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1. Introduction

Experimental determination of quantities, 
which are included in mathematical models of 
thermal processes, in view of their complexity 
and imperfection often cannot serve as an 
exhaustive source of information on the conditions 
of unambiguousness. Lately in connection 
with this great attention is paid to the solution 
of inverse problems of thermal conductivity 
and thermoelasticity, in which according to 
the available (very limited) information about 
temperature voltages inside the body it is possible to 
determine thermophysical properties and geometric 
characteristics of the object. Àlso it is possible  
to identify the initial and boundary conditions, 
as well as clarify the mathematical model of the 
phenomenon itself. Such tasks can arise in remote 
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measurements, under non destructive control of 
the state of structures, when studying thermal 
effects on descent spacecraft, in determining the 
thermophysical properties of new materials, etc.

Effectiveness of the decisions when designing 
various industrial equipment depends both on 
the depth and reliability of the knowledge of 
the phenomena of heat transfer, and from the 
adequacy of modeling thermophysical processes. 
The basis of the simulation methods, diagnostics 
and identification of processes Heat transfer can 
be made by solving inverse problems of thermal 
conductivity and thermoelasticity. In some cases, 
the methods for solving inverse problems are 
practically the only way to obtain the necessary 
information about the object under study.

The purpose of solving inverse problems of 
thermoelasticity (IPTE)  may be,  for  example,  
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an estimation of the temperature field according 
to the measurement of the thermal stress inside 
the body.

The methods for  solving inverse problems make 
it possible to carry out research in the conditions 
that are as close as possible to full-scale,  or  directly 
during the exploitation of objects,  which allows 
them to be more reasonably designed [1-3].

2. Statement of the problem

The plane stressed state is considered. The flat 
theory of elasticity is applied to the problem of 
analysis of thin rectangular plates, on which the 
load in the plane acts. Consider a thin elastic body, 
the thickness of which is very small in comparison 
with two other dimensions. The load is caused 
by mass forces bx, by and marginal stresses σx, 
σy. Typically, it is assumed that the voltages are 
symmetrically distributed relatively to the average 
body plane, although more often the change in h 
thickness is considered constant. In this case, the 
final value of mechanical distress is not independent 
of z, but if the thickness of h is very small and it is 
assumed with sufficient degree of accuracy that

h then the remaining voltage components do not 
depend on the variable ,  i.e.

Thus,  the defining equations have the form:

.  (1)

The equilibrium equations are reduced to two,  
as in the case of flat deformation,

 
 (2)

                  
All equations for  a plane stressed state can be 

obtained from the corresponding equations of plane 
deformation,  if we use the actual elastic  and . 
Thus,  we have: elastic steels

 
  (3)

where  – is a Lame constant; defining 
equations

 

,   (4)

 

.  (5)

Navier  equilibrium equation 

 

 (6)

Limit loads (forces)

 (7)

Initial stresses caused by temperature changes

 

 

 (8)

3. Methods

The thermoelastic bend of the hinged supported 

plates is considered. Thin plate deflection , 
which occupies two-dimensional area  in the plane 

, satisfies the equation [4] 

  

where   – bending stiffness of the 
plate;

 – Poisson coefficient;
 – constant plate thickness;

 – distributed transverse load and

 

– biharmonic operator.
Bending and torque points are given by 

expressions  
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   (9)

For  the case of a hinged plate,  the deflection 
must satisfy the following BC on the edge of the 
plate Ã:

 

 (10)

where  – bending moment in the direction n 
that is normal to the limit,  t denotes tangent to the 
direction of the boundary.

Note that for  the curvilinear  limit 

 
    (11)

where  – curvature of the boundary. When 
the boundary of the hinged plate consists of straight 
lines,  we have the following expressions 

In this case,  from the equation (11)  we have

but from the second equation  (10)

 

So,  based on the above two equations,  the 
deflection must satisfy the following equation at 
the boundary of the plate:

on the border  Ã.
From equation (11)  it follows that for  points 

inside the domain 

So,  considering

 

 (12)

one can rewrite the equation (12)  in the form

This equation can be divided into two potential 
equations:

  

  (13)

From equation (13) it follows that the boundary 
of the plate  Therefore, the solution of 
equation (13) for a hinged plate with a polygonal 
boundary can be obtained from two following 
Dirichlet problems:

in 
 on Ã

 in 

 on Ã.
The solution of the equation of thermoelastic 

plate bending by dividing it into two potential 
equations belongs to Marcus [5,6]. Its use is limited, 
as this solution can only be applied to hinged-
plate with polygonal boundary. The solution of the 
problem of deflection of a plate in the general case 
can be obtained by the variant ÌBC, developed for 
the biharmonic operator [7-9].

