with each other by own nonlocal transformation. Therefore
we are very interested in a solution of the corresponding problem of nonlocal
invariance by one step. It has appeared that direct nonlocal invariance of such
equations or, in some cases, of their di�erential consequences, becomes possible
via appropriate generalization of the approach used.

The SG equation, which �rst arose in connection with a transformation pro-
blem in di�erential geometry, has long been known to admit a B�acklund trans-
formations (BT) from which many of its interesting properties were derived.

Example 2.1. Let choose the SG equation in the form

uxt − sin u = 0. (2.5)

Assume we have only one equation from a system of well known ABT of this
equation, and choose it in the form, solved with respect to ux

ux = −vx +
2

b
sin

(
u− v

2

)
= 0. (2.6)

Here v(x, t) is a solution of another example of the same equation

vxt − sin v = 0. (2.7)

Let di�erentiate both the sides of equality (2.6) with respect to x and substi-
tute the result into (2.5). Then we simplify an obtained result using an equality
vxt = sin v and its di�erential consequences. Solving the above result with respect
to ut we once again di�erentiate it with respect to x. So we have

uxt − sin u = H(u, ux, v, vx, vt, vxt)− sin u. (2.8)
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Here H denotes for simplicity a quite determined function. Simplifying the right
side of (2.8) with use of equations (2.7) and (2.6) we �nd that a result vanishes
identically.

Example 2.2. Consider now the KdV equation

ut + 6uux + uxxx = 0 (2.9)

and show an existence of a nonlocal transformation

ux = −(u− v)
√
−2(u+ v)− vx, (2.10)

mapping a given equation into itself

vt + 6vvx + vxxx = 0. (2.11)

To exclude u, ut from Eq. (2.9) we'll solve it for u and then di�erentiate a
result with respect to x

ux +
1

6

uxt + uxxxx
ux

− 1

6
uxx

ut + uxxx
ux2

= 0. (2.12)

Substituting ut = −6uux − uxxx into (2.12) we get

ux +
1

6

uxt + uxxxx
ux

+
uuxx
ux

= 0. (2.13)

Now we can apply the nonlocal transformation (2.10) to the equation (2.13).
Making transition in this result onto the manifold determined by the equation
(2.11) and its di�erential prolongations, and using then equality (2.10) with
its di�erential consequences we get a result, which after simpli�cation vanishes
identically.

We could not integrate the equation (2.10) for u and to �nd in such a way
necessary nonlocal substitution. In this case the usage of (2.10) for connection
of di�erential equations can be understood as an application of the prolonged
unknown nonlocal transformation to the prolonged PDE.

The examples we had considered allow o�ering use of prolonged nonlocal
transformations in the form

T : xi = hi(y, v(k);u(p)), uq
K = Hq

K(y, v(k);u(p)).

Here uq
K are forming an incomplete set of �rst derivatives in Em, i = 1, . . . , n,

K = 1, . . . ,m, p ≤ q < n and all possible the integrability conditions must be
adopted into consideration.

Thus, we can generalize the factorization scheme in such a way:

T λ F (x, u(n)) = λ0F (x, u(n)) + λ1F1(y, v(s)) + λ2T . (2.14)
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Here λ is the (matrix) operator realizing a necessary prolongation of a given
equation (system), λ2T means λ2, q

K (uq
K −Hq

K(y, v(k);u(p)). Now the identity

T λF0(x, u(n))
∣∣∣∣
DF0, DF1, DT

≡ 0

holds. A notation D(F ) marks a set de�ned by a given equation F and by its
di�erential prolongations D(1)(F ), D(2)(F ) . . . .

An approach we have considered is a partial realization of the second type of
the nonlocal transformations of nonlinear di�erential equations [25].

2.3. Solution of an initial equation adjoint to its known solutions

This chapter is devoted to the construction of solutions to an initial equation
generated by ones of appropriate inhomogeneous target equation. An existence of
a factorization equation (2.4) give rise to technique [36] of a �nding of a special
solution to the initial equation (2.2). Further we name it adjoint. The main idea
consists of using a nonlocal substitution with a new variable w(y)

F1(y, v(s)) = w(y) (2.15)

and then a solution of this inhomogeneous PDE with arbitrary perturbation w(y)
for v. The problem has appeared rather complicated.

Nevertheless we assume now that a nonlocal substitution v = V (y, w(±r)) is
found and can be applied to equation

λ(y, v(s))F1(y, v(s)) = λ(y, v(s)) w(y) = 0.

Simplifying the last, one gets an equation for a new variable w

λ(y, w(±r+n+k)(y)) w(y) = 0.

Let's solve an equation obtained and substitute its solution w = w(y) into the
equation (2.15). As soon as the solution v = v(y) to this equation may be found,
a nonlocal transformation T allows one to �nd a solution u(x) of the initial
equation (2.2).

Choosing in (2.15) w(y) = 0 we get a homogeneous equation (2.3) and, obvi-
ously, we have an ordinary case of the conformity of solutions of two given equa-
tions (2.2), (2.3). Therefore, a set of solutions of equation (2.2), obtained from
the initial solutions of an inhomogeneous equation (2.15), in this sense adjoins
to the solutions, which are generated by means of T from the initial solutions
of a homogeneous equation (2.3). How a di�culty of solving Eq. (2.15) can be
overcome?

