УДК 621.438.002.2

Канд. техн. наук Ю. С. Кресанов¹, д-р техн. наук А. Я. Качан², канд. техн. наук Д. В. Павленко², С. А. Уланов²

¹AO «Мотор Сич», ²Запорожский национальный технический университет; г. Запорожье

ВЛИЯНИЕ ХОЛОДНОГО ДЕФОРМИРОВАНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЖАРОПРОЧНОГО СПЛАВА НА ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ЛОПАТОК КОМПРЕССОРА ГТД

В работе установлено влияние режимов холодного деформирования (вальцевания) и термической обработки жаропрочного сплава на длительную прочность и сопротивление усталости рабочих лопаток компрессора ГТД.

Ключевые слова: жаропрочный сплав, рабочая лопатка, штамповка, холодное вальцевание, термообработка, длительная прочность, предел выносливости.

Введение

Жаропрочные сплавы для рабочих лопаток последних ступеней компрессора, работающих при повышенных температурах и относительно высоких напряжениях, находят широкое применение в современных авиационных двигателях.

Жаропрочный сплав для лопаток компрессора должен иметь относительно мелкое и равномерное зерно, которое обеспечивает в процессе их эксплуатации требуемое сопротивление усталости. Величина зерна обуславливается также и геометрическими особенностями, когда крупное зерно может сравниться по размеру с тонкими кромками пера лопатки. С другой стороны, для обеспечения требуемого уровня длительной прочности при повышенных температурах материал рабочей лопатки должен иметь и более крупное зерно.

Наиболее прогрессивным, экономичным и производительным вариантом изготовления лопаток компрессора ГТД, в том числе и из жаропрочных сталей и сплавов, является их формообразование методами пластического деформирования с применением точной штамповки, холодного вальцевания пера и термообработки [1, 2].

Изготовление лопаток производится из штампованных заготовок с припуском 0,15 мм на сторону с последующей механической обработкой хвостовика и холодным вальцеванием пера.

Точная штамповка производилась по следующей технологической схеме [1]:

- исходная заготовка шлифованный пруток;
- получение групповой заготовки (полосы) методом периодического проката из предварительного подката прутка с нагревом 1130 °C;
- вырубка индивидуальных заготовок из периодической полосы (температура нагрева 830 °C);

- точная штамповка заготовок лопаток (нагрев при температуре 1130 °C);
 - обрезка облоя при температуре 830 °C;
 - калибровка с нагревом при температуре 1080 °C;
 - термообработка;
- пескоструйная очистка поверхности поковок и удаление дефектного слоя электрополированием:
- правка нахолодно на прессе (при необходимости).

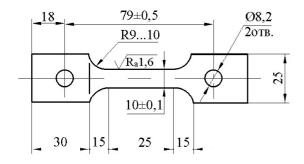
Последующая механическая обработка лопаток выполнялась по следующей технологической схеме:

- протягивание хвостовика;
- холодное вальцевание пера за 2...3 перехода с промежуточной (при необходимости) термообработкой для восстановления пластических свойств;
- окончательная механическая обработка хвостовика;
 - окончательная термообработка;
 - виброполирование.

Основными задачами при формообразовании лопаток компрессора методами пластического деформирования являются:

- 1. Определение рациональной схемы процесса формообразования пера лопаток методом холодного вальцевания.
- 2. Исследования и выбор оптимальных режимов предварительной, промежуточной и окончательной термообработки заготовок.
- 3. Сравнительная оценка свойств материала и работоспособности лопаток.

Цель работы — оценка влияния холодного деформирования (вальцевания) и термической обработки жаропрочного сплава на эксплуатационные свойства лопаток компрессора ГТД.


Объектом исследования является жаропрочный сплав ХН77ТЮР ВД (ЭИ437Б-ВД) после операций деформирования (вальцевания) и термической обработки.

