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An modeling attempt of behavior process of brain electric impulses for some patient
by the solutions of 3D system of quadratic differential equations is undertaken. (This
system of differential equations was got from a multivariate times series with the
help of polynomial averages and least square method.) Transition conditions from
a chaotic attractor to a limit cycle (and vice versa) of the system of differential
equations are found. Exactly these conditions characterize beginning of process of
disease by Parkinson’s illness at the patient.
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1. Introduction

Last years theory of chaos, a nonlinear dynamics, and sciences about compli-
cation of one or another processes began to act important role in biology, medicine
and row of contiguous fields. Application of chaos in medicine does not allow to do
prognoses and decide some private tasks. Nevertheless, the theory of chaos allows
rather to describe some aspects of behavior of the complex biological systems by
certain numerical descriptions, such as the Lyapunov exponent, fractal dimension,
multiplicity of limit cycle etc. By other words, the theory of chaos can be used
for classification of the states of organism. Thus, most valuable achievement will
be not got some numerical values, but description and reformulation medical
problems in terms of simulation tasks and measurement of signals [8].

One of important examples of such approach are epileptology methods. These
methods being based on the study of brain electrical activity with the help of
electroencephalograms (EEG). From the experimental point of view a problem
consists in that on the basis of time series of the measured values of rhythms of
brain activity to recreate development of the dynamic system (it is a brain) in
phase space. Further with the help of the got dynamic system it is necessary to
study processes resulting in appearance epilepsy or Parkinson’s illness [6, 10].
————————————————–
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Parkinson’s illness is characterized by a recurrent and sudden malfunction
of the brain that is termed seizure. Sickly seizures reflect the clinical signs of
an excessive and hypersynchronous activity of neurons in the cerebral cortex.
Depending on the extent of involvement of other brain areas during the course
of the seizure, types Parkinson’s illness can be divided into two main classes.
Generalized seizures involve almost the entire brain while focal (or partial) seizures
originate from a circumscribed region of the brain and remain restricted to this
region [10].

In the present paper we consider the problem of reconstructing dynamical
system (it is a system of differential equations describing impulses of brain activity)
from multivariate time series.

2. Mathematical statement of problem and its discussion

We will assume that we can measure the rhythms z1(ti), ..., zn(ti), i = 1, 2,
..., N , of cerebral activity in n points of cerebral cortex with the help of EEG. We
also suppose that these measurements are noisy. Thus, we have multivariate time
series

z1(ti) = x1(ti) + θ1(ti), ..., zn(ti) = xn(ti) + θn(ti), (2.1)

which defined for ∀ti ∈ (t1, tN ). Here ∀i = 1, 2, ..., N , we have ti = i∆t and
∆t = (tN − t1)/N . In addition, we suppose that θ1(ti), ..., θn(ti) are Gaussian
(white) noises, unable by definition to produce statistically systematical errors
[7, 11].

Finally, we assume that x1(ti), ..., xn(ti) is a discrete approximation of some
n-dimensional curve x(t) = (x1(t), ..., xn(t))T ∈ Rn [5].

Principal problem. Construct the quadratic system of differential equations

ẋ1(t) =
n∑
j=1

a1jxj(t) + xT (t)B1x(t) + c1 ≡ f1(x(t)),

. . . . . . . . . . . . . . . . ,

ẋn(t) =
n∑
j=1

anjxj(t) + xT (t)Bnx(t) + cn ≡ fn(x(t))

(2.2)

such that there exists bounded solution x(t) (limt→∞ ‖x(t)‖ <∞) of this system,
which approximates the time-variate series (2.1) with given accuracy in the set
points t1, ..., tN at any choice of the vector of initial values x(0) = (x10, ..., xn0)T .

In connection with the indicated principal problem there is the following
question: whether or not there exists an n-th order (n > 1) dynamical system
(2.2) having as solution the bounded function x(t)?

Introduce a few definitions.

Definition 2.1. The trajectory x(t) is called simple if there are no points trans-
versal or tangential self-intersection on it.
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Definition 2.2. The trajectory x(t) is called regular if ∀t ∈ (t1, tN ) ẋ(t) 6= 0.

Definition 2.3. The trajectory x(t) is called elementary if it is one-to-one function
and one-to-one continuous. The trajectory x(t) is called an embedding if it is both
elementary and regular.

Theorem 2.1. [7,11] Let x(t) be a real-valued and analytic function defined on
the interval (t1, tN ) such that the curve x(t) is simple and regular. Then there
exists a real-valued analytic function F(x) ∈ Rn such that x(t) is a solution of
system ẋ(t) = F(x).

Theorem 2.2. [7, 11] Let F(x) ∈ Rn be the function defined in Theorem (2.1).
Then every solution of the system ẋ(t) = F(x) is either an equilibrium point or
closed trajectory (it may be a limit cycle or torus) or an embedding (elementary
and regular) one.

The practical procedure for determining the elementary and regularity of the
function x(t) is given in [7,11]. However, it should be noted that if tN →∞, then
theorems (2.1),(2.2) are not applicable. Thus, an application of these theorems
for the prediction tasks becomes problematical.

Further, we use the procedure for determining unknown quadratic right sides
of the system of differential equations (2.2), which was suggested in [7, 11]. This
procedure is based on the least square method and the fact that we know sufficient
precision the components of x(t) and its derivative ẋ(t).

We will use the following designations: x(ti) = (x1(ti), x2(ti), ..., xn(ti))
T =

(x1i, x2i, ..., xni)
T , ẋ(ti) = (ẋ1(ti), ẋ2(ti), ..., ẋn(ti))

T = (ẋ1i, ẋ2i, ..., ẋni)
T , where

ẋki = (xk,i+1 − xki)/∆t; k = 1, ..., n; i = 0, 1, ..., N .
Introduce the matrix of unknown coefficients of system (2.2):

Y =

 c1 a11 · · · a1n b111 · · · b1nn 2b112 · · · 2b1n−1,n
...