We can solve an above problem by another way. Let's assume, that a given
function v = f(y) is not a solution of equation (2.3), that is, substituting this
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function into (2.3), we get the equation (2.15). Suppose, nevertheless that equation
(2.4) holds and PDE

λ(y, v(s))w(y) = 0. (2.16)

appears true. Here w runs through the solution set of a linear equation with
arbitrary variable coe�cients. Solving this equation with respect to unknown
function w, one can �nd its solution as a function depending on v(y)

w = W (y, v(y)). (2.17)

After substitution of this expression w = W (y, v(y)) into equation (2.15) we
obtain an inhomogeneous equation for dependent variable v in the form

F1(y, v(s)) = W (y, v(y)). (2.18)

Obviously, that determined by this equation a function v(y) is a solution of
equation (2.4). Substituting obtained v(y) into the formulae of a nonlocal trans-
formation T one can �nd appropriate solution of a given equation (2.2). Moreover,
having the information on point symmetries of the inhomogeneous equation (2.18),
one can construct r-parametrical family of solutions to it and, consequently, �nd
the corresponding parametrical sets of solutions to Eq. (2.2). Now we illustrate
the construction by some examples.

Example 2.3. It is well known that the Burgers equation (1.7) owing to the
Cole-Hopf substitution (1.6) (v(x, t) 6= 0) is directly transformable to the linear
heat equation [22] as follows

[−2v−1∂x + 2v−2vx] (vt − vxx) = 0. (2.19)

Assume there exists a function w(x, t) such that

vt − vxx = w(x, t), (2.20)

and solve a linear equation

∂xw(x, t)− v−1vx w(x, t) = 0. (2.21)

with respect to w, having in mind that v(x, t) are variable coe�cients. The general
solution of this equation can be easily found

w(x, t) = s(t)v(x, t).

Here s(t) is an arbitrary function. To solve an inhomogeneous equation

vt − vxx = s(t)v(x, t) (2.22)

we can choose, for example, one of the group-invariant solutions of equation
(2.22). Let it be determined by a characteristic equation

1

2
x ∂xv + t∂tv − ts(t)v = 0. (2.23)
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The solution of a system of di�erential equations (2.22), (2.23) has the form

s(t) = F (t)−1Ft(t), v = F (t)

(
1 + c erf

(
x

2
√
t

))
.

Solving the �rst ordinary di�erential equation we �nd F = c1e
´
s(t)dt, and a

function v then reads

v = c1e
´
s(t)dt

(
1 + c erf

(
x

2
√
t

))
. (2.24)

Substituting this result into the Cole-Hopf formula (1.6) we get a corresponding
solution of the Burgers equation (1.7)

u = − 2 c1 e−
x2

4t

√
πt
(

1 + c1 erf
(

x
2
√
t

)) .
Let us set in (2.23) s(t) = 1√

t
and �nd its solution v = F ( t

x2 ) e2
√
t. Substituting

the ansatz obtained into equation

vt − vxx =
1√
t
v(x, t) (2.25)

we get the reduction

4ω2F̈ + F (6ω − 1) = 0, ω =
t

x2
.

So

v =

(
c1 + c2 erf

(
1

2
√
ω

))
e2
√
t

and consequently

u = − 2 c2 e−
x2

4t

√
πt
(
c1 + c2 erf

(
x

2
√
t

)) . (2.26)

It was noted above, having information on symmetries of an inhomogeneous
equation (2.25), we can generate its parametrical sets of solutions and, con-
sequently, �nd appropriate parametrical sets of solutions to Eq. (1.7). For example,
Lie symmetry generator for (2.25)

Y = xt∂x + t2∂t −
1

4
(−4t3/2 + x2 + 2t)v∂v

allows getting such invariant solution of (2.25):

v = −
√

2

2− εt
e
−16
√
t+8t3/2ε−x2ε
4(−2+εt)

(
−c1 + c2 erf

( √
2x

2
√
t(2− εt)

))
.
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Here ε is a group parameter. This solution generates appropriate solution to
Eq. (1.7)

u =

√
2

2

G

H
,

G = xε
√

2πt

(
−c1 + c2erf

(
x
√

2

2
√
t(2− εt)

))
+ 4c2

√
2− εt e

x2

2t(−2+εt) ,

H =
√
πt (−2 + εt)

(
−c1 + c2 erf

(
x
√

2

2
√
t(2− εt)

))
.

One can easy verify this solution cannot be obtained from (2.26) by Lie para-
metrical generation using the local point symmetry admitted by the Burgers
equation.

Another Lie symmetry of equation (2.22) is determined by a characteristic
equation

t x ∂xv + t2∂tv −
1

4

(
4t2s(t)− 2t− x2

)
v = 0. (2.27)

Choosing here s(t) = t−1, we obtain

v = (c1x+ c2t) t
− 1

2 e−
x2

4t ,

and

u = −c1(2 t− x2)− c2 x t

t (c1x+ c2t)
.

Searching among the non-invariant solutions, we can choose s(t) in the form

s(t) =
2 + c2

1(t+ 2 t2)

2 c2
1 t

2
.

