УДК 532.529: 517.4

Б.Б.Рохман, докт.техн.наук (Институт угольных энерготехнологий НАН Украины, Киев)

О технологии газификации твердых топлив в вертикальном поточном реакторе под давлением

Построена модель аэродинамики, теплообмена и химического реагирования мелкодисперсной угольной пыли в вертикальном газогенераторе. Исследован процесс парокислородной газификации под давлением 3,2-3,8 МПа различных комбинаций бинарных смесей: бурого угля (БУ) и газового каменного (ГСШ), антрацитового штыба (АШ) и БУ (или ГСШ). Показано, что при использовании двухступенчатой схемы термохимической переработки твердых топлив содержание метана в синтетическом газе (4,3%) оказывается существенно выше, чем при одноступенчатой (0,06%). При двухстадийном процессе газификации бинарных смесей для исключения сжигания пиролизных газов, которые являются сырьем для производства генераторного газа, в обогащенную окислителем нижнюю часть реактора целесообразно подавать уголь с малым содержанием летучих веществ. Определены оптимальные диаметры частиц ГСШ и БУ (одностадийный процесс), обеспечивающие минимальный механический недожог при различных соотношениях расходов компонентов бинарной смеси.

Ключевые слова: горение, газ, газификация, реактор, уголь, пиролиз, бинарная смесь.

Побудовано модель аеродинаміки, теплообміну і хімічного реагування дрібнодисперсного вугільного пилу у вертикальному газогенераторі. Досліджено процес парокисневої газифікації під тиском 3,2-3,8 МПа різних комбінацій бінарних сумішей: бурого вугілля (БВ) та газового кам'яного (ГСШ), антрацитового штибу (АШ) і БВ (або ГСШ). Показано, що при використанні двоступеневої схеми термохімічної переробки твердих палив вміст метану в синтетичному газі (4,3%) виявляється істотно вищим, ніж при одноступеневій (0,06%). При двостадійному процесі газифікації бінарних сумішей для виключення спалювання піролізних газів, які є сировиною для виробництва генераторного газу, в збагачену окислювачем нижню частину реактора доцільно подавати вугілля з малим вмістом летких речовин. Визначено оптимальні діаметри частинок ГСШ і БВ (одностадійний процес), які забезпечують мінімальний механічний недопал при різних співвідношеннях витрат компонентів бінарної суміші.

Ключові слова: горіння, газ, газифікація, реактор, вугілля, піроліз, бінарна суміш.

Обозначения

A, N, O, S, V	 массовые доли золы, азота, кислорода, серы и летучих веществ в твердом топливе 	R	 универсальная газовая постоянная, кДж/(кмоль·К), или объемная доля компонента газовой смеси
В	– расход, кг/ч	r	 скорость реакции водяного сдвига, кмоль/(м³·с)
С	 концентрации газовых компонентов, кмоль/м³, или массовая доля углерода в твердом топливе 	t	– температура, °C
С	– теплоемкость, кДж/(кг·К);	и	– скорость, м/с
E	 энергия активации, кДж/кмоль 	Z	- аксиальная координата, м
F	– сила, H/м ³	α	 коэффициент массообмена, м/с
f	– сечение, м ²	β	 истинная объемная концентрация частиц
H	 высота, м, или массовая доля водорода 	δ	 диаметр частицы, м
h	 коэффициент конвективного теплообмена, кДж/(с·м²-К) 	μ	 молекулярная масса, кг/кмоль
g	 ускорение свободного падения, м/с² 	ξ	 массовая доля водяного пара в парокислородной смеси
k	 константа скорости реакции, м/с 	ρ	– плотность, кг/м ³
K	 константа равновесия 	φ	 степень конверсии углерода
Nu	 критерий Нуссельта 	АШ, БУ, ГСШ	 антрацитовый штыб, бурый и газовый каменный уголь соответственно
P	 давление газа, Н/м² 	M	 количество фракций
Q	 тепловой эффект реакции (кДж/кмоль) или тепловой поток (кДж/(с·м³)) 	D	 коэффициент диффузии, м²/с

Индексы нижние: а – сила аэродинамического сопротивления частицы; ash – зола; С – углерод; СО, СО₂, СН₄, H₂O, N₂ – окись и двуокись углерода, метан, водяной пар и азот; С + O₂, С + 0,5O₂, С + CO₂, С + H₂, С + H₂O – гетерогенные реакции; СО + O₂, СН₄ + O₂, СН₂ + O₂, CO + H₂O, СО₂ + H₂ – гомогенные реакции; сопv – конвективный теплообмен; СО₂ → см,

© Б.Б.Рохман, 2014

 O_2 —см, CO—см, H_2O —см — диффузия углекислого газа, кислорода, окиси углерода и водяного пара в газовую смесь; D — диффузия; e — выход; eq — константа равновесия или эквивалентный параметр; g — газ; g—w, j—w, s—w, j—g, s—g — лучистый теплообмен между газом и стенкой, частицами кокса фракции j и стенкой, золы фракции s и стенкой, кокса фракции g и газом, золы фракции g и газом; g — настица; g — реактор; g — лучистый теплообмен; rerad — переизлучение; экр — экранные поверхности; g — сумма; g — номера фракций; g — начальные условия.

