ПУТИ УЛУЧШЕНИЯ ЭКОНОМИЧЕСКИХ И ЭКОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ АВТОТРАНСПОРТНЫХ СРЕДСТВ. ЭНЕРГОСБЕ-РЕГАЮЩИЕ ТЕХНОЛОГИИ

УДК 621.436.681.51

МЕТОДИКА ОПРЕДЕЛЕНИЯ РЕЖИМНЫХ И КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ЧАСТИ ДОЗАТОРА ГАЗА, СИСТЕМЫ ПИТАНИЯ ТРАНСПОРТНОГО ДВИГАТЕЛЯ

В.М. Манойло, доцент, к.т.н., ХНТУСХ

Аннотация. Предложена методика расчётно-экспериментального определения параметров электромеханической части дозатора газа, обеспечивающая повышение надёжности узла, установленного в системе топливоподачи транспортного двигателя, адаптированного к условиям эксплуатации.

Ключевые слова: методика, расчет, параметры, клапан-сердечник, электромагнитный дозатор газа.

МЕТОДИКА ВИЗНАЧЕННЯ РЕЖИМНИХ ТА КОНСТРУКТИВНИХ ПАРАМЕТРІВ ЕЛЕКТРОМЕХАНІЧНОЇ ЧАСТИНИ ДОЗАТОРА ГАЗУ, СИСТЕМИ ЖИВЛЕННЯ ТРАНСПОРТНОГО ДВИГУНА

В.М. Манойло, доцент, к.т.н. ХНТУСГ

Анотація. Запропоновано методику розрахунково-експериментального визначення параметрів електромеханічної частини дозатора газу, що забезпечує підвищення надійності вузла, встановленого в системі паливоподачі транспортного двигуна, адаптованого до умов експлуатації.

Ключові слова: методика, розрахунок, параметри, клапан-сердечник, електромагнітний дозатор газу.

METHOD FOR DETERMINING REGIME AND DESIGN PARAMETERS OF ELECTRO-MECHANICAL COMPONENTS OF A GAS DIVIDER, SYSTEM POWER MOTOR VEHICLE

V. Manoilo, assistant professor, cand. eng. sc., KhNTUA

Abstract. The method of settlement and experimental determination of the parameters of the electromechanical dispenser gas, ensuring higher reliability node installed in the fuel system of a vehicle engine, adapted to the conditions.

Key words: methods of calculation parameters, the valve-core electromagnetic gas dispenser.

Ввеление

Электромагнитные дозаторы эффективно используются в системах питания 2-хтопливных либо в «чисто» газовых автотра-

кторных ДВС отечественного и зарубежного производства. Достоинствам дозаторов является простота конструкции узла и удобство техобслуживания; высокая надежность в работе; сравнительно не высокая себестои-

мость изготовления и т.д.

Анализ последних достижений и публикаций

Теория рабочего процесса электромеханической части электромагнитных устройств соленоидного типа, а также определение величины магнитовтягивающей силы, воздействующей на якорь-сердечник, приведены в работах [1,2]. Автором систематизированы отдельные положения из этих работ [1,2]. На основании чего, был разработан метод определения режимных и конструктивных параметров электромеханической части ЭДГ, системы топливоподачи транспортного двигателя, сущность которого приведена ниже.

Цель и постановка задачи

Целью данной работы является: обоснование выбора основных параметров электромеханической части узла; разработка методики для определения режимных и конструктивных параметров электромеханической части ЭДГ, установленного в системе топливоподачи транспортного двигателя автотранспортного средства.

Сущность предлагаемой методики

При подаче напряжения на обмотку возбуждения катушки электромагнита, возникает магнитовтягивающая сила (открывающая сила), которая притягивает якорь-сердечник к задней части (торцу) стопора катушки. Обратная торцевая сторона якоря-сердечника представляет собой уплотнительное устройство, в котором закреплена резиновая прокладка толщиной 1,5 – 2,0 мм. Таким образом, в конструкции электромагнитного дозатора газа якорь-сердечник соленоидного типа является одновременно перепускным клапаном-сердечником и обеспечивает подачу (либо отсечку) газа во впускную систему ДВС.

