INFLUENCE OF FILLING OF BUS CABIN BY PASSENGERS ON BRAKING DISTANCE LENGTH

I. Mohyla, postgraduate, R. Tsir, student,
Lviv Polytechnic National University

Abstract. Investigation of braking distance with different bus fill degree in typical city operation conditions was carried out using modern equipment. It is determined that the increase of the bus fill degree and the initial speed affect the steady-state deceleration and the length of the braking distance. The result of the research can be useful for examination of road accidents.

Key words: braking process, braking distance, steady-state deceleration, friction coefficient, examination of road accidents.
Значную увагу при цьому потрібно приділяти автобусам, оскільки, крім того, що вони перевозять значну кількість пасажирів, їх за

повнення (і, відповідно, маса) може змінюватись у широких межах, що відображається у зміні сповільнення при тиску гальмування і, відповідно, довжині гальмівного шляху.

Аналіз публікацій

Довжина гальмівного шляху визначається за формулою [3]

\[S_g = (t_2 + 0.5t_1) \frac{v_a}{3.6} + \frac{v_a^2}{26j_{уст}}, \]

де \(t_2 \) – тривалість запізнення спрацювання гальмівного приводу, с; \(t_1 \) – тривалість нарахування сповільнення, с; \(v_a \) – швидкість руху транспортного засобу перед гальмуванням, км/год; \(j_{уст} \) – установлене сповільнення під час гальмування, м/с².

Максимальне установлене сповільнення при гальмуванні транспортного засобу всіма колесами можна визначити з виразу [3]

\[j_{уст} = \frac{\varphi \cdot \cos \alpha}{k_c} + f \cos \alpha (1 + r_c) \left(\frac{g}{\delta} \right) \pm \left(\sin \alpha + \frac{kF(v_a \pm V_s)}{13G} \right) \frac{g}{\delta}, \]

де \(\varphi \) – коефіцієнт зчеплення шин з покриттям; \(\alpha \) – позовжній ухил проїзної частини, град; \(k_c \) – коефіцієнт ефективності гальмування; \(f \) – коефіцієнт опору концепції; \(r_c \) – радіус колеса, м; \(k \) – коефіцієнт лобового опору, Н/м; \(F \) – площа лобового опору транспортного засобу, м²; \(V_s \) – швидкість вітру, км/год; \(G \) – вага автомобіля, Н; \(g \) – прискорення вільного падіння, м/с²; \(\delta \) – коефіцієнт, що враховує інерцію обертових мас автомобіля.

Значний вплив на довжину гальмівного шляху має коефіцієнт зчеплення шин з покриттям, який є відношенням максимально можливої на певній ділянці дороги значення сили зчеплення між шинами та поверхнею дороги \(P_m \) до ваги транспортного засобу

\[\varphi = \frac{P_m}{G}. \]

Відомо, що значення коефіцієнта зчеплення, а відповідно, і довжина гальмівного шляху, залежить від ряду чинників, зокрема нерівності та шорсткості покриття, його типу та стану, тиску повітря в шинах, температури шини, її матеріалу, типу рисунка протектора, швидкості руху, а також від вертикального навантаження на колесо [4–7]. З із збільшенням вертикального навантаження на колесо темпераута в зоні контакту швидше досягає значення, за якого відбувається зміна механічних властивостей матеріалу шини, і коефіцієнт зчеплення починає знижуватися [7]. Його значення залежить також і від швидкості руху, причому за значного навантаження його зниження починається за меншої швидкості і відбувається швидше (рис. 1) [4].

![Рис. 1. Залежність коефіцієнта зчеплення від навантаження та швидкості руху](image)

Зрозуміло, що зменшення коефіцієнта зчеплення за збільшення навантаження на колесо призводить до збільшення довжини гальмівного шляху. Проте з рис. 1 видно, що на коефіцієнт зчеплення впливає і початкова швидкість. Закономірності одночасного впливу швидкості та навантаження на колесо пока

зано і в роботі [8]. Проте не виявлено результатів досліджень, які вказували б на пря

мий вплив ступеня заповнення автомобіля (завантаження вантажівки) на довжину гальмівного шляху. Тому під час аналізу ДТП експерти користуються залежностями (1)–(3).

Більшість сучасних автомобілів оснащені антиблокувальними системами, і вони прак

тично не залишають слідів гальмування. То

му швидкість автомобіля можна встановити досить приблизно за свідченнями очевидців або за розмірами пошкоджень. Це може при

вести до неточності початкових даних і, відповідно, результатів експертиз. У роботі [9] запропоновано визначати довжину галь-
мівного шляху, коли сліді гальмування відсутні на покритті, проте ця залежність міститься понад 15 аргументів, в т.ч. такі як гальмівні моменти на кожному колесі, поздовжнє проковзування кожного колеса, які складно визначити на конкретному автомобілі під час розслідування ДТП.

Тому в експертній практиці, окрім теоретичних викладок, потрібно володіти і значеннями довжин гальмівного шляху за різних обставин ДТП, зокрема за зміни ступеня заповнення салону автобуса, тобто за зміни навантаження на колесо.

Мета і постановка задачі

Метою статті є встановлення закономірності впливу наповнення салону автобуса пасажирами на довжину гальмівного шляху та усталене сповільнення.

Методика проведення досліджень

Дослідження проводилися на аеродромі. Покриття злітно-посадкової смуги та маневрувальних дорожок – цементобетонні плити. Температура повітря під час досліджень становила 8–12 °C, без опадів.