... · · ·
...

... · · ·
...

... · · ·
...

cn an1 · · · ann bn11 · · · bnnn 2bn12 · · · 2bnn−1,n

 ∈ Rn×m,

where m = 1 + 2n+ n(n− 1)/2.
Introduce also (N ×m)-matrix

X =

 1 x11 · · · xn1 x2
11 · · · x2

n1 x11x21 · · · xn−1,1xn,1
...

... · · ·
...

... · · ·
...

... · · ·
...

1 x1N · · · xnN x2
1N · · · x2

nN x1Nx2N · · · xn−1,Nxn,N


and (N × n)-matrix

Ẋ =

 ẋ11 · · · ẋn1
... · · ·

...
ẋ1N · · · ẋnN

 ,

elements of which are known. Then by the least square method [7, 11], we have
Y T = (XTX)−1XT ẊT . Further, the following is said in work [7]: In view of the
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fact that number N may be chosen arbitrary large, a high precision reconstruction
may be achieved. Thus, we can expected that the solution of reconstructed system
will be near the purified solution x(t).

However, it should be said that one important circumstance, which can arise
up at a reconstruction, remained outside attention of authors of article [7]. The
point is that in [7] it is assumed that the interval (t1, tN ) is finite. If the problem
of long-term prediction is considered, it is necessary to assume that tN →∞. In
this case a reconstruction must be fulfilled so that system (2.2) had the bounded
solutions. Exactly to the question of existence of the bounded solutions in the
system (2.2) the next section will be devoted.

3. Existence conditions of bounded solutions in 3D systems of
quadratic differential equations

Introduce the Cartesian product of the real linear spaces by the following
formula:

RK = Rn × Rn×n × Rn(n+1)/2 × ...× Rn(n+1)/2︸ ︷︷ ︸
n

, K = n+ n2 + (n+ 1)n2/2.

Thus, RK is a real linear space, elements of which are K-dimensional vectors
of coefficients (c, A,B1, ..., Bn) of system (2.2).

Let V ⊂ RK be an arbitrary nonempty open set. (Thus, we have V = RK ,
where V is the closure of V.)

Definition 3.1. . System (2.2) is called a generic system if the vector (c, A,B1, ...,
Bn) ∈ V.

Let W ⊂ Cn be an algebraic variety of all complex solutions of the following
system of algebraic equations: f1(x) = 0, ..., fn(x) = 0 [9]. (By virtue of the
definition of the functions f1(x), ..., fn(x) the variety W is a finite nonzero point
set [9].)

Definition 3.2. . If the variety W contains even one real point, then system (2.2)
is called a system with equilibriums; otherwise system (2.2) is called a system
without equilibriums.

Define by ClR (ClC) all systems of type (2.2) with equilibriums (without
equilibriums). It is clear that RK = ClR ∪ ClC and ClR ∩ ClC = ∅.

3.1. Invariants of 2D Autonomous Quadratic Systems

In this section, we suppose that the generic system (2.2) is a system of the
class ClR. In addition, we put that n = 2. (By suitable replacements of variables
it is always possible to obtain that in system (2.2) c = (c1, ...cn)T = 0. Therefore,
we will consider that c = 0.)
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Consider the following 2D autonomous quadratic system:{
ẋ(t) = a11x(t) + a12y(t) + b11x

2(t) + 2b12x(t)y(t) + b22y
2(t),

ẏ(t) = a21x(t) + a22y(t) + c11x
2(t) + 2c12x(t)y(t) + c22y

2(t),
(3.1)

where a11, ..., a22, b11, ..., b22, c11, ..., c22 are real numbers. (A multiplier 2b12 (or
2c12) before x(t)y(t) is represented in such form with the purpose of simplification
of calculations of invariants. If there is no necessity in such calculations, we will
write b12 (or c12).)

Introduce the following real (2× 2)-matrices:

A =

(
a11 a12

a21 a22

)
, T1 =

(
b11 b12

c11 c12

)
, T2 =

(
b12 b22

c12 c22

)
. (3.2)

Replace variables x, y in system (3.1) by new variables x1, y1 under the formula(
x
y

)
→ S ·

(
x1

y1

)
,

where S is a linear transformation from the group GL(2,R) of all linear inverse
transformations of the space R2 [1]. In this case the triple of matrices (A, T1, T2)
transforms into triple

S ◦ (A, T1, T2) = (S−1AS, (S−1T1, S
−1T2) · (S ⊗ S)) = (As, T1s, T2s).

Remember that a scalar polynomial f(A, T1, T2) is called an invariant of weight
l of the group GL(2,R), if ∀S ∈ GL(2,R) and ∀(A, T1, T2) f(S ◦ (A, T1, T2)) =
f(As, T1s, T2s) = (detS)l × f(A, T1, T2)), where l ≥ 0 is some integer [1].

With the help of matrices T1, T2, we construct the auxiliary not depending on
A invariants of weight 2 [1]:

I1 = det

(
(trT1, trT2) · T1

(trT1, trT2) · T2

)
, J2 = det(T1T2 − T2T1),

K3 = det

(
trT1, trT2

(trT1, trT2) · (T1T2 − T2T1)

)
,

where trP is a trace of the square matrix P .
Now we can introduce the main invariants of the present paper:

L = I1 − J2 −K3, D = I1 + 27J2 − 5K3 (3.3)

of weight 2 [1]. (It is easy to check that degL = degD = 4.)