To solve equations (10)  and (11)  using ÌBC it 
is necessary to find integrals in the region

 
òà

 
where  – the fundamental solution of the Laplace 
equation.

4. Results

A hinged square plate under the action of 
uniform loading; a square plate that is touched by 
the contour and is under the action of a uniform 
load; a square plate with a cutout; rectangular plate 
of two areas; a square composed plate have been 
considered and the calculation of folded plates was 
performed.

The hinged square plate has the following 
parameters: 

 
The feasibility is to compare the solution 

obtained with the method of boundary elements 
(ÌBC) in conjunction with the variational method 
and the solution that can be considered accurate. 
A tendency was found as to the convergence of the 
solution, depending on the number of boundary 
elements (BC) and the order of approximation 
on these elements. Elements had equal length. 
Convergence is improved with increasing the order 
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of approximation. It was found that given the size 
of the matrix of a separate system ,  polynomial 
approximation is preferred.

Fig. 1. Hinged square plate

A polynomial approximation was used on 
large fragment boundaries. Geometric boundary 
conditions (BC)  are satisfied according to the 
scheme of the mean-square approximation. The 
temperature is defined by means of solution IPTE 
using the ÌBC.

Next, a square plate, which was clamped on the 
contour under the action of a uniform load, was 
considered. (Fig. 2).

Fig. 2. Square plate that is pinched in the contour  under  the 
action of a uniform load

The plate has the following parameters,  as in 
the previous case: 

The results are presented in Fig. 3.

Fig. 3. Temperature distribution,  depending on the number  
of boundary elements

This example is interesting because the solution 
is given at some points. Also, you can compare the 
results for the classical approximation scheme ÌBC 
and schemes of polynomial approximation on large 
fragment boundaries. Moreover, in the second case, 
for the complete solution of the problem there is 
no need to use the Lagrangian functional. Also, 
the temperature is defined with the help of solution 
IPTE using the ÌBC.

A square plate with a cutout is also considered 
(Fig. 4). The square hole is symmetrically placed. 
The outer  contour  is hinged,  internal - free. The 
plate is evenly loaded. The parameters of the plate 
are the same as in other  objects:

Fig. 4. Square plate with a cutout

In this case,  the solution is obtained as in 
conjunction ÌBC with a variational approach,  and 
in the version of the classical approach ÌBC. In 

the first case,  8 boundary fragments  and  
6 – in the second case. Both approximations give 
similar  results. With an increase L the results are 
practically unchanged,  and for  large ones L there 
are problems due to the great order  of the system. 
In the second case,  the contour  is divided into 48 
BC with quadratic approximation of compensating 
loads. On the free edge the contour  in the area of 
the corner  points are not fixed. There is a good 
match for  the results with these approaches. The 
temperature is based on the solution IPTE using 
the ÌBC.

Also, a square composite plate was considered. 
The plate is evenly loaded. The coupling is 
performed on two sections. The parameters of the 
plate:

  

As an initial reference point in this problem,  
the solution for  a single square plate is given,  
which with an error  of less than 1% coincides 
with a known solution. Then the results for  that 
plate are shown,  but made up  of two sub-areas of 
the same rigidity. The following are variants when 
changing the thickness of the second sub-area. The 
temperature is based on the solution IPTE using 
the ÌBC.
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Fig. 5. Square composite plate

Also,  a rectangular  plate,  consisting of two 
subareas,  was considered. The coupling can be of 
elastic or  hinge type. Parameters of the plate: 

 
This test allows you to evaluate the quality of 

the calculations. 