Схема ЭДГ с перепускным клапаномсердечником приведена на рис.1, а статические характеристики основных параметров электромагнитного дозатора представлены на рис. 2 [1].

При прекращении подачи напряжения на обмотку катушки ЭДГ, предварительно сжатая пружина (закрывающая сила, равная $F_3 = z_d$

 $b_{pr}\cdot[z_o+z_d]$) передвигает клапан-сердечник в исходное первоначальное положение, и подача рабочего тела из полости газовой рампы прекращается. Здесь: b_{pr} — жесткость пружины, Н/мм; z_0 — начальное положение предварительно сжатой пружины, м; z_d — рабочий ход (максимальное перемещение) якоря-сердечника, м.

Наружный диаметр пружины дозатора газа определяем соответственно следующим выражением

$$D_{p} = \sqrt{\frac{E_{r} \cdot d_{pd}^{4} \cdot 10^{6}}{8 \cdot n_{v} \cdot b_{pr}}},$$
 (1)

где: E_{τ} — модуль упругости при сдвиге материала, Па; d_{pd} — средний диаметр пружины дозатора газа, м; n_{v} — число витков пружины, шт; b_{pr} — жесткость пружины, Н/м;

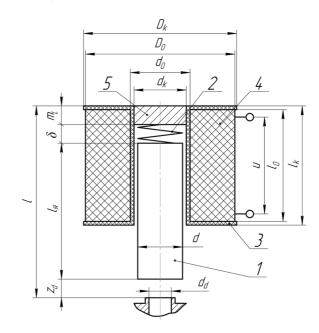


Рис. 1. Схема электромагнитного дозатора газа: I – клапан-сердечник перепуска газа; 2 – предварительно сжатая пружина; 3 – корпус катушки; 4 – обмотка катушки; 5 – упор; D_{κ} и d_{κ} - наружный и внутренний диаметры электромагнитной катушки; I_{κ} - длина корпуса катушки

Начальное усилие предварительно сжатой пружины выразим соотношением, Н;

$$F_{pr\,\min} = b_{pr} \cdot z_0 \,. \tag{2}$$

Максимальное усилие пружины дозатора

газа определяем по формуле, Н;

$$F_{pr.\text{max}} = b_{pr} \cdot z_d + F_{pr.\text{min}}. \tag{3}$$

Начальное положение якоря относительно торцевой части корпуса катушки электромагнитного дозатора газа, выразим уравнением, м

$$z_{Hay} = l - (l_s + \delta + z_d + m_L) = 0$$
, (4)

где: l - расстояние от седла плоского клапана до конца электромагнита, м; $l_{\rm g}$ - длина якоря, м, δ - максимальное расстояние между стопором и торцом якоря, м; z_d - максимальное перемещение клапана-сердечника, м; m_L - длина стопора, м;

Конечное положение якоря относительно корпуса катушки электромагнита дозатора выразим следующей зависимостью, м

$$z_{KOH} = l - (l_{g} + \delta + m_{L}) = z_{d}$$
 (5)

Максимальную намагничивающую силу электромагнита [2, с. 260], можно (получить при заданных габаритах обмотки и превышении температуры, равной допустимому τ_{o}), выразив последнюю следующим соотношением, Н

$$\theta_m = l_k \cdot \sqrt{\frac{\tau_o}{A + \alpha_t \cdot \tau_o} \cdot \kappa_\tau \cdot \frac{f_k}{\rho} \cdot (D_0 - d_0)} , \quad (6)$$

где: D_0 и d_0 — наружный и внутренний диаметры катушки обмотки, м; κ_{τ} — коэффициент теплоотдачи материала (меди), Вт/(м²·°С); ρ — удельное сопротивление материала, Ом·м; α_t — коэффициент температуропроводности материала провода обмотки; f_k — коэффициент заполнения катушки; A — коэффициент приведения; τ_{ϕ} — температура обмотки при работе в кратковременном режиме, °С.