3.2. Case L < 0, D < 0.

By suitable linear replacements of the variables x and y system (3.1) can be
resulted to the following aspect:{

ẋ(t) = a11x(t) + a12y(t) + b11x
2(t) + b22y

2(t),
ẏ(t) = a21x(t) + a22y(t) + 2c12x(t)y(t) + c22y

2(t).
(3.4)
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(For simplicity we have left the former designations of variables x and y, and
corresponding coefficients.)

Compute the invariants L and D for system (3.4). Then we have:

L = b11(b11c
2
22 + 4b22c

2
12), D = −(b11 − 2c12)2(4b11b22 − c2

22 − 8b22c12). (3.5)

Let the conditions L < 0 and D < 0 be satisfied. Then from (3.5) it follows
that b11b22 < 0 and b22c12 < 0.

Without loss of generality, we will consider that b11 < 0, b22 > 0, c12 < 0.
In this case, we can do the replacements of variables x → x/(−2c12) and y →
y/
√
−2c12b22. Then system (3.4) can be represented in the form:{

ẋ(t) = a11x(t) + a12y(t) + b11x
2(t) + y2(t),−0.5 < b11 < 0,

ẏ(t) = a21x(t) + a22y(t)− x(t)y(t) + c22y
2(t), |c22| <

√
2.

(3.6)

(Here the conditions L < 0, D < 0 were used. For simplicity, we again have left
the former designations of variables x and y, and corresponding coefficients.)

Further, we will use the following theorem.

Theorem 3.1. [1] Let L < 0, D < 0, and the point (0, 0) be stable or saddle.
Suppose also that there doesn’t exist a real eigenvector (v1, v2)T of the matrix A
such that {

b11v
2
1 + 2b12v1v2 + b22v

2
2 = kv1,

c11v
2
1 + 2c12v1v2 + c22v

2
2 = kv2; k ∈ R.

Then there exists an open domain W ⊂ R2 such that ∀(x0, y0) ∈W the solutions
x(t) = x(x0, y0, t), y(t) = y(x0, y0, t) of system (3.1) (or (3.4)) are bounded.

Note that if L ·D ≤ 0, then there doesn’t exist initial values x0, y0 such that
the solutions x(t) = x(x0, y0, t), y(t) = y(x0, y0, t) of system (3.1) (or (3.4)) are
bounded. (The case L = 0 considered in [3]. However at the modeling of the real
processes situation L ≤ 0 more widespread. Therefore, we suppose that L ≤ 0.)

3.3. Existence Conditions of Chaos in System (2.2)

In this section we will consider that the system of algebraic equations f1(x) =
... = fn(x) = 0 has a real solution ξ = (ξ1, ..., ξn)T . (The point ξ is an equilibrium
point of system (2.2).)

Introduce a new vector variable y = (y1, ..., yn)T , which is given by the formula
x = y + ξ. Then system (2.2) can be represented in the form

ẏ1(t) = [(a11, ..., a1n) + 2ξTB1]y(t) + yT (t)B1y(t),
. . . . . . . . . . . . . . . . ,
ẏn(t) = [(an1, ..., ann) + 2ξTBn]y(t) + yT (t)Bny(t).

(3.7)

Having fulfilled the change of variables we can return to previous variable x.
Let n = 3. Then instead of system (3.7), we will consider the following 3D

real autonomous system
ẋ(t) = Hx + f(x), (3.8)
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where x = (x, y, z)T ; H = {hij}, i, j = 1, ..., 3, is a real (3× 3)-matrix;

f(x) = (f1(x, y, z), f2(x, y, z), f3(x, y, z))T ∈ R3

and
f1(x, y, z) = a11x

2 + a12xy + a22y
2 + a13xz + a23yz + a33z

2,

f2(x, y, z) = b11x
2 + b12xy + b22y

2 + b13xz + b23yz + b33z
2,

f3(x, y, z) = c11x
2 + c12xy + c22y

2 + c13xz + c23yz + c33z
2

are real quadratic polynomials.
Introduce into system (3.8) new variables ρ and φ under the formulas: y =

ρ cosφ, z = ρ sinφ, where ρ > 0. Then, after replacement of variables and
multiplication of the second and third equations of system (3.8) on the matrix(

cosφ(t) sinφ(t)
−(sinφ(t))/ρ(t) (cosφ(t))/ρ(t)

)
,

we get

ẋ(t) = h11x(t) + [h12 cosφ(t) + h13 sinφ(t)]ρ(t) + a11x
2(t)

+[a12 cosφ(t) + a13 sinφ(t)]x(t)ρ(t)
+[a22 cos2 φ(t) + a23 cosφ(t) sinφ(t) + a33 sin2 φ(t)]ρ2(t),

ρ̇(t) = [h21 cosφ(t) + h31 sinφ(t)]x(t) + [h22 cos2 φ(t) + h33 sin2 φ(t)
+(h32 + h23) cosφ(t) sinφ(t)]ρ(t) + [b11 cosφ(t) + c11 sinφ(t)]x2(t)
+[b12 cos2 φ(t) + (b13 + c12) cosφ(t) sinφ(t) + c13 sin2 φ(t)]x(t)ρ(t)
+[b22 cos3 φ(t) + (b23 + c22) cos2 φ(t) sinφ(t)
+(b33 + c23) cosφ(t) sin2 φ(t) + c33 sin3 φ(t)]ρ2(t),

φ̇(t) = [−h21 sinφ(t) + h31 cosφ(t)]
x(t)

ρ(t)
+ [h32 cos2 φ(t)− h23 sin2 φ(t)

+(h33 − h22) cosφ(t) sinφ(t)] + [c11 cosφ(t)− b11 sinφ(t)]
x2(t)

ρ(t)
−[b13 sin2 φ(t) + (b12 − c13) sinφ(t) cosφ(t)− c12 cos2 φ(t)]x(t)
−[−c22 cos3 φ(t) + (b22 − c23) cos2 φ(t) sinφ(t)
+(b23 − c33) cosφ(t) sin2 φ(t) + b33 sin3 φ(t)]ρ(t).