Fig. 6. Rectangular  plate consisting of two areas

5. Conclusions

On the basis of algorithmic language FORTRAN 
a program for numerical calculations is developed. 
The first and easiest option is based on splitting 
the contour of the border by a broken line. Sections 
of this line are associated with BE. Within BE the 
approximation of compensating loads seems to be 
piecewise linear. With these provisions, the testing 
of programs with simple areas for which there are 
known solutions was performed. In addition, at 
this stage, mechanical BC could be realized hinged 
stop and pinching. When solving a test task with a 
circular plate, which was pinched in the contour, it 
was noted the difference of 10-12% by the value of 
the contour bending moment in comparison with 
the analytical solution. This error in the value of 

Â.Î. Ïîâãîðîäíèé, Î.Ñ. Áóäàíîâà. Îðãàíèçàöèÿ ðåøåíèÿ îápaòíûõ çàäà÷ òåðìîóïðóãîñòè 
äëÿ ïðÿìîóãîëüíûõ ïëàñòèí

Íîâûå îáðàòíûå çàäà÷è òåðìîóïðóãîñòè äëÿ ïðÿìîóãîëüíûõ ïëàñòèí áûëè ñôîðìó-
ëèðîâàíû è ïðèìåíÿþòñÿ ïðè ïðîåêòèðîâàíèè óñòðîéñòâ àýðîêîñìè÷åñêîé òåõíèêè. Â 
ýòèõ çàäà÷àõ íåèçâåñòíàÿ òåïëîâàÿ íàãðóçêà (òåìïåðàòóðà ãðàíè÷íîé ïîâåðõíîñòè è 
èíòåíñèâíîñòü òåïëîâîãî ïîòîêà) áûëà îïðåäåëåíà ñ èñïîëüçîâàíèåì äàííûõ âåðòèêàëü-
íîãî ñìåùåíèÿ îäíîé èç âíåøíèõ ãðàíè÷íûõ ïîâåðõíîñòåé. Ôóíêöèîíàëüíûå ïðîñòðàíñòâà, 
äëÿ êîòîðûõ îáðàòíûå çàäà÷è êîððåêòíû, áûëè íàéäåíû. Ñïîñîá ðåøåíèÿ îáðàòíûõ çàäà÷, 

the contour bending moment is a consequence of 
replacing the contour line with a broken line. That 
is, it is important to take into account the curvature 
of the contour and, if in the quality BE are presented 
not straight, but corresponding arcs, the numerical 
solution practically coincides with the analytic. The 
next important point is the rate of convergence of 
the solution, depending on the quantity BE. Of 
course, the accuracy of the results obtained depends 
on the given accuracy of the calculation, as well 
as from the definition of compensating loads. It 
is determined that within the framework of the 
piecewise linear approximation, the accuracy of 
the solution depends directly on the increase in 
the number BÅ. The practical reception here is to 
partition the boundaries of a certain number of 
identical BÅ. For example, in a rectangular plate, 
each side is divided into a number of equal lengths 
BÅ. The accuracy of the solution at internal points 
is increasing rapidly with increasing the number 
of such BÅ. But when approaching the contour 
point, the rate of convergence of the solution  slows 
down. This indicates that it is necessary to improve 
the quality of the approximation of compensating 
loads. With an increase in the number BÅ the 
quality situation in satisfaction should improve 
ÂÑ because the number of points of collocations is 
increased. But the increase in the number of points 
of collocation leads to an increase in the order of 
the system of linear equations and, accordingly, 
increases the rounding errors in its solution. 

Test tasks confirm that starting from a certain 
point,  the solution in the internal points gets worse,  
further  increase in quantity BÅ becomes meaningless. 
Partial improving the solution can be due to uneven 
distribution BÅ on the contour  (boundaries). For  
example,  for  rectangular  plates,  the quality of the 
solution improves with a relative decrease in length 
BÅ to the corner  points. But similar  studies are 
done to optimize both quantity and length BÅ are 
possible only for  tasks with known solutions and 
they are quite laborious. Thus,  the main issue when 
conducting numerical calculations is to develop  
certain criteria for  the quality of the results. It is 
noted that the more accurately completed ÂÑ are,  
the more precise the solution is. At the points of 
collocation BC are performed exactly.  

Ïîñòóïèëà â ðåäàêöèþ 01.07.2018
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