Коэффициент приведения [2, с. 254] можно представить следующей зависимостью

$$A = 1 + \alpha_t \cdot (T_0 + 20), \tag{7}$$

здесь: T_0 – температура окружающей среды, ${}^0{\rm C}$.

Наружная поверхность обмотки вычисляется по формуле [2, с. 228], M^2

$$S_{\delta o \kappa} = 2 \cdot \pi \cdot (D_0 \cdot l_0) , \qquad (8)$$

где: l_0 – диаметр обмотки катушки, м.

Допустимая величина подводимой мощности (согласно, технических требований режима работы и нагрева катушки), может быть определена при помощи следующего уравнения [2, с. 255], Вт

$$P_{\alpha} = \tau_{\alpha} \cdot (1 + \alpha \cdot \tau_{\alpha}) \cdot \kappa_{\tau} \cdot S_{\delta \alpha \kappa} . \tag{9}$$

Температура перегрева обмотки относительно окружающей среды находится из соотношения [2, с. 247], °С

$$\tau_{_{H}} = \frac{C_{_{M}} \cdot G_{_{m}}}{\kappa_{_{T}} \cdot S_{_{OOK}}}, \tag{10}$$

где: $C_{\scriptscriptstyle M}$ — теплоемкость материала (меди), Дж/(кг· 0 С); если рассматривать катушку электромагнита как изотермическое тело, тогда, $G_{\scriptscriptstyle m}$ — масса обмотки катушки, кг/с.

Температура обмотки при работе в кратковременном режиме определяется следующим образом [2, с. 247], К

$$\tau_{\partial} = \vartheta_{dd} - 35 \,, \tag{11}$$

здесь: θ_{dd} — значения допустимой рабочей температуры изоляции (например, для класса A), 0 C.

Средний диаметр проволоки в обмотке катушки находится из условия [2, с. 226], м

$$D_{cp.0} = \frac{\left(D_0 + d_0\right)}{2}.$$
 (12)

Требуемый диаметр проволоки для обмотки катушки находится из формулы [2, с. 226], м

$$d_p = \sqrt{4 \cdot \rho \cdot D_{cp.0} \cdot \frac{\theta_m}{u}}, \qquad (13)$$

где: u — напряжение в бортовой сети автомобиля, B.

Полный диаметр магнитопровода вычисляется из соотношения, м

$$d_{\Pi} = d_{\rm p} + 2 \cdot \Delta_{{\scriptscriptstyle \rm H3}}, \tag{14}$$

здесь: $\Delta_{\text{из}}$ — толщина изоляции магнитопровода, м.

Число витков в обмотке электромагнита определяется следующим выражением [2, с. 227], шт

$$w_{v} = f_{y} \cdot (D_{0} - d_{0}) \cdot \frac{l_{0}}{2 \cdot d_{x}^{2}}.$$
 (15)

Последовательную магнитную цепь (без учета рассеивания), но с учетом воздушного зазора, проводимость (в зазоре G_δ) известна, и ее можно записать тождеством [2, с. 72], Н

$$\theta_{m} = \theta + \theta_{\delta} = \Phi \cdot \frac{l}{\mu_{0} \cdot \mu \cdot S} + \Phi \cdot \frac{l}{G_{\delta}} =$$

$$= \frac{B \cdot l}{\mu_{0} \cdot \mu} + \frac{B \cdot l}{G_{\delta}}, \qquad (16)$$

где l — длина провода обмотки, м; Φ — магнитный поток, Φ ; B — магнитная индукция, Γ с; μ — магнитная проницаемость материала при определенной температуре, Γ с; μ_0 — начальная магнитная проницаемость, Γ с; S — площадь поперечного сечения обмотки, M^2 ; G_δ — магнитная проводимость в зазоре, Mкс/A.