(3.9)
Consider the system
ẋ(t) = s11(cosφ, sinφ)x+ s12(cosφ, sinφ)ρ

+p11(cosφ, sinφ)x2 + p12(cosφ, sinφ)xρ+ p22(cosφ, sinφ)ρ2,
ρ̇(t) = s21(cosφ, sinφ)x+ s22(cosφ, sinφ)ρ

+q11(cosφ, sinφ)x2 + q12(cosφ, sinφ)xρ+ q22(cosφ, sinφ)ρ2,

(3.10)

where φ is a real parameter and
s11(cosφ, sinφ) = h11, s12(cosφ, sinφ) = h12 cosφ+ h13 sinφ,
s21(cosφ, sinφ) = h21 cosφ+ h31 sinφ,
s22(cosφ, sinφ) = h22 cos2 φ+ h33 sin2 φ+ (h32 + h23) cosφ sinφ,
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p11(cosφ, sinφ) = a11, p12(cosφ, sinφ) = a12 cosφ+ a13 sinφ,
p22(cosφ, sinφ) = a22 cos2 φ+ a23 cosφ sinφ+ a33 sin2 φ,
q11(cosφ, sinφ) = b11 cosφ+ c11 sinφ,
q12(cosφ, sinφ) = b12 cos2 φ+ (b13 + c12) cosφ sinφ+ c13 sin2 φ,
q22(cosφ, sinφ) = b22 cos3 φ+(b23 +c22) cos2 φ sinφ+(b33 +c23) cosφ sin2 φ+

c33 sin3 φ.
Notice that the replacements of cartesian coordinates by polar is needed so

that in system (3.10) both equations would be nonlinear with respect to the
unknowns x and ρ. (The equation φ̇(t) = ... in system (3.10) is not included.)

Let v(φ) = (v1(φ), v2(φ))T be an arbitrary eigenvector of the linear operator

S(φ) =

(
s11(cosφ, sinφ) s12(cosφ, sinφ)
s21(cosφ, sinφ) s22(cosφ, sinφ)

)
: R2 → R2,

depending on the parameter φ ∈ R.
Let pij(φ) ≡ pij(cosφ, sinφ), qij(φ) ≡ qij(cosφ, sinφ), i, j = 1, 2. Define by

G(v(φ)) = det

(
v1(φ) p11(φ)v2

1(φ) + p12(φ)v1(φ)v2(φ) + p22(φ)v2
2(φ)

v2(φ) q11(φ)v2
1(φ) + q12(φ)v1(φ)v2(φ) + q22(φ)v2

2(φ)

)
the bounded real function.

For system (3.10)) we write the matrices A(φ), T1(φ) and T2(φ) are given
by formulas (3.2). We also compute the invariants L(φ) and D(φ) are given by
formulas (3.3).

Theorem 3.2. Suppose that ∀φ ∈ R the following conditions for system (3.10)
are fulfilled:

(i) G(v(φ)) 6≡ 0;
(ii) L(φ) < 0, D(φ) < 0
(iii) either detS(φ) ≤ 0 or detS(φ) is a periodic alternating in sign on the

interval (−∞,∞) function.
Then there exists the open domain V ⊂ R3 such that ∀(x0, y0, z0) ∈ V the

solutions x(t), y(t), z(t) of system (3.8) are bounded. In addition, there can exist
a limit cycle in system (3.8).

Proof. It is shown in [1] that if S(φ) ≡ 0, then at any signs of functions L(φ)
and D(φ) always there are unbounded solutions of system (3.10). The solutions
of system (3.10) will be also unbounded, if an fixed point of the operator of
quadratic part of system (3.10) is the eigenvector of the matrix S(φ) [1, 3]. In
order to eliminate a similar situation the condition (i) was introduced.

Define by
W := {φ ∈ R| L(φ) < 0, D(φ) < 0}

a nonempty open set in R.
It is known that for arbitrary point φ∗ ∈ W the solution of system (3.10) is

bounded [1,3]. (The proof of this statement is based on Theorem (3.1).) From here
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it follows that if the statements of items (i) and (ii) will be valid for arbitrary
point of the set W, then W = R and the assertion of Theorem (3.2) is just.

Without the loss of generality it is possible to consider that by suitable
replacements of the variables y → α1x + y and z → α2x + z, the functions
f2(x, y, z) and f3(x, y, z) of the right part of system (3.8) can be resulted to such
form, in which b11 = c11 = 0. Then, in system (3.10), we will have q11 ≡ 0.

We assume that for some values of parameters system (3.8) has a periodic
solution. We also suppose that φ(tk) = φ(t0) + T · k, where t0 ≥ 0, a period
T ≤ N · π and N is positive integer; k = 0, 1, 2, ....

Introduce for system (3.10) the the following designations: ξij = sij(φ1(tk)),
ξ11 = p11(φ1(tk)), ξ12 = p12(φ1(tk)), ξ13 = p22(φ1(tk)), ξ22 = q12(φ1(tk)), ξ23 =
q22(φ1(tk)), where i, j = 1, 2.