Методы исследований

Исследование проводилось на образцах, на которых оценивалось влияние различной холодной деформации и режимов термообработки на длительную прочность материала по трем режимам «температура — напряжение». Также определялись упрочнение (твердость НВ) и характер макро- и микроструктуры на всех этапах изготовления образцов, начиная от исходного прутка и заканчивая холодным вальцеванием.

Определение режимов нагрева под деформацию и термообработку для установления оптимальных характеристик материала применительно к лопаткам компрессора проводилась на специальных плоских образцах из сплава ЭИ437Б-ВД (рис.1), химический состав которого представлен в табл. 2.

Технологический процесс изготовления образцов представлен в табл. 1.

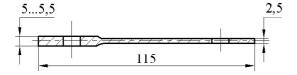


Рис. 1. Образец для определения длительной прочности

Образцы изготавливались с применением операций холодного вальцевания на гладких валках установки УВЛ 100 со степенью деформации 50, 20 и 10 %. Промежуточная термообработка между переходами холодного вальцевания образцов не производилась из-за высокой технологической пластичности сплава ХН77ТЮРВД в холодном состоянии даже при твердости 3,21...3,02 ГПа, которая образуется старением, необходимым для получения требуемой шероховатости хвостовика лопатки при его протягивании, против твердости 1,70...1,49 ГПа в закаленном состоянии.

Режимы термической обработки образцов из сплава XH77TЮРВД представлены в табл. 3.

Длительная прочность материала прутка исследуемой плавки определялась на круглых стандартных образцах (диаметр рабочей части 5 мм, длина 60 мм) и плоских образцах (рис. 1) после горячей прокатки (поз. 2, табл. 4) и холодного вальцевания (поз.7, табл. 4) до разрушения по трем режимам:

```
режим 1 - 700 °C - 460 МПа; режим 2 - 650 °C - 650 МПа; режим 3 - 550 °C - 800 МПа.
```

Определяющим режимом испытания материала являлся режим 3, который характеризует условие работы лопаток 6...7 ступени компрессора на двигателе Д-36.

Твердость образцов на всех этапах изготовления определяли по Бринеллю шариком диаметром 5 мм при нагрузке 7,5 кН.

Микро- и макроструктура образцов исследовалась на оптическом микроскопе МИМ-7.

Результаты исследований и их обсуждение

Холодное вальцевание образцов показало, что сплав ХН77ТЮРВД при всех режимах термической обработки (см. табл. 4) обладает относительно высокой технологической пластичностью, в частности, более высокой, чем двухфазные титановые сплавы ВТ3-1 и ВТ8 в отожженном состоянии.

Результаты испытания длительной прочности, твердости и величины зерна материала образцов из сплава ХН77ТЮРВД, изготовленных из прутка, горячекатаной полосы, холодного вальцевания после различных режимов термообработки представлены в табл. 4.

Анализ результатов испытания материала различных образцов из сплава XH77TЮРВД по твердости (НВ) позволяет сделать следующие выводы:

- холодная 50 % деформация образцов независимо от исходной термообработки сопровождается значительным деформационным упрочнением и приводит к увеличению твердости до 3,88 ГПа;
- проведение только старения после холодной деформации приводит к еще более существенному увеличению прочностных характеристик материала до 4,80 ГПа;
- полная термообработка (закалка и старение) в зависимости от температуры закалки и продолжительности выдержки обеспечивает различные значения твердости: после закалки с пониженной температуры и старения по режиму 5 (см. табл. 4) на уровне верхнего предела твердости (3,21 ГПа), а после закалки и старения со стандартной температуры по режиму 1 (см. табл. 4) в зависимости от степени рекристаллизации (различное время выдержки) на уровне нижнего предела 2,69 ГПа.