Appropriate equation (2.22) in this case

vt − vxx =
2 + c2

1(t+ 2 t2)

2 c2
1 t

2
v(x, t) (2.28)

admits a solution

v = c2 e−
4t2−x2

4t sin

(
−x+ c3 t

c1 t

)
. (2.29)

Application of the Cole-Hopf substitution (1.6) to (2.29) allow us to �nd a corres-
ponding solution of the Burgers equation (1.7)

u =
x

t
+

2

c1t
cot

(
−x+ c3 t

c1 t

)
. (2.30)

Example 2.4. Besides linearization by the Cole-Hopf substitution the Burgers
equation admits the mapping into itself

vt + vvx − vxx = 0.
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via the ABT. Using one equation of this ABT, say

u = −2 ∂x ln |v|+ v, (2.31)

we obtain in this occasion an appropriate operator equation (2.4) [22]

[−2v−1∂x + 2v−2vx + 1] (vt + vvx − vxx) = 0. (2.32)

Let us determine the function w(x, t) being a perturbation in the equation

vt + vvx − vxx = w(x, t) (2.33)

and solve a linear equation

∂xw(x, t)− v−1vx w(x, t)− 2−1w(x, t) = 0 (2.34)

with respect to w. A general solution of this equation has a form

w = s(t)v exp

(
1

2

ˆ
v dx

)
.

Hence the auxiliary function v can be found as a solution of the equation

vt + vvx − vxx = s(t) v e( 1
2

´
v dx). (2.35)

Solving (2.35) with respect to integral term and di�erentiating equality with
respect to x we get a third order di�erential equation

vxt −
1

2 v

(
v2vt + v3vx − 3vvxx + 2vvxxx + 2vtvx − 2vxvxx

)
= 0. (2.36)

The maximal Lie invariance algebra of (2.36) is spanned by three operators

X1 = ∂t, X2 = ∂x, X3 = x∂x + 2t∂t + v∂v. (2.37)

The characteristic equation associated with X3

x vx + 2 t vt + v = 0

admits a general solution of the form v = x−1f(t x−2). Substitution of this ansatz
into (2.36) yields the reduced ODE depending on argument w = t x−2

−16w3ff
′′′

+ 4w
(

(1− 44w)f − 3wf2 + 4w2f
′
)

+ 4wf
′2

(−1 + 10w)

+f
′ (

4(1− 20w)f + (1− 30w)f2 − 2wf3
)
− f4 − 6f3 − 8f2 = 0.

Solving this equation we �nd a solution of (2.36)

v = −16x−1−c1c3M1 − U1 + c3(1
8 + c1)M2 − 1

4U2

c2

√
tx−2 e

x2

4t + c3M1 + U1

. (2.38)
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Following notations are used here [37]:

M1 = KummerM(1− 4c1, 3/2, x
2/4t), M2 = KummerM(−4c1, 3/2, x

2/4t),

U1 = KummerU(1− 4c1, 3/2, x
2/4t), U2 = KummerU(−4c1, 3/2, x

2/4t)

and c1, c2 and c3 are arbitrary constants.
Note that substitution of the same ansatz v = x−1f(t x−2) into (2.35) allows

us obtain a reduction to the ODE with integral term only for case s(t) = t−1. As
a result we get a solution of equation (2.35) in the form (2.38) again.

Inserting obtained v into the nonlocal transformation (2.31) we easily �nd
corresponding solution of the Burgers equation

u =
e
x2

4t tG1 + x2
√
t/x2G2

xt
√
t/x2(c2

√
t/x2e

x2

4t + c3M1 + U1)G3

. (2.39)

Such notations are used here:

G1 = 8c1c2c3M2 − 2c2U2 + c2c3M2,
G2 = c2

3M1M2 + c3U1M2 − 2c3U2M1

+8c1c
2
3M1M2 + 8c1c3U1M2 − 2U1U2,

G3 = −8c1c3M1 − 8c1U1 + c3(1 + 8c1)M2 − 2U2.

As it has been shown above, when the nonlocal transformation T connects
two given equations as follows

F0(x, u(n)) = λF1(y, v(s)), (2.40)

there exists a technique, which allows to construct another solution of a given
equation F0 from any given solution of the inhomogeneous equation F1 = w with
special right side.

Note. Here we aim to point out how an existence of the nonconserved currents
or nonvanishing curvature connected with the target equation give rise to adjoint
solution of the initial equation. We are mainly interested in the role which the
conservation laws play within a nonlocal transformation approach.

We shall deal �rst with the case when the partial di�erential equation in the
simplest case of two independent variables

F (x, t, u(k)) = 0 (2.41)

should admit at least one conservation law

Dtφ
t(x, t, u(r)) +Dxφ

x(x, t, u(r)) = 0. (2.42)

Here Dt and Dx are the total derivatives with respect to the variables t and x,
φt and φx are conserved density and �ux, respectively. Conservation laws play
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an important role in the understanding of the physical model associated with
a system of PDE and can be useful for the symmetry searching and e�ective
integration of such equations.

In order to present Eq. (2.41) in the conservation law form a potential function
v determined by the auxiliary system

vx = φt(x, t, u(r)), vt = −φx(x, t, u(r)). (2.43)

should be introduced [8]. It is worth mentioning that the notion of potential
symmetries of di�erential equations was introduced by Bluman et al. [3, 8]. The
study of system (2.43) within the framework of the classical group analysis as a
rule result in an additional information about symmetry properties of the initial
equation (2.41). The symmetry is said to be a potential symmetry of (2.41) when
it is a point symmetry of a potential system (2.43) which is not projected onto a
point symmetry of (2.41).

Excluding the initial dependent variable u from the system (2.43) it is often
possible to obtain an equation

G(x, t, v(k)) = 0 (2.44)

with respect to only the potential variable v. Then this system represents a
B�acklund transformation connecting (2.41) with (2.44). This is the case we are
interested in.