Since q11 ≡ 0, then instead of system (3.10), we will consider the following
system of autonomous differential equations{

ẋ(t) = ξ11x(t) + ξ12ρ(t) + η11x
2(t) + η12x(t)ρ(t) + η13ρ

2(t),
ρ̇(t) = ξ21x(t) + ξ22ρ(t) + η22x(t)ρ(t) + η23ρ

2(t).
(3.11)

(Here system (3.11) is considering in a small neighborhood Ok of the point tk:
t ∈ Ok, k = 0, 1, 2, .... As initial conditions xk0, ρk0 for system (3.11) the solutions
x(tk) and ρ(tk) ≡

√
x2

2(tk) + ...+ x2
n(tk) of system (3.8) in the point tk are

appointed.)
With the purpose of simplification of further exposition, it is possible to

consider that the structure of system (3.11) (after some linear transformations)
the same just as system (3.6). Thus, we have η11 ∈ (−0.5, 0), η12 = η21 = 0,
η13 = 1, η22 = −1, and η23 ∈ (−

√
2,
√

2).
Suppose that the time t0 also satisfies to the condition

ẋ(t0) = ξ11x(t0) + ξ12ρ(t0) + η11x
2(t0) + ρ2(t0) = 0.

By virtue of periodicity of solutions of system (3.8), we can construct the
sequence t0, t1,..., tk,... such that for the first equation of system (3.11) the
condition ξ11x(tk) + ξ12ρ(tk) + η11x

2(tk) + ρ2(tk) = 0 will be fulfilled ∀tk, k =
0, 1, 2, .... From here it follows that

x(tk) =
−ξ11 ±

√
ξ2

11 − 4η11(ρ2(tk) + ξ12ρ(tk))

2η11
; k = 0, 1, 2, .... (3.12)

(Again by virtue of periodicity of solutions of system (3.8), we will have ξ2
11 −

4η11(ρ2(tk) + ξ12ρ(tk)) > 0.) Consequently, taking into account formula (3.12),
the second equation of system (3.11) ∀tk can be transformed to the form

η11ρ̇
2(tk) + C(ρ(tk))ρ̇(tk) + ρ(tk)F (ρ(tk)) = 0, (3.13)

where
C(ρ) = −2η11η23ρ

2 − (2η11ξ22 + ξ11)ρ+ ξ21ξ11,
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F (ρ) = (1 + η11η
2
23)ρ3 + (2η11η23ξ22 + ξ11η23 + ξ12 − 2ξ21)ρ2+

(η11ξ
2
22 + ξ11ξ22 + ξ2

21 − 2ξ12ξ21 − ξ21ξ11η23)ρ+ (ξ12ξ
2
21 − ξ21ξ11ξ22).

From (3.13) we have

ρ̇(tk) =
−C(ρ(tk))±

√
C2(ρ)− 4η11ρ(tk)F (ρ(tk))

2η11
=

∓2ρ(tk)F (ρ(tk))√
C2(ρ(tk))− 4η11ρ(tk)F (ρ(tk))± C(ρ(tk))

=

∓2ρF (ρ(tk))

|ρ(tk)− ξ21|
√
ξ2

11 − 4η11ρ2(tk)− 4η11ξ12ρ(tk)± C(ρ(tk))
. (3.14)

Lemma 3.1. Let L(φ) and D(φ) be periodic nonpositive functions. Assume that
the magnitude maxφ |L(φ)| 6≡ 0 is small enough. Then the periodic behavior of
solutions of system (3.8) is generated by 1D iterated process

ρk+1 = ρk exp

[
−2F (ρk)

C(ρk) + |ρk − ξ21|
√
−4η11ρ2

k − 4η11ξ12ρk + ξ2
11

]
> 0; k = 0, 1, ...

(3.15)

Proof. Now we study the function

Θ(ρ) = ρ exp

[
−2F (ρ)

C(ρ) + |ρ− ξ21|
√
−4η11ρ2 − 4η11ξ12ρ+ ξ2

11

]
; ρ ≥ 0.

Since L < 0 and η11 < 0, then from (3.5), we have 1 + η11η
2
23 > 0. Thus,

lim
ρ→∞

F (ρ) =∞.

(b1) The function Θ(ρ) is continuous on the interval [0,∞).
Suppose the contrary. Then from (3.14) it follows that

√
C2(ρ)− 4η11ρF (ρ)+

C(ρ) = 0. Since η11 6= 0, then we have either ρ = ρ0 = 0 or there exists ρ = ρ1

such that F (ρ1) = 0 or there exists ρ = ρ2 such that C(ρ2) = 0.
Let ρ = ρ0 = 0, C(ρ0) < 0, and F (ρ0) > 0. Then ρ0 = 0 is a removable

singularity and we have limρ→0 Θ(ρ) = 0. If C(ρ0) > 0, then limρ→0 Θ(ρ) =
Θ(0) = 0.

Let ρ1 6= 0, C(ρ1) < 0, and F (ρ1) = 0. Then ρ1 is a removable singularity and
we have limρ→0 Θ(ρ1) = 0. If C(ρ1) > 0, then limρ→ρ1 Θ(ρ) = Θ(ρ1) = 0.

Let ρ2 6= 0, C(ρ2) = 0, and F (ρ2) > 0. Then we have limρ→ρ2 Θ(ρ) = const 6=
0.