Таблица 1 — Схема технологического процесса обработки образцов

Наименование операции	Эскиз заготовки образца	Процесс обработки, оборудование	Примечание	
Порезка исходных заготовок	Пруток диаметром 20 мм по ТУ14-1-223. Длина заготовки 200 мм	-		
Изготовление полосы	55,5	Прокатка за 2 перехода, нагрев 1130±10 °C, в бариевой ванне, выдержка 810 мин.		
Очистка прокатанной полосы	-//-	Гидропескоструйная обработка + электрополирование в серной и фосфорной кислотах		
Механическая обработка заготовки образца под вальцевание	85 25	Ручное шлифование поверхности рабочей части		
Термическая обработка (предварительная)	- // -	См. таблицу 3. Закалка в аргоне. Старение на воздухе		
Очистка индивидуальной заготовки	-//-	Гидропескоструйная обдувка + + электрополирование		
Холодное вальцевание за 3 перехода	1 переход 55,5	Установка для вальцевания лопаток УВЛ 100		
Окончательная термообработка	-//-	См. таблицу 3		
Механическая обработка	См. рис. 1	Полирование рабочей части образца		
Контроль	-//-	Метод ЛЮМ-А		

Профиль		Содержание химических элементов, %							
	С	Cr	Fe	Ti	Mn	Al	Si	Ni	
Пруток диаметром 20 мм	0,06	19,5	0,46	2,65	0,22	0,85	0,6	основа	
Норма по Ту 14-1-223	0,07	1922	< 1,0	2,52,9	< 0,4	0,61,0	< 0,6		

Таблица 2 — Химический состав исследуемого жаропрочного сплава ЭИ437Б-ВД

Таблица 3 — Режимы термической обработки образцов

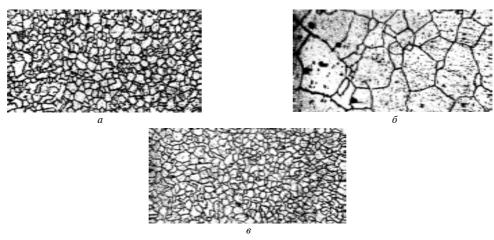
№ режима	Режим термообработки					
	Заг	калка	Старение			
	Температура, °С	Время, час	Температура, °С	Время, час		
1	1080	8		16		
2		2	700			
3		1				
4		2	800 700	4 16		
5	1000	4	750	16		

Анализ результатов свойств образцов по длительной прочности при повышенных температурах показал, что для сплава ХН77ТЮРВД наиболее жестким режимом оказывается испытание при температуре 650 °C с нагрузкой 650 МПа (режим 2, табл. 4).

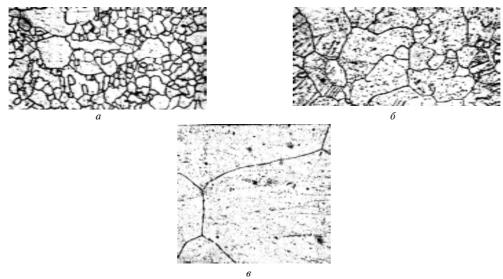
При испытании длительной прочности по режиму $550 \,^{\circ}\text{C} - 800 \,^{\circ}\text{M}$ Па преобладали удовлетворительные результаты, в том числе и для холоднодеформированных образцов. Режим 700 °C — 460 МПа дал примерно равное количество положительных и отрицательных результатов. Холодное вальцевание приводит к резкому увеличению общего количества неудовлетворительных результатов, главным образом за счет испытаний при 700 и 650 °C. При этом стандартный режим термообработки холоднодеформированных образцов дает неудовлетворительные результаты для всех назначенных условий испытаний, что связано с большой разнозернистостью структуры. Сокращение времени выдержки при закалке с 1080 °C повышает значения длительной прочности, особенно для случая двойного старения, обеспечивающего дополнительное упрочнение матрицы. С точки зрения длительной прочности режим двойного старения 1080 °C, 2 ч + 800 °C, 4 ч является оптимальным, однако, уменьшение времени выдержки при закалке с 1080 °C не всегда гарантирует получение структуры с мелким зерном при отсутствии разнозернистости. Более целесообразным оказывается понижение температуры закалки. Закалка холоднодеформированных образцов с 1000 °C обеспечивает высокую длительную прочность и мелкое равноосное зерно.