Индексы верхние: w – поверхность; d – сухая масса; daf – горючая масса.

В настоящей работе рассматриваются два способа термохимической переработки твердых топлив под давлением $P_g = 3,2-3,8$ МПа (рис. 1). Первый (одностадийный процесс газификации) основан на подаче угля (или бинарной смеси ГСШ и БУ) и парокислородной смеси в нижнюю ошипованную зону реактора 5 (рис. 1а). Второй способ представляет собой двухстадийный (комбинированный) процесс газификации (рис. 1б), когда в торкретированной зоне 5 происходит термохимическая переработка угля типа ГСШ (или АШ), а в верхней нефутерованной части газогенератора 7 — газификация твердого топлива марки БУ (или ГСШ).

Рис. 1. Одноступенчатая (а) и двухступенчатая (б) схемы газификации углей в вертикальном поточном реакторе: 1 — уголь (или бинарная смесь); 2 — смесь кислорода и водяного пара; 3 — уголь; 4 — илак; 5 — ошипованная зона; 6 — синтетический газ; 7 — нефутерованная зона

газификации; 8 – обмуровка.

Для конструирования подобных устройств необходимо: а) построить модель, описывающую восходящее движение, тепломассообмен и химическое реагирование полидисперсного ансамбля частиц угля в реакторе с учетом лучистого и конвективного теплообмена между газом и частицами, газодисперсным потоком и экранами реактора, межфракционного переизлучения, гетерогенных и гомогенных реакций, сил тяжести и межфазного взаимодействия; б) на ее основе провести численные исследования одностадийного и двухстадийного процессов газификации отдельных видов топлив и бинарных смесей.

Предлагаемая методика расчета базируется на следующих основных предпосылках:

- 1) процесс стационарный;
- 2) стехиометрическая схема реакций включает в себя пять гетерогенных реакций: $C + O_2 = CO_2$; $2C + O_2 = 2CO$; $C + CO_2 = 2CO$; $C + H_2O = CO + H_2$; $C + 2H_2 = CH_4$ и четыре гомогенные: $2CO + O_2 = 2CO_2$; $CH_4 + 2O_2 = CO_2 + 2H_2O$; $2H_2 + O_2 = 2H_2O$; $CO + H_2O \leftrightarrow CO_2 + H_2$;
- 3) газовая смесь в реакторе состоит из кислорода, азота, двуокиси и окиси углерода, метана, водяного пара, водорода и сероводорода;
- 4) дисперсная фаза включает в себя $M_{\rm C}$ фракций коксовых и $M_{\rm ash}$ фракций золовых частиц сферической формы;
- 5) протекание гетерогенных реакций горения и газификации на поверхности коксовых частиц приводит к уменьшению их размера;
- 6) выход летучих веществ (CO, CH₄, CO₂, H₂O, H₂ и H₂S) происходит мгновенно на входе в рассматриваемую зону. Считаем, что часть летучих в виде тяжелых углеводородов C_6H_6 остается в частице и подвергается термохимической переработке вместе с фиксированным углеродом;
- 7) будем пренебрегать влиянием летучих АШ ($V^{\text{daf}} = 3.5\%$) на рабочий процесс в газогенераторе.

Основные уравнения. Система уравнений, описывающая аэродинамику, тепломассообмен и химическое реагирование газодисперсного потока в вертикальном газификаторе, может быть представлена в следующем виде.

Уравнения неразрывности для компонентов газа и частиц кокса фракции j:

$$\frac{d(u_{g}C_{O_{2}})}{dz} = -6\sum_{j=1}^{M_{c}} \frac{\alpha_{D,O_{2}j}(C_{O_{2}} - C_{O_{2}j}^{w})\beta_{j}}{\delta_{C_{j}}} - k_{CO+O_{2}}C_{O_{2}}C_{CO} - 2k_{CH_{4}+O_{2}}C_{O_{2}}C_{CH_{4}} - (1)$$