Условно, можно считать, что намагничивающая сила θ_m раскладывается на две составляющие части: одна часть, отнесенная к воздушному зазору

$$\theta = H \cdot l = \frac{B \cdot l}{\mu_0 \cdot \mu} = \frac{u \cdot w_0}{R_0}, \tag{17}$$

где R_0 – сопротивление обмотки, Ом; и другая часть, создающая поле в магнитопроводе

$$\theta_{\delta} = \frac{B \cdot l}{G_{\delta}} = \theta_m - \theta. \tag{18}$$

Сила электромагнитного притяжения якорясердечника с учетом воздушного зазора будет иметь следующий вид [2, с. 72], Н

$$F_{el.n} = -5.1 \cdot 10^{-8} \left(\theta_{\delta}\right)^{2} \left[-\frac{dG_{\delta}}{dz_{d}} + g_{s} \left(\frac{l_{s}}{l_{\kappa}}\right)^{2} \right]. (19)$$

Производную магнитной проводимости можно представить следующим образом [2, с. 191]

$$\frac{dG_{\delta}}{dz_d} = -1,256 \cdot \frac{\pi \cdot d_p^2}{4 \cdot z_d^2}.$$
 (20)

Выражение для магнитной проводимости воздушного зазора определяется соотношением [2, с. 191], Мкс/А

$$G_{\delta} = 1.254 \cdot \left(\frac{\pi \cdot d_p^2}{4 \cdot z_d} + 0.58 \cdot d_p \right).$$
 (21)

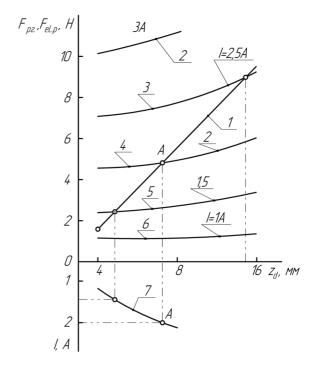


Рис. 2. Статические характеристики электромагнита с пружиной: I- характеристика пружины; F_{pr} - усилие, создаваемое пружиной дозатора газа 2 - 6 - усилия электромагнита в зависимости от значений силы тока I; $F_{el,p}$ - сила электромагнитного притяжения якоря-сердечника с учетом воздушного зазора; 7 - равновесная кривая тока в зависимости от изменения подъема клапана z_d .

Удельная магнитная проводимость рассеивания между якорем и корпусом находится из соотношения [2, с. 304], Гн/м

$$g_s = \mu_0 \cdot \pi \cdot \frac{2}{\ln\left(\frac{D_{\kappa}}{d}\right)},\tag{21}$$

Магнитный поток, проходящий через воздушный зазор, выразим таким соотношением, Ф

$$\Phi_{\delta} = \theta_{\delta} \cdot G_{\delta} \,. \tag{22}$$

Магнитный поток, проходящий через паразитный зазор, запишем следующим равенством [2, с. 101], Φ

$$\Phi_e = \Phi_{\delta} \cdot \left[1 + \frac{g_s \cdot l_{g,p}}{G_{\delta} \cdot l_{k,p}} \cdot \frac{l_g}{2} \cdot \left(2 - \frac{l_g}{l_{k,p}} \right) \right]. \tag{23}$$

Основное паразитное сопротивление на пути магнитного потока, создаваемое зазором между поступательно движущимся якорем и охватывающим его неподвижным статором, которое называется радиальной силой, представим в виде [2, с. 282], Н

$$F_{pad} = 4,06 \cdot 10^{-8} \cdot \frac{\Phi_e}{\pi d^2} \cdot \frac{d^2 \varepsilon}{h_e \sqrt{e_{\min}^2 - \varepsilon^2}},$$
 (24)

где: Φ_e — магнитный поток, проходящий через паразитный зазор, Φ ; ε — эксцентриситет между осями якоря и катушки, м; h_e — осевая длина воротничка, м; e_{min} — наиболее благоприятный размер паразитного (пассивного) зазора, м.

Паразитный зазор в электромагните приведен на рис.3.

Рис. 3. Размер пассивного зазора в электромагните между корпусом и клапаномсердечником

Выражение для проводимости в радиальном зазоре можно определить следующим образом [2, с. 199], Мкс/А

$$G_e = 1,256 \cdot \frac{2 \cdot \pi \cdot h_e}{\ln \left[1 + a \cdot \left(1 + \sqrt{\frac{2}{a}} + 1 \right) \right]},$$
 (25)

где:
$$a = 2 \cdot \frac{e_{\min}^2 - \varepsilon^2}{d^2}$$
.