Полученные данные показывают, что для холоднодеформированного сплава ХН77ТЮРВД выбор оптимальных температур последующей закалки затруднителен и должен проводиться с учетом условий работы детали.

Если после холодного деформирования выполняется только старение, длительная прочность материала при испытаниях по режимам 700 °C — 460 МПа и 650 °C — 650 МПа оказывается низкой. Испытания по режиму 550 °C — 800 МПа в этих случаях дали удовлетворительные результаты.


Особенности микроструктуры материала образцов по этапам их изготовления и для различных режимов термообработки представлены на рис. 2—5.

Исходный пруток характеризуется мелким равноосным зерном размером 1520 мкм (рис. 2, a). Стандартная термообработка по режиму 1 (см. табл. 3) сохраняет равномерность зерна, увеличивая его размеры до 100...150 мкм, из-за увеличения времени выдержки (рис. 2, δ). Термообработка по режиму 5 (см. табл. 3) оставляет величину исходного зерна без изменения (рис. 2, ϵ).


Таблица 4 — Длительная прочность, твердость и величина зерна материала образцов при различных режимах термической обработки

№ группы	Вид образца и операции	Режим термообработки (табл. 3)	Твердость НВ, ГПа	Время до разрушения при режимах испытания, час			Размер зсрна, мкм
				1	2	3	
		В состоянии поставки без термообработки	2,69	-	_	_	1520
		термолораситки	2,85	123	37	161	150400
		1	_,	76	30	192*	
				106	46	192*	
			3,21	36	25	196*	1520
		5		40	30	196*	
1 И	Исходный пруток			28	19	222*	
			3,02	158	96	216*	100300
		4		94*	114	216*	
			2.02	94*	127	320*	100 150
			3,02	50 87	23 17	192* 192*	100150
		3		114	46	222*	
		Без термообработки	-	_	-	_	20300
			2,85	138 142	17 50	305 89	50800
		1		116	24	308	
			3,21	83	84	210*	150250
		5	3,21	85 85	108	210*	оторочка по
2	Горячекатаная полоса	,		91	82	305*	границам 1
			3,02	134	85	222	50200
		4		141	80	207*	
		·		174	35	295*	
		3	2,85	91	50	143	50150
				134	27	230*	
				105	34	230*	
	Холодновальцованный	Закалка по реж. 3	1,78		_	_	50150
	Вальцевание	_	3,88 2,69	2	6	32	50800
		1	2,09	8	4	34	30800
		1		7	12	27	
			3,21	16	18	229	2030
3	Термообработка	5 — — — — — — — — — — — — — — — — — — —		30	31	104	
				28 115	29 17	310 122	
			2,85	66	10	192	70100
			2,65	79	13	134	70100
				124	42	156	
			3,02	116	335	673*	150500
	_			69	187	207*	
	Предварительная	1	2,85	_	_	_	50100
	термообработка Вальцевание	_	3,88	_	_	_	_
4	·		4,80	1,0	9	203	_
	Окончательная термообработка	Старение по реж. 1, 8 час	, í	0,6	10	113	
	термооораоотка			1,5	20	207*	
	Прадравиталимая	ATTOMATON NO.					200300
	Предварительная термообработка	Закалка по реж. 5	2,29	-	-	_	оторочка по границам
	Термолориотки						1015
5	Вальцевание	_	3,88	-	_	_	-
		C	4,80	7	14	377	_
	Окончательная термообработка	Старение по реж. 5		3	12	280*	
		рож. 5		19	9	280*	
6	Предварительная	Закалка по реж. 1	1,70	_	-	_	100300
	термообработка Вальцевание		3,88		-	_	_
	Окончательная		4,80	7	6	609	
	термообработка	Старение	1,00	22	14	259*	
	1 1	по реж. 1		13	11	259*	
7	Предварительная	Закалка по реж. 2	1,70	_	-	-	100250
	термообработка	*					
	Вальцевание	-	3,88		-	-	_
7			1 4 4 4	7	6	65	_
7	Окончательная	Закалка 1080°С-4ч	4,44				
7	Окончательная термообработка	Закалка 1080°С-4ч Старение по реж.1	4,44	4	15	565	
7		Старение по реж. 1	2,55				_