$$-k_{H_{2}+O_{2}}C_{O_{2}}C_{C_{1$$

$$\begin{split} \frac{d(u_{g}C_{\text{C}_{0,2}})}{dz} &= 6 \sum_{j=1}^{N_{\text{C}}} \alpha_{\text{D,CO}_{2}j} (C_{\text{CO}_{2}j}^{\text{W}} - C_{\text{CO}_{2}}) \frac{\beta_{j}}{\delta_{C_{j}}} + \\ &+ 2k_{\text{CO}+\text{D}_{2}} C_{\text{O}_{2}} C_{\text{CO}} + k_{\text{CH}_{4}+\text{O}_{2}} C_{\text{O}_{2}} C_{\text{CH}_{4}} + \\ &+ k_{\text{CO}+\text{H}_{2}\text{O}} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}\text{O}}} \right], \end{split} \tag{2} \\ &+ 2k_{\text{CO}+\text{D}_{2}\text{O}} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}\text{O}}} \right], \end{split} \\ &+ k_{\text{CO}+\text{H}_{2}\text{O}} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}\text{O}}} \right], \end{split} \\ &+ 2k_{\text{H}_{2}+\text{O}_{2}} C_{\text{O}_{2}} C_{\text{H}_{2}}^{\text{W}} C_{\text{H}_{2}\text{O}j} \beta_{j} + \\ &+ 2k_{\text{H}_{2}+\text{O}_{2}} C_{\text{O}_{2}} C_{\text{H}_{2}}^{\text{W}} C_{\text{H}_{2}\text{O}j} \beta_{j} - \\ &- k_{\text{CO}+\text{H}_{2}\text{O}} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}\text{O}}} \right], \end{split} \\ &\frac{d(u_{g} C_{\text{CD}_{2}})}{dz} = 6 \sum_{j=1}^{N_{\text{C}}} \alpha_{\text{D,CO}j} (C_{\text{CO}_{j}}^{\text{W}} - C_{\text{CO}_{j}}) \frac{\beta_{j}}{\delta_{\text{C}j}} - \\ &- 2k_{\text{CO}+\text{H}_{2}\text{O}} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}\text{O}_{j}}} \right], \end{split} \\ &\frac{d(u_{g} C_{\text{CD}_{2}})}{dz} = -k_{\text{CH}_{4}+\text{O}_{2}} C_{\text{O}_{2}} C_{\text{CL}_{4}} + \\ &+ 7, 2 \sum_{j=1}^{N_{\text{C}}} \exp \left[- \frac{E_{\text{C}+\text{H}_{2}j}}{R_{g} (U_{\text{C}_{2}} + 273)} \right] C_{\text{H}_{2}} 10^{-5} - \\ &- \sqrt{P_{\text{CH}_{4}}} 10^{-5} / K_{\text{eq,C}+\text{H}_{2}j}} \right] C_{\text{H}_{2}} 10^{-5} - \\ &- \sqrt{P_{\text{CH}_{4}}} 10^{-5} / K_{\text{eq,C}+\text{H}_{2}j}} \right] C_{\text{H}_{2}} 10^{-5} - \\ &+ k_{\text{CO}+\text{H}_{2}j} \left[C_{\text{H}_{2}\text{O}} C_{\text{CO}_{2}} - \frac{C_{\text{CO}_{2}} C_{\text{H}_{2}}}{K_{\text{eq,CO}+\text{H}_{2}o}}} \right], \end{split} \\ K_{\text{eq,C}+\text{H}_{2}j} = \frac{0,175}{34713} \exp \left(\frac{18400}{1,8(t_{\text{C}_{j}} + 273)} \right), \end{split} \\ \end{cases}$$

$$\frac{d(\beta_{j}u_{p,j})}{dz} = -\left[(k_{C+O_{2}j} + 2k_{C+0.5O_{2}j})C_{O_{2}j}^{w} + k_{C+CO_{2}j}C_{CO_{2}j}^{w} + k_{C+H_{2}Oj}C_{H_{2}Oj}^{w} \right] \frac{6\mu_{C}\beta_{j}}{\delta_{Cj}\rho_{Cj}} - \\
-7,2\beta_{j} \exp\left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj} + 273)} \right) \times \frac{\left[P_{H_{2}}10^{-5} - \sqrt{P_{CH_{4}}10^{-5}/K_{eq,C+H_{2}j}} \right]}{\delta_{Cj}\rho_{Cj}}, \tag{7}$$