Assume now that given equations (2.2) and (2.3) are connected by a nonlocal
transformation T and each of them admits appropriate conserved current. Then
operator equation

F0(x, u(n)) = λF1(y, v(s)), (2.45)

gives rise to the corresponding operator expression for conserved currents

divJ(u)(x, u(n)) = λ(y, v(s)) divJ(v)(y, v(s)). (2.46)

In two-dimensional case this means

Dtf
t(x, t, u(r)) +Dxf

x(x, t, u(r))

= λ(y, t̃, v(s))
(
Dt̃g

t̃(y, t̃, v(k)) +Dyg
y(y, t̃, v(k))

)
,

where f t, fx and gt̃, gy are conserved density and �ux for each equation respec-
tively. This gives rise to nonlocal correspondence between the potential functions
that can be obtained for each conservation law, just as it has been made for the
system (2.43).

As we have shown above, an adjoint solution of the equation (2.2) follows from
the inequality

J(v)(y, v(s)) 6= 0
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with the special choice of the right term in the target equation. Hence, the least
action principle for the equation (2.3) admits appropriate deviations, determined
by adding into the model of external charge. This turns Eq. (2.3) into an inhomo-
geneous one. In other words, an adjoint solution of the equation F0 can be
generated by a solution of the perturbed equation F1, last may be thought of
as F1 putted into the special exterior �eld, generated by an appropriate density
of a charge.

On the other hand the theory of the vector bundle in di�erential geometry
is the mathematical basis of gauge �eld theory, where a connection on a vector
bundle may be thought of as a gauge potential, and the curvature as a �eld
strength. Hence application of the appropriate geometrical model to equation
divJ(v)(y, v(s)) = 0 allows interpret it as the zero curvature condition for suitable
connections [21]. We conclude, therefore, that the aforementioned solutions arise
from the nonzero curvature condition based on an inhomogeneous equation with
special form of the right hand side. By virtue of noted above conserved currents
(derived from symmetries of the action principle) and the vector bundle approach
with theory of connections became an e�ective tool for the actual integration of
the di�erential equations.

3. Nonlocal transformations with additional variables

We aim here to develop a technique of introduction additional variables into
a nonlocal transformation. Before making any de�nitions we �rst introduce some
notation. We'll write a given system of PDE, using the subscripts to denote the
partial derivatives

F0
A(x, u(k)) = 0, x = {xi}, i = 1 . . . n,

A = 1 . . .M, u = {uK(x)}, K = 1, . . . , N.
(3.1)

For simplicity we will use also a designation

{F0
A(x, u(k))} = F0(x, u(k)).

Let's assume a nonlocal transformation is given

T : xi = hi(y, v(k); z
(G), w(q)

(G)), uK = HK(y, v(k); z
(G), w(q)

(G)),

z(G) j = ϕj(y, v(k);w(q)
(G)), G = 1, . . . ,m.

(3.2)

Here, unlike a nonlocal transformation T (2.1), the functions on the right of
equations depend on new variables w(q)

(G)(z(G)) which depend on own new inde-

pendent variables z(G), external with respect to (y, v). Besides, new expressions
de�ning new independent variables are present in (2.1).

A di�erential prolongation of the �nite nonlocal transformation T gives rise
getting appropriate expressions for the �rst derivatives, and then, applying a
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prolongation procedure repeatedly, one can get appropriate expressions for deri-
vatives of the second order and so on. For example, to �nd the �rst derivatives
we consider n equations obtained from (3.2) by di�erentiation with respect to xj

DiH
K(y, v(k); z

(G), w(q)
(G)) = ujDih

j(y, v(k); z
(G), w(q)

(G)). (3.3)

If we denote D̃i and D̃G the total derivatives with respect to variables y and z
accordingly

D̃i = ∂ i + ∂ iv(p) ∂v(p)
+ . . . , D̃Q = ∂z(Q) + ∂z(Q)w(q)

(T ) ∂w(q)
(T ) + . . .

and use the summation convention for repeated indices, the left side of equation
(3.3) can be written in a form

DiH
K = D̃iH

K +Diz
(G)D̃QH

K .

Solving a system of linear algebraic equations (3.3) with respect to uj we get the
transformation formulae for all �rst derivatives

uj = Hj
K(y, v(k+1); z

(G), w(q+1)
(G)),

i.e. the �rst prolongation of (3.2) is obtained. When applied recursively in this
case, such successive prolongation adds new derivatives to the previous ones, and
so generates, after r applications, the r + 1 -derivatives

u(r) j = HK
(r) j(y, v(k+r+1); z

(G), w(q+r+1)
(G)).

So, it is obvious that a nonlocal transformation (3.2) if being applied to a given
equation (3.1) maps it into the higher order equation

Ω(y, v(n+k); z
(G), w(q+k)

(G)) = 0,

which may admit a factorization to a tuple of equations of di�erent types:

F1(y, v(s)) = 0, (3.4)

FJ(z(J), w(q+k)
(J)) = 0, J = 2, . . . ,m, (3.5)

(according to our notation, (3.5) should be understood as a system of equations
FBJ(z(J), w(q+k)

(J)) = 0), and, at last, a set of equations of the more general form

ΦC(y, v(n+k); z
(G), w(q+k)

(G)) = 0, C = m, . . . , c. (3.6)

Here we suppose all w(q+k)
(G) depend on full set of independent variables y, z(G).

In other words, we suppose that factorization admits a presentation by the
operator expression

Ω(y, v(n+k); z
(G), w(q+k)

(G)) = λ1F1(y, v(s))+

λJFJ(z(J), w(q+k)
(J)) + λCΦC(y, v(n+k); z

(G), w(q+k)
(G)).