Примечание: * — образцы, снятые с испытаний. Исходный пруток, горячекатаная полоса и вальцевание — позиции 1, 2 и 3 табл. 4 соответственно

Рис. 2. Микроструктура прутка в состоянии поставки (a), после термообработки по режиму 1 (δ) и по режиму 5 (s), $(cм. \, \text{табл.} \, 3)$

Рис. 3. Микроструктура полосы в исходном состоянии (a, нагрев перед деформацией 1130 °C), после закалки по стандартному режиму 1 (δ , δ) (см. табл. 3)

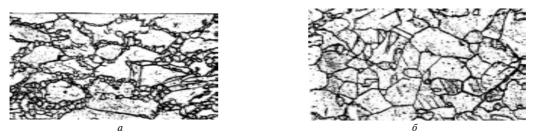
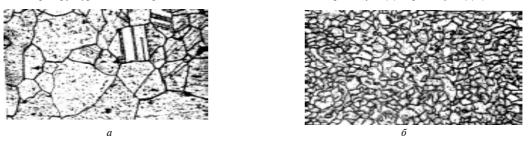



Рис. 4. Микроструктура полосы перед вальцеванием после закалки по режиму 5 (а) и режиму 3 (б) (см. табл. 3)

Рис. 5. Микроструктура образца после холодного вальцевания и последующей термообработки по режиму 1 (a) и режиму 5 (δ) (см. табл. 3)

Прокатанная из прутка полоса при температуре 1130 °C, предназначенная для изготовления плоских образцов в исходном состоянии, имеет относительно крупные до 100...150 мкм зерна в окружении большого количества мелких зерен размером 1530 мкм (рис. 3, a), что свидетельствует о прохождении частичной рекристаллизации и неравномерной деформации при горячей прокатке. Последующая закалка полосы по стандартному режиму при температуре 1080 °С приводит к различной степени разнозернистости, причем для некоторых образцов при выдержке 8 часов она оказалась весьма грубой и размер зерен достигал 1000 мкм (рис. 3, δ , ϵ). Учитывая геометрические размеры лопаток, наличие такой структуры недопустимо, так как зерно может охватывать все сечение пера лопатки. После закалки полосы с температуры 1000 °C (режим 5, табл. 3) процесс рекристаллизации, по сравнению со структурой полосы в исходном состоянии после прокатки, продолжается и носит собирательный характер. Получена характерная структура с относительно крупных (в среднем до 200 мкм) зерен, отороченных мелкими до 10...15 мкм зернами, что свидетельствует о микронеоднородности предшествующей деформации при прокатке полосы (рис. 4, а). Сокращение времени выдержки при температуре закалки 1080 °C до 1 часа способствует протеканию более равномерной рекристаллизации и зерно при этом не успевает вырости до значительных размеров. Наблюдается разнозернистость (рис. 4, 6).

Структура образцов с высокой степенью деформации (~ 60 %), прошедших после холодного вальцевания только старение, отличается вытянотостью зерен, а также большим количеством двойников и линий скольжения. Величина зерен зависит от предварительной термообработки. Полная термообработка образцов при закалке с 1080 °C дает разную степень рекристаллизации, которая в количественном отношении характеризуется как увеличением размера зерен, так и соотношением количества зерен разных размеров. Например, термообработка по стандартному для сплава ХН77ТЮРВД режиму привела к значительной разнозернистости (рис. 5, а). Однако характер процесса рекристаллизации холоднодеформированного материала после закалки с пониженной температуры 1000 °С качественно меняется: появляются весьма мелкие равноосные зерна, размеры которых меньше, чем в исходной полосе после термообработки по режиму 5 (см. табл. 3) (рис. 5, δ).