In addition, since detA 6= 0, we have ξ2
11+ξ2

12 6= 0. Further, from the condition

lim
η11→0

L = lim
η11→0

−η11(1 + η11η
2
23)→ 0
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and formula (3.5) it follows that η11 → 0. Therefore, the quadratic function γ(ρ) =
−4η11ρ

2−4η11ξ12ρ+ξ2
11 at η11 → 0 satisfies the condition γ(ρ) > 0. Thus, ∀ρ ≥ 0

the function Θ(ρ) is continuous on the interval [0,∞).
(b2) We rewrite equation (3.14) in such aspect

ρ̇(t) =
−2ρF (ρ)

C(ρ) + |ρ− ξ21|
√
ξ2

11 − 4η11ρ2 − 4η11ξ12ρ
, t ∈ Ok, k = 0, 1, 2, ... (3.16)

Let ρ(tk) = ρk. From (3.16) it follows that

ρk = c exp

(ˆ tk

t0

[
−2F (ρ(τ))

C(ρ(τ)) + |ρ(τ)− ξ21|
√
ξ2

11 − 4η11ρ2(τ)− 4η11ξ12ρ(τ)

]
dτ

)
and

ρk+1 = c exp

(ˆ tk+1

t0

[
−2F (ρ(τ))

C(ρ(τ)) + |ρ(τ)− ξ21|
√
ξ2

11 − 4η11ρ2(τ)− 4η11ξ12ρ(τ)

]
dτ

)
.

Having excluded from two last equalities the constant c, we get

ρk+1 =

ρk exp

(ˆ tk+1

tk

[
−2F (ρ(τ))

C(ρ(τ)) + |ρ(τ)− ξ21|
√
ξ2

11 − 4η11ρ2(τ)− 4η11ξ12ρ(τ)

]
dτ

)
.

(3.17)
Further, the function Θ(ρ) is continuous on the interval [0,∞). Therefore at

ρ→∞, we can represent this function in the form

Θ(ρ) = ρ exp

[
−2(1 + η11η

2
23)ρ3 + ...

2
√
−η11(1−

√
−η11η23)ρ2 + ...

]
∼ ρ exp

[
α− 1 +

√
−η11η23√
−η11

ρ

]
,

(3.18)
where α ∈ R. Now if we take advantage of formula (3.18), then formula (3.17)
can be represented in the following form:

ρk+1 = ρk exp

(ˆ tk+1

tk

[
α− 1 +

√
−η11η23√
−η11

ρ(τ)

]
dτ

)
. (3.19)

Let the bounded positive function θ(t) be a monotone decreasing on interval
[ti, ti+1], and let it be a monotone increasing on interval [ti+1, ti+2]. Then we have
(Second Theorem About Mean Value):
ˆ ti+2

ti

h(φ(τ)) · θ(τ)dτ =

ˆ ti+1

ti

h(φ(τ)) · θ(τ)dτ +

ˆ ti+2

ti+1

h(φ(τ)) · θ(τ)dτ =

= θ(ti + 0)

ˆ ξ

ti

h(φ(τ))dτ + θ(ti+2 − 0)

ˆ ti+2

ζ
h(φ(τ))dτ, (3.20)
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where ti ≤ ξ ≤ ti+1, ti+1 ≤ ζ ≤ ti+2. Hence, from (3.20) it follows that
ˆ ti+2

ti

h(φ(τ)) · θ(τ)dτ = piθi + pi+2θi+2, (3.21)

where magnitudes pi =
´ ξ
ti
h(φ(τ))dτ, pi+2 =

´ ti+2

ζ h(φ(τ))dτ can have any signs.
Now let the function ρ(t) = θ(t) be periodic. Then in (3.21), we will have

θi = θi+2. From here it follows that

ρi+1 = ρi exp
[
αi −

1 +
√
−η11iη23i√
−η11i

ρi

]
,

ρi+2 = ρi+1 exp
[
αi+1 −

1 +
√−η11,i+1η23,i+1√−η11,i+1

ρi+1

]
,

and, therefore, we have

ρi+2 = ρi exp
[
αi +αi+1−

(1 +
√−η11,iη23,i√−η11,i

+
1 +
√−η11,i+1η23,i+1√−η11,i+1

)
ρi

]
; (3.22)

where ∀ i = 0, 1, ..., the magnitudes α = αi + αi+1 and

β =
1 +
√−η11,iη23,i√−η11,i

+
1 +
√−η11,i+1η23,i+1√−η11,i+1

do not depend on i (they are constants).
It is clear that at β > 0 the function χ(ρ) = α − βρ is decreasing on the

interval [0,∞). Consequently, for ρ → ∞, we have exp(χ(ρ)) → 0. Then taking
into account formula (3.22), we can derive the following formula

ρk+2 = ρk exp
[
α− βρk

]
, k = 0, 2, 4, ...,

where

α =

ˆ tk+2

tk

α(τ)dτ ∈ R, β =

ˆ tk+2

tk

1 +
√
−η11(τ)η23(τ)√
−η11(τ)

dτ > 0.

Now if we will take into consideration the equivalence (3.18), it is possible to
get conclusion of the lemma. The proof is finished.

It is known that condition (iii) of Theorem (3.2) is necessary in order that
the solution of system (3.10) was periodic. Thus, under the conditions of Lemma
(3.1) we have periodic solution of system (3.8). In this case the boundedness of
solutions is obviously.

Assume that for system (3.8) the conditions of Theorem (3.2) are not fulfilled.
Then by linear nonsingular replacement of variables (x, y, z) → (x1, y1, z1) it is
necessary to pass from system (3.8) to a new quadratic system of differential
equations. Now we apply Theorem (3.2) to the again got system.
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Theorem 3.3. Suppose that the condition (ii) of Theorem (3.2) is replaced by
more weak conditions L(φ) ≤ 0 and D(φ) ≤ 0. In addition, assume that under
the conditions of Theorem (3.2) the condition

lim inf
t→∞

ρ(t) = 0 (3.23)

is also valid. (From this condition it follows that ∀ε > 0 there exists a numerical
sequence tk →∞ as k →∞ such that ρ(tk) < ε.)

