УДК 62-68

СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ ТЯГОВОГО ЭЛЕКТРОПРИВОДА СРЕДНЕГАБАРИТНОГО ЭЛЕКТРОТРАНСПОРТА С ФУНКЦИЕЙ ИСПОЛЬЗОВАНИЯ ТЕПЛОВЫХ ПОТЕРЬ

Е.А. Смотров к.т.н, вед. инж. НТЦ «Станкосерт», В.В. Субботин, студент ОНПУ, Д.Ю. Шейко, инженер, ОСКБСС

Аннотация. Приводятся результаты разработки узла отвечающего за охлаждение электропривода, а также исследуется вопрос перспективы использования тепловых потерь для обогрева электротранспортного средства с бортовым источником питания.

Ключевые слова: система охлаждения, электротранспорт, обогрев электротранспорта.

СИСТЕМА ТЕРМОРЕГУЛЮВАННЯ ТЯГОВОГО ЕЛЕКТРОПРИВОДА СЕРЕДНЬОГАБАРИТНОГО ЕЛЕКТРОТРАНСПОРТУ З ФУНКЦІЄЮ ВИКОРИСТАННЯ ТЕПЛОВИХ ВТРАТ

Е.А. Смотров к.т.н., пров. інж. НТЦ «Станкосерт», В.В. Субботін, студент ОНПУ, Д.Ю. Шейко, інженер, ОСКБСС

Анотація. Наводяться результати розробки вузла, що відповідає за охолодження електроприводу, а також досліджується питання перспективи використання теплових втрат для обігріву електротранспортного засобу з бортовим джерелом живлення.

Ключові слова: система охолодження, електротранспорт, обігрів електротранспорту.

SYSTEM OF TEMPERATURE CONTROLLING FOR TRACTION ELECTRIC DRIVE OF MIDSIZE ELECTRIC TRANSPORT WITH USING HEAT LOSS

E. Smotrov, cand. eng. sc., V. Subbotin, student, D. Sheyko, engineer

Abstract. The results of the development unit is responsible for cooling the drive, and explores the prospects of using heat loss for heating electric vehicles with on-board power supply.

Keywords: cooling system, electric transportation, electric heating

Введение

Последнее десятилетие характеризуется значительным ростом работ по разработке, исследованию и внедрению систем электротранспорта на основе автономного электропривода (ЭП), в том числе многодвигательного исполнения с источником питания на борту.

Одна из проблем, над которой продолжается работа и которая существенно снижает привлекательность TC с автономным источником

питания, относительно маленькая дистанция пробега на одной зарядке аккумуляторной батареи (АБ). Маленькая удельная энергоемкость АБ 150 Втч/кг не позволяет решить эту проблему за счет увеличения емкости.

Влияние низких температур на емкость батареи, наряду с узким температурным диапазоном работы, создает крайне неблагоприятные условия для бортового источника питания (БИП), что наталкивает к выводу о сомнительных перспективах электротранспортного

средства (ЭТС) в зимнее время года. В тоже время работа ЭП приводит к выделению тепловой энергии, которую приходится утилизировать в окружающую среду. Для ЭП с высокой удельной мощностью или температурной изоляцией, является необходимой разработка узла, отвечающего за принудительное охлаждение ЭП, к которому помимо требования к эффективности предъявляются требования и к экономичности.

Доклад посвящен результатам по разработанной системе термоконтроля и перспективе вторичного использования тепловых потерь ЭП. Оговоренная тема будет рассмотрена на примере ЭТС сопоставимых габаритов с маршрутным такси, ввиду достаточных тепловых потерь для обогрева, а так же в качестве средства пассажирских перевозок, ввиду постоянной необходимости обогрева ТС.

Анализ публикаций

Источники информации - отчеты автомобильных компаний по тестированию собственных разработок, публикации о нововведениях в автомобильной промышленности с последующей проекцией новинок на ЭТС.

Принцип действия системы охлаждения позаимствован у автомобиля с ДВС, с тем отличием, что были реализованы два отдельных контура охлаждения для электродвигателя и преобразователя. Контроль температуры возложен на автоматизированную систему, реализующую функцию экономии энергии.

Вопрос обогрева ЭТС за счет тепловых потерь ЭП– вопрос мало изучен, так как электропривод в малогабаритных электромобилях благодаря высокому значению КПД не выделяет количества тепла, достаточного для обогрева салона. Поэтому на данный момент в электромобилях отопление салона в зимнее время года возлагается на автономные устройства: инфракрасного отопления, электрические фены и с камерой сгорания топлива и аналогичные устройства прогрева жидкости.