где концентрации газовых компонентов на поверхности углеродной частицы фракции j и коэффициенты массообмена находятся по формулам:

$$C_{O_{2}j}^{W} = \frac{\alpha_{D,O_{2}j}C_{O_{2}}}{\alpha_{D,O_{2}j} + k_{C+O_{2}j} + k_{C+O_{2}j}}, C_{CO_{2}j}^{W} = \frac{\alpha_{D,CO_{2}j}C_{CO_{2}} + k_{C+O_{2}j}C_{O_{2}j}^{W}}{\alpha_{D,CO_{2}j} + k_{C+CO_{2}j}}, C_{H_{2}O_{j}}^{W} = \frac{\alpha_{D,H_{2}O_{j}}C_{H_{2}O_{j}}}{\alpha_{D,H_{2}O_{j}} + k_{C+H_{2}O_{j}}}, C_{H_{2}O_{j}}^{W} = \frac{\alpha_{D,H_{2}O_{j}}C_{H_{2}O_{j}}}{\alpha_{D,H_{2}O_{j}} + k_{C+H_{2}O_{j}}C_{H_{2}O_{j}}}, C_{H_{2}O_{j}}^{W} = \frac{\alpha_{D,H_{2}O_{j}}C_{H_{2}O_{j}}}{\alpha_{D,CO_{j}}}, C_{H_{2}O_{j}}^{W} + k_{C+H_{2}O_{j}}C_{H_{2}O_{j}}^{W}}, \alpha_{D,O_{2}j} = \frac{D_{O_{2}\to c_{M}}Nu_{D_{j}}}{\delta_{C_{j}}}, \alpha_{D,CO_{2}j} = \frac{D_{CO_{2}\to c_{M}}Nu_{D_{j}}}{\delta_{C_{j}}}, \alpha_{D,H_{2}O_{j}} = \frac{D_{H_{2}O\to c_{M}}Nu_{D_{j}}}{\delta_{C_{j}}}.$$

$$(8)$$

Уравнение переноса импульса частиц фракции i:

$$\frac{d(\beta_i u_{pi}^2)}{dz} = \frac{F_{ai}}{\rho_{pi}} - g\beta_i.$$
 (9)

Уравнение сохранения количества движения газовой фазы:

$$\frac{d(\rho_{\rm g}u_{\rm g}^2)}{dz} = -\frac{dP_{\rm g}}{dz} - g\rho_{\rm g} - \sum_{i=1}^{\rm M_{\rm c}+M_{ash}} F_{\rm ai} \ . \ (10)$$

Уравнение сохранения энергии несущей среды:

$$\frac{d(\rho_{g}u_{g}C_{g}t_{g})}{dz} = 6 \sum_{i=1}^{M_{C}+M_{ash}} h_{convi}(t_{pi} - t_{g}) \frac{\beta_{i}}{\delta_{i}} - Q_{rad,g \to w} + \sum_{i=1}^{M_{C}+M_{ash}} Q_{rad,i \to g} + Q_{rad,i \to g$$

Уравнение теплового баланса частиц кокса фракции *j*:

$$\begin{split} &\frac{d(\beta_{j}u_{pj}c_{pj}t_{pj})}{dz} = \left[(k_{C+O_{2}j}Q_{C+O_{2}} + k_{C+0,5O_{2}j}Q_{C+0,5O_{2}}) \times \right. \\ &\times C_{O_{2}j}^{w} - k_{C+CO_{2}j}C_{CO_{2}j}^{w}Q_{C+CO_{2}} - k_{C+H_{2}O_{j}}C_{H_{2}O_{j}}^{w}Q_{C+H_{2}O} - \\ &- h_{convj}(t_{pj} - t_{g}) \right] \frac{6\beta_{j}}{\delta_{Cj}\rho_{Cj}} - \frac{Q_{radj\to w}}{\rho_{Cj}} - \frac{Q_{radj\to g}}{\rho_{Cj}} - \\ &- \frac{Q_{reradj}}{\rho_{Cj}} + 7,2\beta_{j} exp \left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj} + 273)} \right) \times \\ &\times \frac{\left[P_{H_{2}} 10^{-5} - \sqrt{P_{CH_{4}} 10^{-5}/K_{eq,C+H_{2}j}} \right] Q_{C+H_{2}}}{\mu_{C} \delta_{Cj}\rho_{Cj}}. \end{split}$$

Уравнение теплового баланса частиц золы фракции s:

$$\frac{d(\beta_{s}u_{ps}c_{ps}t_{ps})}{dz} = -h_{convs}(t_{ps} - t_{g})\frac{6\beta_{s}}{\delta_{s}\rho_{ashs}} - \frac{Q_{rads \to w}}{\rho_{ashs}} - \frac{Q_{rads \to g}}{\rho_{ashs}} - \frac{Q_{rerads}}{\rho_{ashs}}.$$
(13)

В уравнениях движения фаз (9), (10) фигурируют градиент давления, силы тяжести и межфазного взаимодействия. Правая часть уравнения (11) учитывает конвективный и радиационный теплообмен между частицами и газом, лучистое тепло, переданное газовой фазой экранам газификатора и тепловыделение гомогенных реакций. Слагаемые уравнения (12) описывают конвективный теплообмен дисперсной фазы с несущей средой, тепловыделение гетерогенных реакций, лучистый теплообмен кокса с настенными поверхностями нагрева и газом, переизлучение между частицами. Температура золовых фракций (13) определяется конвективным и радиационным теплообменом между золой и газовой смесью, лучистым теплообменом дисперсной фазы с поверхностями реактора, межфракционным переизлучением.