(3.7)



SOME GENERALIZATIONS OF THE NONLOCAL TRANSFORMATIONS APPROACH 93

Here the summation convention for repeated indices has been used,

λQ(y, v(n+k); z
(G), w(q+k)

(G))

are the di�erential operators of appropriate order. Then we say that equations
F0(x, u(n)) = 0 and F1(y, v(s)) = 0 are forced to be connected by the nonlocal
transformation T , which depends on additional variables, and the equation

T F0(x, u(n))
∣∣∣∣
DF1,DFJ ,DΦC

≡ 0

is fair. As well as earlier, D(F ) means a set of a given equation F and its
necessary di�erential prolongations. This identity means a transition in the result
of application of the nonlocal transformation to Eq (3.1) onto the manifold de�ned
by equations (3.4), (3.5) and (3.6) and their necessary di�erential prolongations.
The simpli�ed result vanishes identically. Without the second and the third terms
in the right hand side in (3.7) the nonlocal connection between equations F0 and
F1 we assume impossible. So, they force this equations to be connected and we
can call this case "the forced nonlocal connection".

Setting λJ = λC = 0 in (3.7) we obtain an ordinary nonlocal transformation
T described at the beginning of Section 2.

In that case, when λC = 0, a given equation (3.1) admits a mapping into the
equation (3.4) by means of expansion of the nonlocal transformation by a set of
new dependent variables w(q)

(G)(z(G)), each of which depends on appropriate set of

own additional independent variables z(G). Each dependent variable is determined
by own PDE of the form (3.5).

Suppose that λJ = 0. Then an equation (3.1) can be connected with an
equation (3.4) by the nonlocal transformation, the supplemented by a set of
new dependent variables w(q)

(G)(z(G)), that depend on full set of all independent

variables y, z(G). If it is possible to hunt out the solution of a system (3.4), (3.6),
the corresponding solution of a given equation (3.1) can be found. In particular,
system (3.6) can appear linear, where variable factors are some functions of y
and v(q).

Notice that a concept of an adjoint solution which we had developed in
the second subsection of Section 2. can be applied to the generalized nonlocal
transformation (3.7). Set, for example,

F1(y, v(s)) = W1(y), FJ(z(J), w(q+k)
(J)) = WJ(z(J)),

ΦC(y, v(n+k); z
(G), w(q+k)

(G)) = WC(y, z(G)),
(3.8)

were W1(y), WJ(z(J)) and WC(y, z(G)) are arbitrary perturbations of the corres-
ponding equations. Then a condition Ω(y, v(n+k); z

(G), w(q+k)
(G)) = 0 leads to the

equation

λ1W1(y) + λJWJ(z(J)) + λCWC(y, z(G)) = 0. (3.9)
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If this equation can be solved with respect toW..., then the possibility to construct
an adjoint solution of equation (3.1) arises.

Let's consider now examples of the forced connection of the nonlinear partial
di�erential equations via the nonlocal transformation with additional variables.

Example 3.1. Suppose the Burgers equation (1.7) admits a linearization
by a nonlocal transformation with one additional variable to the linear heat
equation (1.8) jointly with auxiliary linear equation depending on additional
function z(x, t)

zt − vx2 − zxx = 0. (3.10)

Let's search for this nonlocal transformation in the form

u(x, t) = H(v(x, t), vx(x, t), z(x, t), zx(x, t)). (3.11)

Substituting (3.11) into the equation (1.7) we obtain an expression, which de-
pends on the third order derivatives. Making transition here onto the manifold
de�ned by equations (1.8), (3.10) and by their di�erential prolongations with
respect to x, and simplifying the result, we get a di�erential expression. This
expression determines a function H(v, p, z, q), p = vx, q = zx, and splitting it
with respect to the derivatives

vxx(x, t), vxxx(x, t), zxx(x, t), zxxx(x, t),

we get the following system of partial di�erential equations:

p HHv + (qH + p2)Hz − 2 p qHvz − q2Hzz − p2Hvv = 0,

−2 q Hzp +HHp + 2 pHq − 2 pHvp = 0,

−2 pHvq +HHq − 2 q Hzq = 0, Hpp = Hqq = Hpq = 0.

(3.12)

The solutions of the system (3.12) can be easily found. The �rst solution when
Hz = 0 is the Cole-Hopf substitution

u = − 2 vx
v − 2 c

. (3.13)

Another solution has a form

u = −(−4 v + 8 c1) vx − 4 zx
2 z + v2 − 4 c1v − 4 c2

. (3.14)

An existence of this nonlocal connection may be used for construction new tech-
nique of generation of solutions to the Burgers equation (1.7).

Example 3.2. It is well known (see e.g. [12]) that nonlinear heat equation

ut − ∂x(u−2ux) = 0 (3.15)

admits linearization by a nonlocal transformation. Let u(x, t) is solution of an
initial equation (3.15) and v(y, t) is a solution of the target equation

vt − ∂x(v−2vx) = 0.
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One can easily verify a nonlocal invariance of the equation (3.15) via the trans-
formation with additional variables

u(x, t) =
1

1
v(y,t) +D1w (z, t)

, x = y + w (z, t) , (3.16)

where a new additional independent variable is determined by a relation z =´
v(y, t)dy + f(t) and y = φ(x, t) is de�ned by the di�erential equation

φt −
φxx

(v(φ, t)φx)2
= 0. (3.17)

Here the additional variable w (z, t) runs through the set of solutions of the linear
heat equation D2w −D11w = 0.