Then in system (3.8) there is a chaotic dynamic.

Proof. According to Lemma (3.1) the periodic behavior of solutions of system
(3.8) is generated by 1D iterated process (3.15). In addition, the periodicity
guarantees existence of solutions t = tk of the equation ẋ(t) = 0 (see the first
equation of system (3.11)). It means that the magnitude |L(φ(tk))| 6≡ 0 for such
solutions is small enough.

It is well known that the function y(ρ) = ρ exp(α− βρ) at some values α > 0
and β > 0 is chaotic [2, 3].

According to the results, which were derived in [2,3], in order that map (3.15)
was chaotic it is necessary that for the function detA(φ) the condition (iii) of
Theorem (3.2) was satisfied . Thus, if we choose φ = φ(t0) such that detA(φ(t0)) <
0, then the condition α > 0 will be valid.

Further, from the condition (ii) of Theorem (3.2) follows that in function (3.18)
the magnitude 1 +

√
−η11η23 is positive. Therefore, at ρ→∞, we derive that the

function Θ(ρ) is also chaotic.
Let M = maxρ∈[0,∞) f(ρ) > 0 be a maximum of the function Θ(ρ). The state

of chaos of the map Θ(ρ) on the interval [0,∞) can be proved by the methods
offered in [2, 3].

Indeed, consider the exponential map ρk+1 = Θ(ρk), ρk > 0; k = 0, 1, 2, ...

Let ρ∗k be the minimal fixed point of mapping Θ(k)(ρ). It is known that for
some values of parameters ξ∗ij , η

∗
ij the map Θ(ρ) is chaotic and limk→∞ ρ

∗
k = 0.

Then from condition (3.23) of Theorem (3.3) it follows that at the parameters
ξ∗ij , η

∗
ij process (3.15) generates the subsequence ρ∗m1

,..., ρ∗mk , ..., for which ρ
∗
mk

=
limt→t∗mk

ρ(t∗mk) < ε ≈ 0, k ≥ 1. It means that the number of fixed points of
mapping Θ(k)(ρ) tends to ∞ as k →∞ on the finite interval [0,M). In addition,
the minimal fixed point tends to 0 and the maximal fixed point tends toM . From
here it follows that in system (3.8) there is a chaotic dynamics.

In the present article the situation, at which system (2.2) is a system without
equilibriums (see [4]), it was not considered. It is explained by two reasons: at the
study of the process Parkinson’s illness, for which the model of this process did
not have of equilibriums, it was absent; the methods of research of the systems
without equilibriums are beyond of the present paper [4].
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4. Practical applications and its analysis

In this section we show a few practical applications of the theoretical results,
which were got in previous sections. These applications are modeling the behavior
of Parkinson’s illness. An essence of researches consists in the following.

There are electroencephalograms of the patient, which were written in three
different points of the patient cerebral cortex. We consider that these three signals
represent three time series, which describe the behavior of some curve (it curve is
called a disease curve) in the 3-dimensional phase space. Further, by the methods
of described above, we construct the 3D system of quadratic differential equations,
the solutions of which design the disease curve. (This system is determined by the
coefficients of the matrix Y from Section 2.)

Now the conditions (i) and (ii) of Theorem (3.2) must be tested. In addition,
it is necessary to find the values of parameters of system (3.8), at which in this
system a transition from limit cycle to chaotic attractor and vice versa is take
places.

In standard medical practice usually select some points on the cerebral cortex
and in these points place measuring sensors. The points designate by the special
characters: Fp1, Fp2, F3, ..., F8, T3, ..., T8, C3, ..., P3, ..., O2. In our examples
we will measure electric impulses in the points P3, P4, O1, and C3, C4, T5.

We will designate the magnitudes of electric signals in points P3, P4 and O1
(see Fig.1) by coordinates x(t), y(t), and z(t) of Cartesian coordinate system.
(Similar denotations will be used in the points C3, C4, and T5.) Further, with
the fixed temporal step we construct the time series xi, yi, and zi in the points
P3, P4, and O1 (in the points C3, C4, and T5); i = 1, ..., N = 5100. In addition,
we also construct the time series in the points P3, P4, and O1 in the case i =
1, ..., N = 3100.

(P3) (P4) (O1)

Fig. 1. The rhythms of brain electrical activity measured in points P3, P4, and
O1 of the cerebral cortex.

On these time series we design 3D systems of quadratic differential equations



MATHEMATICAL MODELING OF PARKINSON’S ILLNESS 35

by the least square method (see Section 2):

ẋ(t) = −1.24− 1.15x(t) + 2.34y(t)− 0.83z(t)− 0.04x2(t)
+0.02z(t)z(t) + 0.235x(t)y(t)− 0.015x(t)z(t)− 0.12y(t)z(t),

ẏ(t) = +3.68− 3.91x(t) + 1.01y(t) + 2.54z(t)− 0.16x2(t)− 0.08y2(t)
+0.02z2(t) + 0.15x(t)y(t) + 0.10x(t)z(t)− 0.04y(t)z(t),

ż(t) = −5.9 + 5.22x(t)− 6.15y(t)− 0.31z(t) + 0.13x2(t)
+0.022y2(t)− 0.13x(t)y(t)− 0.28x(t)z(t) + 0.05y(t)z(t);

(4.1)



ẋ(t) = −3.11 + 0.19x(t) + 0.72y(t)− 1.19z(t) + 0.022x2(t)− 0.04y2(t)
+0.045z2 + 0.04x(t)y(t)− 0.01x(t)z(t)− 0.06y(t)z(t),