На основании системы уравнений (1)—(13) разработана программа для расчета аэродинамики, тепломассообмена и химического реагирования твердого топлива в вертикальном газификаторе.

Некоторые численные результаты. Обсудим результаты расчетов двенадцати вариантов горения и газификации ГСШ, БУ и АШ в реакторе-газификаторе, работающем под давлением P_g =3,2-3,8 МПа. Исходные данные представлены в табл. 1-3. В вариантах I-V рассматривается одностадийный процесс парокислородной газификации коксозольного остатка без учета влияния на рабочий процесс пиролизных газов, а в VI-IX — с учетом их влияния. Варианты X-XII описывают комбинированный процесс газификации, когда в нижней торкретированной зоне происходит термохимическая переработка угля типа ГСШ (или АШ), а в верхней — газификация твердого топлива марки БУ (или ГСШ).

Таблица 1. Элементарный состав исходных углей

Вели-	Раз- мер- ность	$\mathbf{C}^{\mathbf{d}}$	$\mathbf{H}^{\mathbf{d}}$	N^d	$\mathbf{O}^{\mathbf{d}}$	S ^d	$\mathbf{V}^{ ext{daf}}$	$\mathbf{A}^{\mathbf{d}}$
ГСШ	%	69,66	4,51	1,36	7,88	1,62	36,43	15
ГСШ	%	60,25	4,07	1,2	7,73	1,79	37,44	25
БУ	%	58,65	4,93	0,85	17,17	3,4	60	15
АШ	%	71,4	1,39	0,76	1,93	1,79	3,5	22,694

Таблица 2. Энергии активации исходных углей

Величины	$E_{\mathrm{C+O_2}}$, кДж/ кмоль	$E_{ ext{C+0.5O}_2}$, кДж/кмоль	$E_{\mathrm{C+CO}_2}$, кДж/кмоль	$E_{\mathrm{C+H_{2}O}}$, кДж/кмоль	$E_{\mathrm{C+H}_2}$, кДж/кмоль
ГСШ	114·10 ³	125·10 ³	250,8·10 ³	182,4·10³	149·10 ³
БУ	98·10 ³	108·10 ³	215·10 ³	156,8·10³	140·10 ³
AIII	130·10 ³	143·10 ³	286·10 ³	208·10 ³	170·10 ³

Таблица 3. Исходные данные для расчетов

Вели-	Раз-	Таблица 3. Исходные данные для расчетов Номера вариантов											
чи- ны	мер- ность	I	П	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Тип угля. Низ топки	ŀ	ГСШ 15% золы	ГСШ 15% золы	ГСШ 15% золы	ГСШ 15% золы	ГСШ 15% золы и БУ	ГСШ 25% золы	АШ 23% золы	АШ 23% золы				
Тип угля. Верх топки	-	-	-	-	-	_	-	-	-	_	БУ 15% золы	БУ 15% золы	ГСШ 15% золы
$\mathrm{B}_{\mathrm{C01}}$	кг/ч	91,8	91,8	91,8	91,8	3715 ГСШ	1881 ГСШ	1881 ГСШ	1733 ГСШ	1733 ГСШ	$\frac{1616}{1260}$	$\frac{1808}{1478}$	$\frac{1808}{982,8}$
$\mathrm{B}_{\mathrm{C}02}$	кг/ч	91,8	91,8	91,8	91,8	3914 БУ	2759 БУ	2759 БУ	2648 БУ	2648 БУ	_	_	-
$\mathrm{B}_{\mathrm{C03}}$	кг/ч	7522	7866	7522	7843	-	_	-	-	-	-	_	-
δ_{C01}	MM	0,12	0,12	0,12	0,12	0,08 ГСШ	0,06 ГСШ	0,06 ГСШ	0,07 ГСШ	0,07 ГСШ	$\frac{0,1}{0,06}$	$\frac{0,1}{0,06}$	$\frac{0,1}{0,04}$
$\delta_{\mathrm{C}02}$	MM	0,1	0,1	0,1	0,1	0,15 БУ	0,15 БУ	0,15 БУ	0,16 БУ	0,16 БУ	_	_	_
δ_{C03}	MM	0,08	0,08	0,08	0,08	-	-	-	-	-	-	_	_
t_{C1}	°C	30	30	30	30	30	30	30	30	30	$\frac{30}{130}$	$\frac{30}{200}$	$\frac{30}{200}$
t_{C02}	°C	30	30	30	30	30	30	30	30	30	-	_	-
t _{C03}	°C	30	30	30	30	_	_	-	_	_	_	_	_
t_{g}	°C	900	900	900	900	900	350	350	350	500	500	500	500
B_{O_20}	кг/ч	7500	7500	7500	7500	7500	5000	3900	3900	3820	3000	$\frac{3000}{0}$	$\frac{3000}{0}$
B_{CO_20}	кг/ч	0	0	0	0	0	867,6	867,6	828	828	$\frac{105}{340}$	$\frac{0}{399}$	$\frac{0}{65,3}$
$B_{ m H_20}$	кг/ч	0	0	0	0	0	206,7	206, 7	195,6	195,6	$\frac{64}{61}$	$\frac{0}{71}$	$\frac{0}{30}$
$B_{\rm CO0}$	кг/ч	0	0	0	0	0	1663	1663	1582	1581	$\frac{319}{589}$	$\frac{0}{692}$	$\frac{0}{158}$