Using a connection of a linear heat equation with the Burgers equation (1.6)
one can easy construct another nonlocal invariance transformation of (3.15) with
additional variable being a solution of the Burgers equation

u(x, t) =
1

1
v(y,t) −

1
2w (z, t) e−

1
2

´ z w(r,t)dr
, (3.18)

x = y + e−
1
2

´ z w(r,t)dr, z =

ˆ
v(y, t)dy.

A new additional independent variable is de�ned as well as in the previous case
by a relation z =

´
v(y, t)dy+ f(t) and y = φ(x, t) is determined by the equation

(3.17). An additional variable w (z, t) runs through the set of solutions of the
equation

D2w + wD1w −D11w = 0.

As has been pointed above, the nonlocal transformations with additional
variables can be e�ectively applied. In the next section we'll develop a new
approach for generation of solutions to given equation from known ones. When
using a nonlocal (invariance or linearization) transformation with the additional
variables we assume that an initial equation do not admits marked properties
without them. Consequently they do forcing a given equation to this behavior
(property). The �mechanism� of this forcing lays in the factorization equality
which is described by means of an operator expression (3.7) as well as in an
interpretation of an adjoint solution in Note to Subsection 2.3. A notions �gauge
symmetry�, �gauge transformation� are rather close but have quite special appli-
cation.

4. Forced symmetries and generation of solutions

Variety of generation methods have been developed for solving the extensive
classes of nonlinear partial di�erential equations. They often result in algorithms
for �nding new solutions from known one. Application of nonlocal transformations
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with additional variables allows constructing a new technique of generation. As
we use a nonlocal mapping of an initial equation onto a given one under force

determined by additional function (a solution of additional equation), the appro-
priate nonlocal symmetries we call the forced symmetries.

In this section we shall demonstrate the e�ciency of formulae obtained above
for construction of new solutions, depending on an arbitrary function, for a given
equation.

We show �rst how to derive (explicit) solutions of Eq. (1.7) directly from
the formula (3.14) using an arbitrary solution v(x, t) = φ(x, t) of a linear heat
equation. Having such a solution we then substitute its derivative into Eq. (3.10).
Solving this equation for z(x, t) and substituting the components obtained into
(3.14), we �nd necessary solution. It is obvious that the basic complexity is related
with �nding solutions of the equation

zt − φx(x, t)2 − zxx = 0. (4.1)

Here are some examples of construction of solutions to Eq. (1.7).

1. v = x2 + 2t, →

z = c4G1ek t − c1 + c2x
4 + c3x

3c2
→

u = −4
(

2c2x
3 + 12c2x(t− k1) + 3

√
kc2c4ek tG2

)
×
[
6c2c4ek tG1 + c2x

4 + 12c2(x2 + t)(t− k1)− 2c3x− 12k1c2t− 12k2c2 − 2c1

]−1
.

Here,

G1 = c5e
√
k x + c6e−

√
k x and G2 = c5e

√
k x − c6e−

√
k x,

and ci, k, kj are some constants.

2. v = k sin(ω) ea t, →

z = c4c6ec1t−
√
c1x + c4c5ec1t+

√
c1x − k2

2 e2at

+ 1
2c3

(
c1k

2e2atcos(
√

2ω) + c2k
2e2atsin(

√
2ω) + c3k

2e2atcos2(ω)
)
.

The notation ω =
√
−a x+ b is used here. → u = A

B ,

A = 4c3

(
2kk1eat

√
−acos(ω) + c4c6

√
c1ec1t−

√
c1 x − c4c5

√
c1 ec1t+

√
c1 x
)

+4k2 e2at
√
−a
(
c1sin(

√
2ω)− c2cos(

√
2ω)

)
,
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B = 2c3c4c6ec1t−
√
c1x + 2c3c4c5ec1t+

√
c1x − 4kk1c3eatsin(ω)

+k2e2at
(
c2sin(

√
2ω) + c1cos(

√
2ω)

)
− 4k2c3.

3. v = x, → z = −c1

2
x2 + t(1− c1) →

u =
4 (x(1− c1)− 2k1)

−(x2 + 2t)(1− c1) + 4(k1x+ k2)
.

To develop analytical techniques for generation of solutions to Eq. (1.7) star-
ting from a formula (3.14)

uII = −(−4 v + 8 c1) vx − 4 zx
2 z + v2 − 4 c1v − 4 c2

, (4.2)

we shall build in into it another solution of this equation. If we set

vx = −1

2
uIIv

in (4.2) the formula for generation of solutions will be read

uI = −(−2 v + 4 c1)uII v − 4 zx
2 z + v2 − 4 c1v − 4 c2

. (4.3)

Solving this expression with respect to uII, we get

uII =
1

2

(2 z + v2 − 4 c1v − 4 c2)uI v + 4 zx
v(v − 2 c1)

. (4.4)

Now it is possible to construct new solutions uII of equation (1.7) from the known
ones uI choosing an arbitrary known solution of the linear heat equation v(x, t).
The appropriate auxiliary function z(x, t) may be found as a solution of the PDE

g(x, t) = −(−4φ(x, t) + 8 c1)φx(x, t)− 4 zx
2 z + φ(x, t)2 − 4 c1φ(x, t)− 4 c2

, (4.5)

where uI = g(x, t) is the known solution of (1.7) and v(x, t) = φ(x, t) is an
arbitrary solution of the linear heat equation (1.8). Solving this di�erential equa-
tion for z(x, t), we �nd an expression which contains an arbitrary function of t.
This function can be specialized by the equation (3.10). Inserting the components
obtained into (4.4), we �nd the searched.