Полученные в ходе исследований результаты позволили определить основные технологические параметры процесса точной штамповки заготовок рабочих лопаток компрессора из жаропрочных сплавов с последующим холодным вальцеванием пера.

Влияние установленных режимов холодного деформирования и термической обработки жаропрочного сплава ХН77ТЮРВД на сопротивление усталости определяли на лопатках 5 ступени компрессора авиационного двигателя Д-36, изготовленных методом точной штамповки с применением холодного вальцевания и путем последующей механической обработкой.

Сопротивление усталости лопаток устанавливали методом ступенчатого повышения нагрузки, начиная с 260 МПа (установленная норма) как среднее по 6 лопаткам.

Для лопаток, изготовленных холодным вальцеванием, предел выносливости составил 398 МПа, что более чем в 1,5 раза выше установленной нормы, а изготовленных только ручной доводкой пера — 426 МПа.

Таким образом, статические характеристики сопротивления усталости вальцованных и невальцованных лопаток практически находятся на одном уровне.

Выводы

- 1. При холодном вальцевании лопаток из жаропрочного сплава ХН77ТЮРВД наиболее рациональный уровень свойств достигается окончательной термообработкой в защитной среде по режиму закалка при температуре 1000 °С в течение 4 часов и старение при температуре 750 °С в течение 16 часов.
- 2. Установленные термомеханические условия горячей деформации заготовок, холодного вальцевания пера и режимов предварительной и окончательной термообработки позволяют обеспечить необходимый уровень длительной прочности при испытании при температуре 550 °С и напряжении 800 МПа, а также высокий уровень их предела выносливости.
- 3. Результаты исследований могут быть использованы при разработке технологических процессов изготовления лопаток компрессора и других деталей ГТД из жаропрочных сплавов с применением операций холодного деформирования.

Список литературы

- 1. Технологическое обеспечение эксплуатационных характеристик деталей ГТД. Лопатки компрессора и вентилятора. Часть І. Монография / [В. А. Богуслаев, Ф. М. Муравченко, П. Д. Жеманюк и др.] Запорожье : изд. АО «Мотор Сич», 2003. 369 с.
- 2. Влияние точной штамповки и холодного вальцевания пера рабочих лопаток компрессора из жаропрочных сплавов на качество их изготовления / [Ю. С. Кресанов, А. В. Богуслаев, А. Я. Качан, Л. И. Гасик] // Вестник двигателестроения. 2010. № 1. С. 60—71.

Поступила в редакцию 10.02.2014

Кресанов Ю.С., Качан О.Я., Павленко Д.В., Уланов С.О. Вплив холодного деформування та термічної обробки жароміцного сплаву на експлуатаційні властивості лопаток компресора ГТД

Y роботі визначено вплив холодного деформування (вальцювання) та термічної обробки жароміцного сплаву на довготривалу міцність та опір втомленості робочих лопаток компресора $\Gamma T J$.

Ключові слова: жароміцний сплав, робоча лопатка, штамповка, холодне вальцювання, термообробка. тривала мішність. межа витривалості.

Kresanov Yu., Kachan A., Pavlenko D., Ulanov S. Effect of cold eformation and heat treatment of heat-resistant alloy on performance of gas-turbine drive compressor blades

This paper determines the effect of heat-resistant alloy cold deformation (rolling) and heat treatment conditions on stress-rupture and fatigue properties of gas-turbine drive compressor rotor blades.

Key words: heat resistant alloy rotor blade, stamping, cold rolling, heat treatment, long-term strength, endurance limit.