ISSN № 9125 0912 Вісник Дніпропетровського університету. Серія: Ракетно-космічна техніка, 2013, вип. 16

УДК 532.51

Л. Е. Пицык

Днепропетровский национальный университет имени Олеся Гончара

РАСЧЕТ СОПРОТИВЛЕНИЯ ТЕЛ С ШЕРОХОВАТЫМИ ПОВЕРХНОСТЯМИ ПРИ ТУРБУЛЕНТНЫХ РЕЖИМАХ ОБТЕКАНИЯ

Запропоновано аналітичний метод розрахунку коефіціснта опору пластини та еліптичного циліндра з шорсткою поверхнею при турбулентному режимі обтікання.

Ключові слова: пластина, еліптичний циліндр, шорстка поверхня, нестислива рідина, турбулентний режим обтікання, коефіцієнт опору, аналітичні вирази.

Предлагается аналитический метод расчета коэффициента сопротивления пластины и эллиптического цилиндра с шероховатой поверхностью при турбулентном режиме обтекания.

Ключевые слова: пластина, эллиптический цилиндр, шероховатая поверхность, несжимаемая жидкость, турбулентный режим обтекания, коэффициент сопротивления, аналитические выражения.

An analytical method for calculating the coefficient of drag of a plate and an elliptical cylinder with a rough surface in a turbulent flow regime.

Key words: plate, elliptical cylinder, the rough surface, incompressible fluid, the turbulent flow regime, the coefficient of drag, analytical expressions.

Введение. Обтекание поверхностей тел потоком реальной жидкости, осложняемое эффектом равномерной шероховатости поверхности, а также турбулентным режимом течения в вязком слое и следе, связано с широким кругом актуальных проблем аэродинамики. Во многих практически важных случаях обтекаемая поверхность тела не является гидравлически гладкой. Более того, плоская пластина и поперечно обтекаемый круговой цилиндр – классические элементы технических конструкций. В то время как для расчета сопротивления гладких поверхностей предложены численные и различные аналитические модели [2, 4], методы расчета обтекания шероховатых поверхностей находятся на начальной стадии развития. Информация о влиянии шероховатости поверхности на споротивление, получена главным образом из экспериментальных исследований [2, 5].

В данной работе на основе модели пристенного вязкого течения около равномерно шероховатой стенки, предложена аналитическая модель для расчета сопротивления различных тел с шероховатой поверхностью при турбулентных режимах обтекания.

Постановка задачи. Рассматривается задача расчета влияния степени шероховатости поверхности на коэффициент сопротивления пластины и эллиптического цилиндра в плоском квазистационарном потоке несжимаемой жидкости при критическом и закритическом турбулентном режимах обтекания. В качестве определяющих параметров выбираются: U_{∞} , P_{∞} , ρ_{∞} , $T_u \rightarrow 0$ – скорость, статическое давление, плотность и степень турбулентности набегающего потока; Re, Re_s – число Рейнольдса, рассчитанное по длине или толщине тела и высоте є элемента равномерной шероховатой поверхности; α – угол атаки; t = b / a – параметр эллиптичности; a, b – полуоси эллиптического цилиндра; d – диаметр кругового цилиндра.

[©] Пицык Л. Е., 2013

Гладкая пластина. Для учета многослойной структуры пристенного турбулентного течения предположим, что распределение средней скорости во внутренних переменных можно записать в виде степенной функции

$$\varphi = \frac{U}{U_{\tau}} = nB \exp\left(\frac{C}{nB} - 1\right) \eta^{1/n}; \quad \eta = \frac{U_{\tau}y}{v}, \tag{1}$$