Вели-	Раз-		Номера вариантов										
чи- ны	мер- ность	I	П	III	IV	V	VI	VII	VIII	IX	X	XI	XII
$B_{\mathrm{CH_40}}$	кг/ч	0	0	0	0	0	1033	1033	979	979	$\frac{265}{331}$	$\frac{0}{388}$	$\frac{0}{180}$
$B_{ m N_20}$	кг/ч	100	100	100	100	100	100	100	100	100	$\frac{100}{31,5}$	$\frac{100}{37}$	$\frac{100}{25}$
$B_{ m H_2O0}$	кг/ч	4000	4000	4000	4000	4000	3000	4600	6910	7900	$\frac{2006}{70}$	$\frac{2200}{82}$	$\frac{2200}{13,5}$
B_{H_2S0}	кг/ч	0	0	0	0	0	377	377	358,6	358,6	$\frac{68}{136}$	$\frac{0}{160}$	32,65
$t_{9 kp}$	°C	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$
f_r	м ²	0,49	0,49	0,49	0,49	0,49	0,487	0,487	0,487	0,487	$\frac{0,322}{0,35}$	$\frac{0,322}{0,35}$	$\frac{0,322}{0,35}$
H _r	М	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	1,1 5,9	1,1 5,9	1,1 5,9

Примечание. В числителе приведены параметры нижней зоны реактора, в знаменателе – верхней. В вариантах VI-XII начальные условия для компонентов газовой смеси формируются с учетом состава летучих веществ ГСШ (или БУ) [1, 2].

Расчетный материал проиллюстрирован на рис. 2-10, где представлены профили наиболее важных параметров рабочего процесса в газогенераторе. На рис. 2 показано распределение температур полидисперсного ансамбля коксозольных частиц ГСШ и газовой фазы по высоте реактора для варианта IV (кривые 4-8). На разгонном участке 0 < z < 0,1 м, где тепловыделение экзотермических гетерогенных и гомогенных реакций

превалирует над лучистым теплообменом между газовзвесью и экранами топки, происходит быстрый рост кривых $t_{\rm g}(z)$, $t_{\rm ash}(z)$ и $t_{\rm C}(z)$, в результате чего зависимость $R_{\rm O_2}(z) \to 0$ (рис. 3в). При этом максимальное значение температуры частиц кокса $t_{\rm C3,max}$ оказывается ниже величин $t_{\rm ash,max}$ и $t_{\rm g,max}$ на 243°C и 270°C соответственно, что обусловлено эндотермическими реакциями, протекающими на поверхности частиц углерода.

Рис. 2. Распределение температур газа и золы, коксовых частиц ГСШ и их диаметров (а) и расходов углерода (б) по высоте газификатора для варианта IV: $1-\delta_{Cl};\ 2-\delta_{C2};\ 3-\delta_{C3};\ 4-t_g;\ 5-t_{ash};\ 6-t_{Cl};\ 7-t_{C2};\ 8-t_{C3};\ 9-B_{Cl};\ 10-B_{C2};\ 11-B_{C3}$

Рис. 3. Распределение объемных долей окиси углерода и водорода (а), водяного пара (б), углекислого газа и окислителя (в), метана (г) по высоте реактора-газификатора: I- вариант $I;\ 2-$ вариант $II;\ 3-$ вариант $II;\ 4-$ вариант $IV;\ \diamond-CO;\ \Delta-H_2$

Высокий уровень температур t_g и t_{Cj} способствует существенному повышению скоростей гомогенных и гетерогенных химических реакций, что приводит к резкому возрастанию функций $R_{\rm CO_2}(z), R_{\rm H_2}(z), R_{\rm CO}(z)$ и $R_{\rm CH_4}(z)$ и значительному уменьшению объемной доли водяного пара в газовой смеси (рис. 3, а-г, кривые 4). Кроме того, в рассматриваемом диапазоне наблюдается высокая степень конверсии углерода, которая возрастает с уменьшением диаметра коксовых частиц (рис. 2, ср. кривые 1 и 3, 9 и 11).