Коэффициент рассеивания, соответствующий полной длине якоря равен [2, с. 283]

$$\sigma_e = \frac{\Phi_e}{\Phi_\delta} \,. \tag{26}$$

Наиболее благоприятный минимальный размер паразитного зазора определяется выражением [2, с. 283], м

$$e_{\min} = \sqrt{0.5 \cdot k_f \cdot \sigma_e \cdot z_d \cdot \varepsilon + \varepsilon^2}$$
, (27)

где: k_f — коэффициент трения между корпусом (металлом) и сердечником (металлом); коэффициент трения при движении по сухой поверхности трущейся пары.

Вследствие наличия радиальной силы F_{pad} создается сила трения, которая действует вдоль оси якоря, уменьшает полезную тяговую силу. Уменьшение полезной работы выразится величиной [2, с. 282] равной,

$$F_{mp} = k_f \cdot 4,06 \cdot 10^{-8} \cdot \frac{\Phi_e}{\pi d_g^2} \cdot \frac{\varepsilon}{h_e \sqrt{e_{\min}^2 - \varepsilon^2}}$$
 (28)

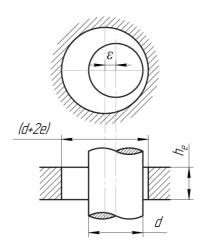


Рис. 4. К определению радиальной силы, действующей на эксцентрично расположенный полюс

Для того, чтобы скомпенсировать эту вели-

чину, необходимо соответственно увеличить электромагнитную силу [2, с. 283], действующую на якорь. Это потребует увеличения длины катушки примерно на

$$\Delta l_k = \frac{F_{mp}}{F_{ol,n}} \cdot \frac{l_{k,p}}{2} \,. \tag{29}$$

Как видно из рис.4, необходимое увеличение длины катушки при данном эксцентриситете ε будет тем больше, чем меньше паразитный зазор e_{min} .

С другой стороны, при уменьшении величины e_{min} уменьшается размер пассивного участка обмотки, требующего для проведения магнитного потока через паразитный зазор [2, с. 283] увеличения длины катушки.

Размер воротничка приведен на рис. 4. Размер пассивного участка можно записать следующим образом:

$$(l_{s} - l_{s,p}) = \frac{\Phi_{e}}{\theta_{u} \cdot G_{e}} = l_{\kappa,p} \cdot \frac{G_{\delta}}{G_{e}} \cdot \sigma_{e}. \quad (30)$$

Осевая длина воротничка определяется уравнением [2, с. 284], м

$$h_e = \frac{D_{\kappa}}{d} \cdot \sqrt{\frac{l_{k.p} \cdot G_{\delta} \cdot \sigma_e \cdot e_{\min}}{2 \cdot \pi \cdot d}} \ . \tag{31}$$

Увеличение осевой длины воротничка приводит к увеличению проводимости пассивно-

го зазора и, соответственно, снижению размера пассивного участка. А это, в свою очередь, приводит к увеличению длины и массы электромагнита ЭДГ за счет удлинения сердечника и воротничка.

Выводы

Методика определения режимных и конструктивных параметров электромеханической части электромагнитного дозатора газа, системы топливоподачи транспортного двигателя, используется в дальнейшем:

- для построения статических характеристик основных параметров электромагнитного дозатора;
- для разработки модели с целью исследовании динамических свойств поступательного движения клапана-сердечника ЭДГ;

Литература

- 1. Крутов В.И. Сборник задач по автоматическому регулированию двигателей внутреннего сгорания. М.: "Машиностроение", 1990.- 320 с.
- 2. Гордон В.Г. Электромагниты постоянного тока / Гордон В.Г. и Сливинская А.Г. // М-Л.: Энергоиздат, 1960.- 448 с.

Рецензент А.В. Бажинов, профессор, д.т.н., XHAДУ.

Статья поступила в редколлегию 20.04.2015