где *B*, *C* – постоянные, а *n* – показатель степени. Можно показать, что степенной профиль скоростей (1) имеет две огибающие семейства профилей

$$\varphi = C\eta^{1/n}; \quad \varphi = B\ln\eta + C \tag{2}$$

для буферного слоя и турбулентного ядра соответственно. Предположим, что в ламинарном подслое с линейным распределением скорости n = B = C = 1; в буферном слое n = 2, $C = \sqrt{5}$; в области логарифмического закона распределения скорости B = 2,565, C = 5,13. Тогда многослойную модель пристенного турбулентного течения можно представить в виде

$$\varphi(\eta) = \begin{cases}
\eta, & 0 \le \eta \le 5, 13; \\
\sqrt{C\eta}, & 5, 13 \le \eta \le 42, 4; \\
B \ln \eta + C, & 42, 4 \le \eta \le (0, 1 - 0, 2)\delta; \\
\sqrt{\frac{2}{C_f}} \left(\frac{y}{\delta}\right)^{\frac{1}{n}}, & (0, 1 - 0, 2) \le \frac{y}{\delta} \le 1.
\end{cases}$$
(3)

Учитывая, что структура профиля средней скорости (3) удовлетворительно согласуется с опытными и теоретическими данными, предположим, что он может быть распространен и на вязкие течения вдоль шероховатых поверхностей. Локальный коэффициент трения и связь между характерными числами Рейнольдса можно найти из (1) в виде:

$$C_{f} = 2\left(\frac{\theta}{\delta}\right)^{2/n} (nB)^{-2}; \qquad \operatorname{Re}_{\theta} = nBA\left(\frac{\theta}{\delta}\right)^{-1/n};$$

$$A = \exp\left(n - \frac{C}{B}\right); \qquad \operatorname{Re}_{x} = \operatorname{Re}_{\theta}\left(\sqrt{\frac{2}{C_{f}}} - B\right)^{2} + 3B^{2},$$
(4)

где δ, θ – толщина и толщина потери импульса пограничного слоя на пластине соответственно. В табл. 1 представлено сравнение расчетного значения локального коэффициента трения гладкой пластины с принятой за эталон зависимостью Кармана – Шехнера, а также полуэмпирическими формулами Людвига – Тиллмана и Фернгольца [5].

Модель сопротивления шероховатой поверхности. Сопротивление выступающих элементов равномерной шероховатости в общем случае состоит из сопротивления давления, трения и донного сопротивления, возникающих вследствие изменения скорости в окрестности препятствия. Учитывая это, воспользуемся интегральными уравнениями сохранения массы и количества движения во внутреннем вязком слое пристенного течения около шероховатой поверхности:

$$\rho U_{\tau} H \sim \rho U \varepsilon; \qquad \rho U_{\tau}^2 H \sim (P - P_{\infty}) \varepsilon, \tag{5}$$

где $U_{\rm \tau}$ – динамическая скорость; $U\!\!,\,U_{\rm \tau}\!,\,\epsilon,\,H\!-$ характерные скорости и высоты контрольного объема жидкости при наличии и отсутствии шероховатости соответственно. Тогда из (5) можно получить:

$$C_x(\varepsilon) \sim C_f \frac{U}{U_{\tau}} = C_f \varphi \left(\frac{U_{\tau} \varepsilon}{v} \right),$$
 (6)

где ф – профиль средней скорости пристенного течения; C_f – локальный коэффициент трения при отсутствии шероховатости; С, (є) – коэффициент сопротивления, обусловленный шероховатостью поверхности. Введем осредненное по высоте элемента шероховатости динамическое давление

$$\overline{q} = \frac{1}{2}\rho_{\infty}\overline{u}^2 = \frac{1}{\varepsilon}\int_0^{\varepsilon} \frac{\rho_{\infty}}{2}u^2(y)dy = \frac{\rho_{\infty}u_{\infty}^2}{2}\frac{n}{n+2}\left(\frac{\varepsilon}{\delta}\right)^{2/n}.$$
(7)