Theorem 4. 1. The generating solutions formula for equation (1.7) has the

form

uII =
1

2

(2 − τ + v2 − 4 c1v − 4 c2)uI v + 4 τx
v(v − 2 c1)

, (4.6)
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where uI = g(x, t) is the known solution of (1.7) and v(x, t) = φ(x, t) is arbitrary
solution of the linear heat equation vt(x, t) − vxx(x, t) = 0. The functional para-

meter τ(x, t) is constructed in the following way: Given a solution uI = g(x, t) of
Eq. (1.7), we solve the partial di�erential equation

g(x, t) = −(−4φ(x, t) + 8 c1)φx(x, t)− 4 τx
2 τ + φ(x, t)2 − 4 c1φ(x, t)− 4 c2

, (4.7)

with respect to the function τ(x, t) containing an arbitrary function of t which is

specialized by the equation

τt − φx(x, t)2 − τxx = 0. (4.8)

Here we present several examples on application of a formula obtained. Having
in mind reduction of an account the corresponding equations for additional fun-
ction z and their solutions are lowered in what follows.

1. uI =
x

t
, v = x2 + 2t → uII = −2

x
.

2. uI =
x

t
, v =

k√
t

e−
x2

4t → uII =
x

t
.

3. uI =
x

t
, v = 2

√
t e−

x2

4t +
√
π x erf

 1

2
√

t
x2

 →

uII = −
2
√
π erf

(
1

2
√

t
x2

)

2
√
t e−

x2

4 t +
√
π x erf

(
1

2
√

t
x2

) .

4. uI = −2

x
, v = x → uII = − 4x

x2 + 2t
.

We have so far dealt with the nonlocal transformations, in which the inde-
pendent variables remained unchangeable. Now we turn our attention to the
formulae (3.16). It is nothing other than the formula for generation of solutions
to Eq. (3.15) quite ready to application.

As was noted above, the equation (3.15) admits linearization [38] via nonlocal
transformation of special sort. In considered above case we have got a nonlocal
invariance of this equation under force of an additional function, which is an
arbitrary known solution of the linear heat equation.

Theorem 4. 2. The formula for generation of solutions to equation (3.15) is

uII(x, t) =
1

1
uI(τ I,t)

+D1z
(´
uI(τ I, t)dτ I + f(t), t

) , (4.9)
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where the functional parameter τ I can be obtained solving the equation

τ I − x+ z

(ˆ
uI(τ I, t)dτ I + f(t), t

)
= 0,

an arbitrary function f(t) is specialized by the equation (3.17)

τ I
t −

τ I
xx

(uI(τ I, t)τ I
x)2

= 0. (4.10)

Additional variable z
(
τ II, t

)
runs through the set of solutions of the linear heat

equation D2z −D11z = 0.
The formulae derived are e�ectively used for the construction of exact solu-

tions. Let us give some examples of application of this algorithm.

1. uI = 1, z = x2 + 2t → uII =
1√

4x− 8t+ 4c+ 1
.

2. uI = −2

x
, z = x2 + 2t → uII = − 2

ew + 8w − 2t− 4c
, where the function

w is determined by equation

4ew + 16w2 − 8wt− 16cw − 4x+ 8t+ (t+ c)2 = 0.

3. uI = − 1

x+ c
, z = x2 + 2t → uII = − 1

eG + 2G− 2t
,

eG + (G− t)2 − x+ 2t− c = 0.

4. uI = h, z =
√
πerf

(
x

2
√
t

)
→ uII =

h
√
t

√
t+ he−

h2Q2

4t

,

Q− x+
√
πerf

(
hQ+ c1

2
√
t

)
+ c1 = 0.

5. uI = − 2c1

c1x+ c2
, z = x →

uII =

(
Lambert

(
−

exp( c1(−2x+t+2c3)−2c2
4c1

)

2c1

)
+ 1

)−1

.

So we can conclude that proposed additional nonlocal symmetry allows the
generation into more wide families of exact solutions of nonlinear di�erential
equations. All solutions found can be naturally extended to multi-parameter
families of solutions by means of the Lie symmetry transformations or by any
other formulae, enabling a generation of solutions. Some of them can be obtained
in an explicit form, while the other may have a parametrical representations with
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functional parameters given in implicit form. Showing examples obtained above,
we do not claim to supplement sets of new exact solutions of cited equations. We
aim to reveal the e�ciency of algorithms proposed and establish their complexity
degree.

5. On inversion of the nonlocal transformation with additional
variables

We shall devote this section to de�ning inversion of the nonlocal transforma-
tion with additional variables. The problem that arises now is whether or not
a given nonlocal transformation with additional variables has an inverse. The
inversion of nonlocal transformation with additional variables is not trivial and
may be de�ned in either of two ways (were pointed out above in Section 2).

Let us begin with an approach, based on the integration of the nonlocal
substitution as a PDE for one of dependent variables. We understand other
dependent variables as variable coe�cients. Then substitution of the solution
obtained into the equation for this variable enables us to get an operator expres-
sion for all the rest equations. The last can be eliminated on prolonged manifolds
de�ned by such equations. Notice, that there exists obvious a technical problem
which has to be overcome. It is an integration of appropriate PDE.