Цель и постановка задачи

Решение затронутых проблем по охлаждению ЭП с одной стороны и прогрева ЭТС с другой позволит экономить заряд АБ за счет энергии, которая была бы утилизирована,

продлить срок службы АБ за счет создания благоприятных температурных условий. Учитывая перечисленные преимущества, проблема является актуальной.

В работе ставится цель продемонстрировать разработанную систему охлаждения, возможность объединения систем охлаждения ЭП и отопления ЭТС, эффективность использования энергии потерь, преимущества над известными решениями, простоту реализацию.

Основной раздел

Исследование вопроса прогрева ТС и разработка узла управлением охлаждения ЭП производилась на ЭТС, собранного на основе шасси и кузова серийного фургона. Тяговые усилия развивают два мотор-колеса (МК), соединенных с передними колесами через шарниры равных угловых скоростей. МК представляет собой трехфазный синхронный двигатель обращенного типа (статор остается неподвижным, тогда как ротор соединен с диском колеса) с возбуждением от постоянных магнитов [1]. Конструктивные особенности МК привели к температурной изоляции обмотки электродвигателя от окружающей среды, поэтому было предусмотрено жидкостное охлаждение. Кроме МК в состав ЭП входит преобразователь напряжения (ПН), который также нуждается в принудительном жидкостном охлаждении. Разные температурные диапазоны работы МП и ПН вынудили разделить контура охлаждения. Раздельное охлаждение МК и преобразователя было реализовано на практике и хорошо себе зарекомендувало.

Для оценки тепловых потерь за основу был взят европейский городской цикл движения ЕСЕ-15, рис. 1. В результате расчета мощности тепловых потерь по методике представленной в [2] было установлено, что в зависимости от перевозимого веса возможно направлять в салон ТС от 2,1 до 4,6 кВт. Если при расчете необходимой для обогрева мощности, принять салон ТС как помещение с плохой теплоизоляцией, то на поддержание комфортных условий на уровне 20°С потребуется 1,5 – 2кВт, что перекрывается тепловыми потерями в ЭП.

Предлагается назначить функции охлаждения ЭП и обогрева ЭТС одной системы, которая через управление дроссельными засло-

нками обеспечит управлением перемещением тепловой энергии.

Структура системы охлаждения ЭП и обогрева ЭТС представлена на рис. 2. Контур, содержащий преобразователь в качестве источника тепла, содержит устройство предпу-

скового прогрева – для прогрева до начала движения, и отапливает зону водителя и отсек БИП. Контур электродвигателей соответственно отапливают пассажирский салон. Предложенная структура позволяет автоматизировать управление тепловыми процессами в ЭТС.

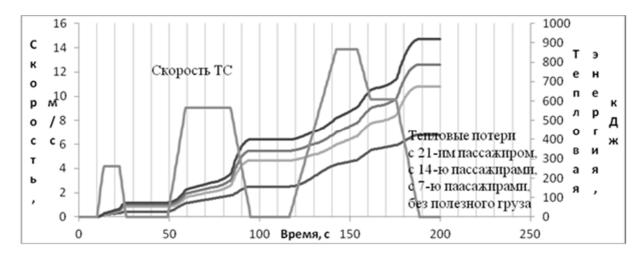


Рис. 1. Городской цикл движения ТС с соответствующими тепловыми потерями

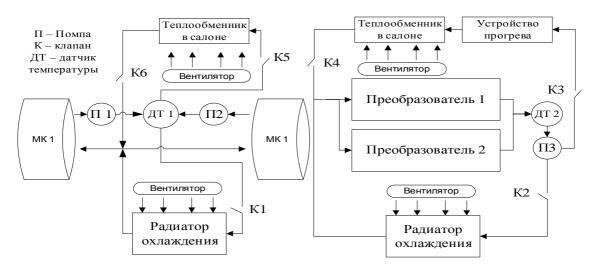


Рис. 2. Структура система термоконтроля

Выводы

Проделана разработка системы терморегулирования ЭП. Предложен способ экономии заряда БИП в зимнее время, проведен расчет энергии для повторного использования, рассмотрен способ реализации предложенной системы.

Литература

1. Вершинин Д.В. Электропривод моторколеса электротранспортного средства / Д.В. Вершинин, В.А. Войтенко, Е.А.

- Смотров // Електромашинобуд. та електрообл. -2009. Вип. 74. С. 25—30.
- 2. Вершинин Д.В. Определение параметров основных узлов электрической схемы электроавтобуса / Д.В. Вершинин, В.А. Войтенко, Е.А. Смотров // Електромашинобуд. та електрообл. 2009. Вип. 74. С. 10–17.

Рецензент: В.Х. Далека, профессор, д.т.н. ХНУГХ.

Статья поступила в редакцию 5 сентября 2013 г.