Тогда соотношение для расчета сопротивления шероховатой поверхности запишется в виле

$$C_{x}(\varepsilon) \sim \frac{C_{f}}{2} \left(1 + \frac{2}{n} \right) \left(\frac{\operatorname{Re}_{\theta} \delta}{\theta \operatorname{Re}_{\varepsilon}} \right)^{2/n} \varphi \left(\sqrt{\frac{C_{f}}{2}} \operatorname{Re}_{\varepsilon} \right) = D\varphi(\eta).$$
(8)

Шероховатая пластина. В зависимости от степени шероховатости стенки будем различать три случая: режим гидравлически гладкой поверхности $\left(0 \le \frac{U_{\tau} \varepsilon}{v} \le 5\right)$; переходной режим влияния шероховатости $\left(5 \le \frac{U_{\tau} \varepsilon}{v} \le 70\right)$; режим развитой шероховатости $\left(\frac{U_{\tau}\varepsilon}{v} \ge 70\right)$. Тогда для переходного режима влияния ше-

роховатости получим локальный коэффициент трения в виде

$$C_f(\varepsilon) = C_f(0) + 0,268 \cdot 10^{-3} D \cdot \eta^{1.93}, \qquad (9)$$

где $C_{\ell}(0)$ – коэффициент трения гладкой пластины. Для режима с полным проявлением шероховатости за параметр выберем x / ε . Тогда из уравнения огибающей семейства профилей в турбулентном ядре (2) получим локальный коэффициент сопротивления пластины в виде

$$C_f\left(\frac{x}{\varepsilon}\right) = 2\left(2,1\ln\frac{x}{\varepsilon} + 3,7\right)^{-2}.$$
(10)

В табл. 2 и 3 представлено сравнение расчетного значения локального коэффициента трения шероховатых пластин с опытными данными [5].

Отрывное обтекание эллиптического цилиндра. Предполагается, что к поперечно обтекаемому эллиптическому цилиндру большого удлинения может быть применена гипотеза плоских сечений. Известно, что отрывное обтекание цилиндра при $\text{Re} > 10^3$ определяется в основном силами инерции и давления, а доля сопротивления трения составляет 2-3 % от общего сопротивления тела [2]. Тогда, в соответствии с асимптотическим методом [3], коэффициент главного вектора аэродинамической силы, действующей на единицу ширины цилиндра, можно записать в виде

$$C_{R} = \frac{2R}{\rho_{\infty}U_{\infty}^{2}A} = \left(\frac{U_{s}}{U_{\infty}}\right)^{2} - 1; \quad A = 2\sqrt{a^{2}\sin^{2}\alpha + b^{2}\cos^{2}\alpha}, \tag{11}$$

где R – аэродинамическая сила; A – площадь поперечного сечения тела плоскостью, перпендикулярной потоку на бесконечности; U_s – скорость в точке отрыва от поверхности цилиндра.

Предположим, что скорость $U_{\rm s}$ в точке отрыва потока может быть выбрана как среднее от скорости $U_{\rm m}$ и некоторой характерной скорости $U_{\rm m}$ на теле перед точкой отрыва

$$U_{s}^{2} = \frac{2U_{s}^{2}U_{m}}{U_{\infty} + U_{m}}; \qquad \frac{U_{m}}{U_{\infty}} = (1+t)^{\gamma}.$$
 (12)

Тогда коэффициент сопротивления гладкого цилиндра представим в виде

$$C_{x}(t) = \frac{3(1+t)^{\gamma}}{2+(1+t)^{\gamma}} - 1,$$
(13)

где $\gamma = 0,5146$; 1,3286 — постоянная переходного и турбулентного режима обтекания соответственно. Используя принцип аддитивности, коэффициент сопротивления шероховатого цилиндра запишем в виде

$$C_x = C_x(t) + t \exp(1-t)C_x(\varepsilon), \qquad (14)$$

где $C_x(\varepsilon)$ – сопротивление, обусловленное шероховатостью поверхности. Предполагается, что при $\varepsilon / 2b = 10^{-5}$ цилиндр можно считать гладким.