The concepts introduced above may be exempli�ed. Let us �rst integrate a
substitution (3.14)

u = −(−4 v + 8 c1) vx − 4 zx
2 z + v2 − 4 c1v − 4 c2

(5.1)

with respect to v. We �nd a such solution:

v = 2k1 −
√

4k1
2 + s(t)e−1/2

´
u(x,t)dx − 2z(x, t) + 4k2. (5.2)

Setting here s(t) = 1 we aim substitute v into the linear heat equation (1.8), but
Eq. (3.10) depends on the same variable v. To overcome this technical problem
we shall di�erentiate an expression (5.2) with respect to x and again use (5.2) for
elimination v. So we get

vx = −1

2

(
−1

2
ue−1/2

´
u(x,t)dx − 2zx

)
×
[√

4k1
2 + e−1/2

´
u(x,t)dx − 2z(x, t) + 4k2

]−1

. (5.3)

Now the equation (3.10) becomes

zt −
1

4

(
−1

2ue
−1/2

´
u(x,t)dx − 2zx

)2

4k1
2 + e−1/2

´
u(x,t)dx − 2z(x, t) + 4k2

− zxx = 0. (5.4)
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Making a change of variable (5.2) in Eq. (1.8) and substituting into the result
obtained zxx from the above equation we �nd an integral consequence of the
third Eq. (1.7) ˆ

ut(x, t) dx+
1

2
u2 − ux = 0.

Solving substitution (3.14) with respect to z we �nd

z =

(ˆ (
−vvx −

1

4
uv2 + k1uv + k2u+ 2k1vx

)
W dx

)
W−1, (5.5)

W = e1/2
´
u(x,t)dx.

Application (5.5) for Eq. (3.10) and insertion vt = vxx allow us to obtain an
integro-di�erential expression. Elimination of integral terms in last leads us to
the integro-di�erential consequences of the Burgers equation (1.7).

The alternative approach, which we shall adopt here, is based on the construc-
tion of the special BT connecting the given equations. Let's assume, that a given
equation (3.14) is a �rst expression for required BT. Di�erentiating it with respect
to x, then inserting vxx = vt, zxx = zt−vx2 and u from (3.14), we get a conjugate
equation for such a BT

ux = −γ−2Λ,

γ = 2z + v2 − 4k1v − 4k2,

Λ = (−2v2 + 8k1v − 8k1
2)vx

2 + (8k1 − 4v)vxzx − 2zx
2

+(v3 + 2vz − 6k1v
2 + 8k1

2v − 4k2v − 4k1z + 8k1k2)vt

+(v2 + 2z − 4k1v − 4k2)zt.

(5.6)

Substituting u de�ned by (3.14) into (5.6) obtained above we get an expression
vanishing on the manifold de�ned by equations (1.8) and (3.10).

Now we shall be concerned only with inversion of the BT obtained what may
be thought of as construction of another BT allowing to exclude a variable v.
With that end in view we solve (5.2) with respect to an exponential term

e−1/2
´
u(x,t)dx = 2z + v2 − 4k1v − 4k2 (5.7)

and substitute it into (5.3)

vx = −1

2

(
−1

2
u (2 z + v2 − 4k1v − 4k2)− 2 zx

)
× [2k1 − v]−1 . (5.8)

Then we di�erentiate (5.2) with respect to t (s(t) = 1)

vt = −1

2

(
−1

2

ˆ
ut dx e−1/2

´
u(x,t) dx − 2 zt

)
×
[√

4 k1
2 + e−1/2

´
u(x,t) dx − 2z(x, t) + 4 k2

]−1

. (5.9)
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Inserting into this expression
ˆ
u(x, t) dx = −1

2
u2 + ux,

with taking into account (5.4) and applying (5.7), we obtain a conjugate equation
for the wished BT

vt =

(
−1

2

−1
2

(
−1

2u
2 + ux

)
(2 z + v2 − 4k1v − 4k2)− 2 zx

2k1 − v

)2

+ zxx. (5.10)

A cross di�erentiation of obtained expressions (5.8), (5.10) generates a manifold
de�ned by the equations (3.10) in the form (5.4) and (1.7).

On the other hand side, solving (5.5) with respect to zx we �nd �rst component
of another BT

zx = u

(
−1

2
z − 1

4
v2 + k1v + k2

)
− vx(v − k1). (5.11)

Di�erentiating (5.11) with respect to x and substituting the result into (3.10) we
obtain a conjugate equation for the searched BT

zt =

(
ux −

1

2
u2

)(
−1

2
z − 1

4
v2 + k1v + k2

)
− vxx(v − 2k1). (5.12)

This enables one to construct by a cross di�erentiation of obtained expressions
(5.11), (5.12) a manifold de�ned by the equations (1.8) and (1.7). Making
transition onto the manifold de�ned by one equation one gets a di�erential con-
sequences of another one.

6. Conclusion

The natural generalizations of a method of nonlocal transformations results
in application of prolonged nonlocal transformations to the prolonged PDEs that
do not admit the direct connection under appropriate nonlocal transformations
in one step. It appear to be a unifying concept for nonlocal transformations for
searching symmetries and solutions of nonlinear DEs. A method of construction
of adjoint solution to the initial equation and a new concept of nonlocal trans-
formation with additional variables which are introduced, developed and used in
present paper, result in discovery of new approach for usage of conservation laws
and for understanding the relations between di�erent known solution techniques.
A problem of inversion of the nonlocal transformation with additional variables
is discussed. Several examples are presented. Derived technique is applied for
construction of the formulae of generation of solutions. This proposed additional
nonlocal symmetry allows for the generation of more wide families of exact solu-
tions to nonlinear di�erential equations is called forced symmetries. The formulae
derived are used for construction of exact solutions of some nonlinear equations.
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We hope that the methods presented in this paper can be applied to di�erent
classes of nonlinear equations. All results obtained in the present paper for the
considered equations can be extended to similar classes of equations via appli-
cation of appropriate point transformations.
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