Быстрое убывание зависимостей $t_g(z)$, $t_{ash}(z)$ и $t_{Cj}(z)$ в бескислородной зоне $0.1 \,\mathrm{m} < z < 6.8 \,\mathrm{m}$ связано, прежде всего, с протеканием эндотермических реакций $C + CO_2 = 2CO$, $C + H_2O = CO + H_2$ и радиационным теплообменом между газодисперсным потоком и настенными поверхностями реактора.

При такой организации процесса термохимической переработки ГСШ на выходе из газификатора получается синтетический газ следующего состава: CO=61,8%, $CO_2=1,65\%$, $H_2=35,4\%$, $H_2O=2,2\%$, $CH_4=0,054\%$. Численные исследования показывают, что при одностадийном процессе парокислородной газификации объемная доля метана в газовой смеси незначительна и составляет менее 0,1% (рис. 3r).

рис. 3a следует, что отношение $R_{\rm CO,e}$ / $R_{\rm H_2,e}$ изменяется в зависимости от варианта расчета ($R_{\rm CO,el}$ / $R_{\rm H_2,el}$ = 2,87 и $R_{\rm CO,elV}$ / $R_{\rm H_2,elV}$ = = 1,75), хотя начальные условия для вариантов I-IV мало отличаются друг от друга (таблица 3). Такое расхождение численных результатов в первую очередь связано с использованием различных эмпирических зависимостей для расчета скорости реакции водяного сдвига, одна из которых присутствует в уравнениях (2), (3), (5), (6) и (11) [3] (вариант I). Приведем выражения для остальных вариантов.

Вариант II:

$$r_{\rm II} = k_{{\rm CO} + {\rm H}_2 {\rm O}} C_{{\rm H}_2 {\rm O}} C_{{\rm CO}} - k_{{\rm CO}_2 + {\rm H}_2} C_{{\rm CO}_2} C_{{\rm H}_2}$$
 [4]; (14) вариант III:

$$r_{\text{III}} = 0,5754 \cdot 10^{5} \left[\frac{P_{\text{CO}}}{P_{\text{g}}} - \frac{P_{\text{CO}_{2}} P_{\text{H}_{2}}}{P_{\text{H}_{2}\text{O}} P_{\text{g}} K_{\text{eq,CO+H}_{2}\text{OIII}}} \right] \times \\ \times \exp \left(-\frac{27760}{1,987 (t_{\text{g}} + 273)} \right) \frac{P_{\text{g}}^{0,5-P_{\text{g}}/(250 \cdot 10^{5})}}{10^{5}} \times (15) \\ \times \exp \left(-8,91 + \frac{5553}{(t_{\text{g}} + 273)} \right) \beta_{\text{ash,eq}} \rho_{\text{ash,eq}} [5];$$

вариант IV:

$$r_{\text{IV}} = k_{\text{CO+H}_2\text{O}} \left[C_{\text{H}_2\text{O}} C_{\text{CO}} - \frac{C_{\text{CO}_2} C_{\text{H}_2}}{0,0265} \right]$$
[6]. (16)

Сопоставление результатов расчетов вариантов I-IV с данными, представленными в работах [5, 7] показывает, что наиболее близкие расчетные значения объемных долей компонентов газовой смеси получаются при использовании выражения (14).

Рис. 4 иллюстрирует распределение удельных радиационных потоков газа $Q_{\rm rad,g}$, коксовых $Q_{\mathrm{rad},\mathrm{C}\Sigma}$ и золовых $Q_{\mathrm{rad,ash}}$ частиц ГСШ на стенку реактора для варианта IV. В ошипованной зоне 0.1 м < z < 0.5 м, предназначенной для жидкого шлакоудаления ($t_{3\kappa p}$ =1350°C), происходит резкое уменьшение удельных тепловых потоков за счет падения температур фаз (рис. 2а, кривые 4-8). Скачок функций $Q_{\text{rad,C}\Sigma}(z)$, $Q_{\text{rad,ash}}(z)$ и $Q_{\text{rad,g}}(z)$ на входе в верхнюю нефутерованную зону реактора 0.5 M < z < 6.8 M можно объяснить уменьшением температуры загрязненной поверхности экранов с 1350°C до 800°C (таблица 3). Дальнейшее убывание зависимостей $Q_{\mathrm{rad},\mathrm{C}\Sigma}(\mathrm{z}),~Q_{\mathrm{rad,ash}}(\mathrm{z})$ и $Q_{\mathrm{rad},\mathrm{g}}(\mathrm{z})$ обусловлено эндотермическими гетерогенными реакциями и теплообменом между газовзвесью и экранами газогенератора.