Критический режим обтекания цилиндра. Предполагается, что кризисное число Рейнольдса совпадает со значением, где достигается наименьший коэффициент сопротивления цилиндра. Тогда соотношение, связывающее критическое число Рейнольдса с параметром шероховатости, можно представить в виде

$$lg Re = 6,7134T(t) - G(\varepsilon);$$

$$T(t) = \exp(0,1(t+1,24)^{2})/(t+1,24);$$
 (15)

$$G(\varepsilon) = 0,45\Phi(1,23(lg(\varepsilon/2b)+2,4)),$$

где $\Phi(x)$ – интеграл вероятности ошибки. Используя (10) и (13), получим коэффициент сопротивления в виде

$$C_{x}(\varepsilon) = \begin{cases} 4,38D\eta^{0.556}, & \eta \le 14; \\ 0,19+5,667D(\eta-14)^{0.732}, & \eta \ge 14. \end{cases}$$
(16)

Закритический режим обтекания цилиндра. При сверхкритических числах Рейнольдса Re > 3 × 10⁶ сопротивление гладкого цилиндра перестает зависеть от числа Re. Напротив, шероховатость поверхности приводит к росту сопротивления с увеличением числа Рейнольдса. Проводя аналогию с кризисным режимом, предположим, что сверхкритическое число Re связано с параметром шероховатости соотношением:

Учитывая (10) и (13), получим соотношение для коэффициента сопротивления в виде:

$$C_{x}(\varepsilon) = \begin{cases} 0,3937D\eta, & \eta \le 269; \\ 15,42D\eta^{0,3444}, & \eta \ge 269. \end{cases}$$
(18)

ISSN № 9125 0912 Вісник Дніпропетровського університету. Серія: Ракетно-космічна техніка, 2013, вип. 16

Сравнение расчетных и опытных данных

Таблица 1

			1000 C _f				
п	$\lg \operatorname{Re}_x$	$\lg \operatorname{Re}_{\theta}$	расчет	Карман – Шехнер	Людвиг – Тиллман	Фернгольц	
6	5,7	3,1	4,0	4,06	4,57	4,46	
7	6,3	3,6	3,19	3,19	3,65	3,55	
8	6,9	4	2,59	2,58	2,87	2,78	
10	8	5	1,81	1,79	1,73	1,67	
12	9	5,9	1,34	1,32	1,03	0,99	

Влияние числа Re на локальный коэффициент трения гладкой пластины

Таблица 2

Влияние числа Re на локальный коэффициент трения шероховатой пластины

Re _s	Re _x	1000 C _f	$2 \cdot 10^6$	$1,4 \cdot 10^{7}$	10 ⁸	10 ⁹
D - 500	расчет		3,79	2,75	2,08	1,5
$\mathrm{Ke}_{s} = 500$	[4	5]	3,8	$\begin{array}{c ccccc} 2 \cdot 10^6 & 1,4 \cdot 10^7 & 10^8 \\ \hline 3,79 & 2,75 & 2,08 \\ \hline 3,8 & 2,74 & 2,09 \\ \hline 5,1 & 3,64 & 2,69 \\ \hline 5,2 & 3,58 & 2,64 \\ \hline \end{array}$	1,5	
$D_{0} = 1000$	pac	чет	5,1	3,64	2,69	1,88
$Re_{s} - 1000$	[4	5]	5,2	3,58	2,64	1,85

Таблица 3

Влияние параметра — на коэффициент трения шероховатой пластины

	3				
$\frac{x}{\varepsilon}$	10 ²	10 ³	10^{4}	10 ⁵	10 ⁶
1000 <i>С_f</i> расчет	11,19	6,0	3,8	2,57	1,87
$1000 C_f$ [5]	11,20	6,2	3,9	2,63	1,87

Таблица 4

Влияние степени шероховатости на критическое число Re и коэффициент сопротивления кругового цилиндра