Для вимірювання довжини гальмівного шляху використано вимірювач динамічних характеристик автомобіля Sprint SG-2 (рис. 2), який не потребує підключення до електричної мережі автомобіля. Прилад містить вбудований акселерометр. На основі значень пришвидшення та сповільнення визначається швидкість автомобіля та пройденний шлях. Під час дослідження гальмівного шляху вимірювання починаються автоматично в момент появи різкого сповільнення. Для компенсації похибки вимірювання, зумовленої деформацією підвіски, вводяться коефіцієнти жорсткості підвіски [10].

Під час екстремного гальмування двигун був відключений від трансмісії, водій не впливав на жоден орган керування, окрім педалі гальма. Автобус обладнано антиблокувальною системою, яка під час досліджень була у робочому стані (відповідає ситуації екстреного гальмування справного автобуса). Ви пробування проводились для холодних гальм (значені часові інтервали між гальмуваннями).

Рис. 2. Прилад Sprint SG-2: а – загальний вигляд; б – розташування приладу в салоні автобуса під час зайдів

Заповнення автобуса імітувалось бочками з водою масою по 60 кг та мішками з піском по 10 кг (рис. 3). Це дало змогу дослідити різні рівні заповнення салону автобуса: 0, 25, 50, 75, 100 % (відповідно 0, 840, 1675, 2510 та 3350 кг баласту). Для дослідження було обрано типові швидкості руху автобусів у міських умовах: 40, 50 та 60 км/год.

Кожен дослід було повторено тричі. Для кожного з вимірювань фіксувалось значення гальмівного шляху, а також, відповідно до Правил СЕК ООН № 13, розраховувалося усталене сповільнення за формулю

$$j_{set} = \frac{v_b^2 - v_e^2}{25,92(s_e - s_b)},$$

(4)
де \(v_b \) — швидкість транспортного засобу за 0,8\(v_0 \), км/год; \(v_p \) — швидкість транспортного засобу за 0,1\(v_0 \), км/год; \(s_b \) — відстань, пройдена між \(v_0 \) та \(v_b \), м; \(s_p \) — відстань, пройдена між \(v_0 \) та \(v_p \), м; \(v_e \) — початкова швидкість транспортного засобу, км/год.

Рис. 3. Імітація заповнення автобуса пасажирами

Опрацювання та аналіз результатів дослідження

Усереднені значення устапеного сповільнення автобуса за різного ступеня заповнення автобуса та різної початкової швидкості під час екстреного гальмування наведено у табл. 1. Видно, що усталене сповільнення знижується від 8,6—9,07 м/с² для незаповненого автобуса до 6,77—7,67 м/с² — для заповненого, що вказує на зміну параметрів контактів шини з покриттям, оскільки параметри гальмівної системи автобуса не змінювалися. При цьому явище сповільнення не спостерігається.

Таблиця 1 Усереднені результати дослідження сповільнення

<table>
<thead>
<tr>
<th>Швидкість перед гальмуванням, км/год</th>
<th>Усталене сповільнення (м/с²) за ступеня заповнення салону автобуса, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8,60</td>
</tr>
<tr>
<td>25</td>
<td>8,00</td>
</tr>
<tr>
<td>50</td>
<td>8,63</td>
</tr>
<tr>
<td>75</td>
<td>8,30</td>
</tr>
<tr>
<td>100</td>
<td>7,63</td>
</tr>
</tbody>
</table>

Довжина гальмівного шляху залежить і від ступеня заповнення автобуса, і від швидкості руху (табл. 2).

Таблиця 2 Усереднені результати дослідження гальмівного шляху

<table>
<thead>
<tr>
<th>Швидкість перед гальмуванням, км/год</th>
<th>Гальмівний шлях (м) за ступеня заповнення салону автобуса, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>9,7 10,17 10,37 11,27 11,47</td>
</tr>
<tr>
<td>50</td>
<td>14,7 15,8 16,73 16,97 17,87</td>
</tr>
<tr>
<td>60</td>
<td>20,8 21,5 23,17 24,93 25,53</td>
</tr>
</tbody>
</table>

Видно, що вплив ступеня заповнення автобуса є лінійним (рис. 4); при цьому за збільшення початкової швидкості різниця гальмівних шляхів незаповненого та заповненого автобусів зростає.

Рис. 4. Залежність гальмівного шляху автобуса від ступеня заповнення салону

Так, за швидкості 40 км/год вона досягає двох метрів, а за швидкості 60 км/год – п’яти, причому відносна різниця гальмівних шляхів для незаповненого (\(S_0 = 20,8 \) м) та заповненого (\(S_p = 25,5 \) м) автобуса за швидкості 60 км/год досягає 23 % (рис. 5). Ця різниця є значною з огляду на те, що у разі виникнення перешкоди для руху або за неправильного вибору дистанції безпеки у цілів потоків водій заповненого автобуса не матиме змоги уникнути ДТП. Тому під час розслідування обставин ДТП потрібно враховувати ступінь заповнення автобуса.

Рис. 5. Залежність гальмівного шляху автобуса від швидкості руху
Висновок

Встановлено, що зміна ступеня заповнення автобуса пасажирами впливає на довжину гальмівного шляху, причому за швидкістю 60 км/год гальмівний шлях заповненого автобуса є більшим на 23 %, порівняно з незаповненим.

Отримані результати можуть використовуватись експертами під час розслідування обставин ДТП. Їх також можуть враховувати водії при виборі безпечної дистанції у щільніших транспортних потоках.

Література

Рецензент: О.С. Полянський, професор, д.т.н., ХНАДУ.

Стаття надійшла до редакції 11 березня 2013 р.