ẏ(t) = −4.58− 1.69x(t) + 0.39y(t) + 1.37z(t)− 0.03x2(t)− 0.09y2(t)
+0.05z2(t) + 0.11x(t)y(t) + 0.08x(t)z(t)− 0.06y(t)z(t),

ż(t) = −7.88 + 6.91x(t)− 5.69y(t)− 0.71z(t) + 0.23x2(t)
+0.025y2(t)− 0.17x(t)y(t)− 0.1x(t)z(t) + 0.06y(t)z(t);

(4.2)

ẋ(t) = −20.93 + 1.55x(t) + 6.20y(t)− 7.05z(t) + 0.016x2(t) + 0.17y2(t)
−0.16z2(t)− 0.10x(t)y(t) + 0.13x(t)z(t)− 0.08y(t)z(t),

ẏ(t) = +3.87− 2.60x(t) + 2.12y(t)− 2.62z(t)− 0.01x2(t) + 0.034y2(t)
−0.13z2(t)− 0.17x(t)y(t) + 0.32x(t)z(t) + 0.025y(t)z(t),

ż(t) = −12.12 + 1.36x(t) + 3.20y(t)− 3.56z(t) + 0.03x2(t) + 0.06y2(t)
−0.14z2(t)− 0.14x(t)y(t) + 0.09x(t)z(t) + 0.08y(t)z(t).

(4.3)
Here system (4.1) (system (4.2)) simulates the impulses in points P3, P4, and O1
at N = 3100 (at N = 5100). System (4.3) simulates the impulses in points C3,
C4, and T5 at N = 5100.

Chaotic attractors generated by systems (4.1)–(4.3) and their experimental
analogues, which were built on time series, it are represented on Fig. 2–4.

Fig. 2. The phase portraits of model (for system 4.1) and experimental (for the
data set, which were represented on Fig.1) attractors measured in points P3, P4,

and O1 of the cerebral cortex. The number of measurements is 3100.
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Fig. 3. The phase portraits of model (for system 4.2) and experimental (for the
data set, which were represented on Fig.1) attractors measured in points P3, P4,

and O1 of the cerebral cortex. The number of measurements is 5100.

Fig. 4. The phase portraits of model (for system 4.3) and experimental
attractors measured in points C3, C4, and T5 of the cerebral cortex. The

number of measurements is 5100.

A partial verification of the conditions of Theorem (3.2) is shown on Fig.
5 and 6. It is necessary to notice that complete verification of all conditions of
Theorems (3.2) and (3.3) is an intricate enough problem. Note that the got results
show that behavior of systems (4.1), (4.2), and (4.3) generally speaking will not be
chaotic. Therefore there is no necessity to check up Theorem (3.3). (It verification
is desirable only in the case L(φ) ≡ 0.)
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Fig. 5. The behavior of invariants L(φ) and D(φ) for system (4.2).

Fig. 6. The behavior of invariants L(φ) and D(φ) for system (4.3).

An information necessary for the prediction of development of illness is represented
on Fig. 7 – 8.

Fig. 7. The recurrence diagrams of the process of generated by the systems (4.1)
and (4.2).
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(τ = 62) (τ = 162)

Fig. 8. The recurrence diagrams of the process of generated by the system (4.3)
for the different time of delay τ .

The analysis of all represented results allows to do such conclusions.
1. Numerous verifications were shown that for the quadratic systems, which

describe the signals of cerebrum, the invariant L(φ) ≈ 0 (see Fig. 5, 6). The same
feature is noticed at all Lorenz-like and Chen-like systems [2, 3, 12]. Thus, the
conditions of Theorem (3.2) are very restrictive for the simulation modeling. It
should be said that quadratic systems, for which L(φ) ≡ 0 were studied in [2–4].
A sense of the condition L(φ) ≡ 0 consists in that all equations of systems (4.1)
– (4.3) do not contain some quadratic summand (for example x2 or y2). If we
will take into account this circumstance, then we can derive in systems (2.2) new
models of attractors more corresponding to the experimental analogues (see Fig.
2–4).

2. Model attractors generated by systems (4.1), (4.2) differ from the attractor
of system (4.3). Indeed, attractors of systems (4.1) and (4.2) are cylindrical. (It is
explained those that both attractors got in points P3, P4, O1, but with a different
number of measurements: for Fig. 2 it is N = 3100 and for Fig. 3 it is N = 5100.)
The attractor of systems (4.3) is a torus. However, it is necessary to admit that
the experimental attractors are rather spherical. Therefore, a further corrections
of the got models are required.

3. At first sight it seems that the models of attractors of systems (4.1) and
(4.2) are chaotic; the attractor of system (4.3) is quasi-periodic (see Fig. 2–4).
However, as it show recurrence diagrams on Fig. 7–8, all model attractors are
quasi-periodic.

Important distinctions between these diagrams consist in the following: diagrams
on Fig. 8 are built for system (4.3), but with a different time of delay τ . The choice
of optimum value of the parameter τ is instrumental in the increase of informative
of recurrence diagram. In our case it is τ = 62. The diagram on Fig. 7 shows that
the periodic process passes to chaotic.
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4. With respect to the medical applications of the fulfilled analysis, here it is
possible to do the following conclusions. From the medical point of view complex
attractor formed by the signals of cortex testifies to the normal processes flowing in
this cortex [6,10]. On the contrary, the simplification of attractor and it transition
to the periodic structure specifies on destruction of normal processes in a brain
[6, 10]. Consequently, this destruction is the reason of disease.

On Fig. 2–4 the experimental attractors are chaotic. It means that the patient
is not sick. However, the model attractors on Fig. 2–4 show that there is a progress
of disease in the region C3, C4, T5. In region P3, P4, O1 the disease begins only:
the chaotic mode will be replaced periodic.
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