ε / d	10 ⁻⁴	$5 \cdot 10^{-4}$	10 ⁻³	$2 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$7 \cdot 10^{-3}$	$9 \cdot 10^{-3}$	$2 \cdot 10^{-2}$
lg Re _s	1,4	2,05	2,27	2,43	2,55	2,68	2,69	2,9
lg Re	5,4	5,35	5,27	5,13	4,95	4,83	4,74	4,6
lg Re[2]		5,32		5,18	4,94	4,78	4,7	4,6
C_x	0,358	0,4	0,42	0,44	0,61	0,72	0,73	0,86
$C_{x}[2]$		0,4		0,44	0,6	0,75	0,77	0,86

Таблица 5

Влияние степени шероховатости на сверхкритическое число Re и коэффициент сопротивления кругового цилиндра

ϵ / d	10 ⁻⁵	10 ⁻⁴	10 ⁻³	$4 \cdot 10^{-3}$	10 ⁻²
lg Re _s	1,68	2,67	3,55	3,83	4,0
lg Re	6,68	6,67	6,55	6,23	6,0
C_x	0,678	0,714	0,89	1,0	1,15
$C_x[2]$	0,67	0,72-0,74	0,85-0,89	0,97–1,06	1,05

ISSN № 9125 0912 Вісник Дніпропетровського університету. Серія: Ракетно-космічна техніка, 2013, вип. 16

Таблица б

	T	I	1.1	· · · · · · · · · · · · · · · · · · ·	I	-
lg Re _s	2,5	3,1	3,55	3,97	4,53	5,08
lg Re	5,5	6,1	6,55	6,97	7,53	8,08
	0,724	0,786	0,888	1,025	1,065	1,12

Влияние сверхкритического числа Re на коэффициент сопротивления кругового цилиндра при $\varepsilon / d = 10^{-3}$

Таблица 7

Влияние параметра эллиптичности на сверхкритическое число Re и коэффициент сопротивления цилиндра при $\varepsilon / d = 4 \cdot 10^{-3}$

t	lg Re _s	lg Re	$\lg \operatorname{Re}_x$	C_x
0,5	3,72	6,12	5,58	0,7
1,0	3,83	6,23	6,12	1,0
2,0	4,6	7,0	6,6	1,34

Выводы. На основе модели пристенного вязкого течения разработаны аналитические соотношения для расчета коэффициента сопротивления пластины и эллиптического цилиндра с шероховатой поверхностью при турбулентном режиме отрывного обтекания. Предложенные соотношения обеспечивают удовлетворительное согласование расчетных и опытных данных в широких диапазонах изменения определяющих параметров.

Библиографические ссылки

- 1. Гювен О. Модель обтекания круговых цилиндров с шероховатой поверхностью при высоких числах Рейнольдса / О. Гювен, В. Пател, С. Фарелл // Теоретические основы инженерных расчетов. 1977. № 3. С. 144–154.
- 2. Девнин С. И. Аэрогидромеханика плохообтекаемых конструкций : справочник / С. И. Девнин. Л., 1983. 320 с.
- 3. Пицык Л. Е. Расчет влияния режимов обтекания на аэродинамику эллиптического цилиндра с шероховатой поверхностью / Л. Е. Пицык, Л. Л. Пицык // Вісник Дніпропетр. ун-ту. Серія «Ракетно-космічна техніка». – 2011. – № 4. – С. 112–116.
- 4. Пицык Л. Е. Расчет сопротивления шероховатых цилиндров при критических и закритических режимах обтекания / Л. Е. Пицык, А. Л. Пицык // Вісник Дніпропетр. ун-ту. Серія «Ракетно-космічна техніка». – 2012. – № 4. – С. 99–104.
- 5. Шлихтинг Г. Теория пограничного слоя / Г. Шлихтинг. М., 1974. 711 с.

Надійшла до редколегії 29.06.2013.