Рис. 4. Распределение удельных радиационных потоков излучения газа, частиц кокса и золы ГСШ на экранные поверхности по высоте реактора-газификатора для варианта IV: $1 - \kappa \rho \kappa c$; $2 - 3 \rho n a$; $3 - 2 \rho a a$.

Перейдем к технологии термохимической переработки бинарной смеси (ГСШ и БУ) в вертикальном поточном реакторе. Рассмотрим одностадийную схему газификации, когда парокислородная 2 и угольная 1 смеси подаются в нижнюю зону реактора 5 (рис. 1а). Для организации указанного процесса необходимо, прежде всего, выбрать соотношение расходов ГСШ и БУ и подобрать оптимальные диаметры частиц $\delta_{\rm C0,\Gamma CIII}$ и $\delta_{\rm C0,Fy}$, при которых механический недожог бинарной смеси был бы минимальным. Численные исследования рабочего процесса для варианта V показывают, что при отношении $B_{\text{C0,БУ}}$ / $(B_{\text{C0,БУ}} + B_{\text{C0,ГСШ}}) = 0,51$ (таблица 3) оптимальными являются размеры частиц кокса $\delta_{{\rm C0, FY}} = 0.15$ мм и $\delta_{{\rm C0, \Gamma CIII}} = 0.08$ мм, которые обеспечивают минимальный мехнедожог ГСШ и БУ, о чем свидетельствует рис. 5 (кривые 4-7).

Рис. 5. Распределение температур газа, частиц кокса ГСШ и БУ, их диаметров (а) и расходов (б) по высоте реактора-газификатора для варианта V: $1 - t_g$; $2 - t_{C,\Gamma C I I I}$; $3 - t_{C,E V I}$; $4 - \delta_{C,\Gamma C I I I}$; $5 - \delta_{C,E V I}$; $6 - B_{C,\Gamma C I I I I}$; $7 - B_{C,E V I}$

Рис. 6. Распределение объемных долей компонентов газовой смеси по высоте реактора-газификатора при совместном сжигании и газификации пылевидных фракций ГСШ и БУ для варианта V:

$$1 - CO$$
; $2 - CO_2$; $3 - H_2$; $4 - H_2O$.

Из рис. 5 следует, что степень конверсии крупных частиц кокса БУ $\delta_{\text{C0,БУ}}=0,15$ мм оказывается выше, чем мелких — $\delta_{\text{C0,ГСШ}}=0,08$ мм ($\varphi_{\text{БУ}}=\frac{B_{\text{C0,БУ}}-B_{\text{Ce,БУ}}}{B_{\text{C0,FV}}}=0,99$, $\varphi_{\text{ГСШ}}=0,97$) за счет

более низких значений энергий активации для БУ по сравнению с ГСШ (таблица 2). При такой организации рабочего процесса на выходе из газогенератора получается синтетический газ (СО=67,5%, СО₂=5,8%, $\rm H_2$ =24,6%, $\rm H_2O$ =1,62%), несколько отличающийся по составу от генераторного газа, полученного в варианте I ($R_{\rm CO,el}/R_{\rm CO,eV}$ =1,03, $R_{\rm H_2,el}/R_{\rm H_2,eV}$ =0,98 и $R_{\rm CO_2,el}/R_{\rm CO_2,eV}$ =0,74; ср. рис. 3, кривые 1 и рис. 6), хотя в обоих вариантах использовались одни и те же эмпирические зависимости для расчета скорости реакции водяного сдвига [3].

На рис. 7 изображены результаты расчетов термохимической переработки бинарной смеси (ГСШ и БУ) с использованием одноступенчатой схемы газификации с учетом влияния летучих веществ на рабочий процесс при различных значе-

ниях отношения
$$\xi = \frac{B_{\rm H_2O}}{B_{\rm H_2O} + B_{\rm O_2}}$$
 для вариантов

VI-IX (таблица 3). Видно, что с увеличением величины ξ от 0,375 (вариант VI) до 0,64 (вариант VIII) происходит уменьшение отношения $R_{\rm CO,e}$ / $R_{\rm H_2,e}$ от 1,27 до 0,77 (рис. 7, кривые 1, 5-7). При этом объемная доля $\rm CO_2$ в синтетическом

газе возрастает с 5,8 до 14,3%, а содержание H_2O-c 3,95 до 15% (рис. 7, ср. кривые 8 и 13, 9 и 12). Таким образом, повышение содержания H_2O в парокислородной смеси уменьшает теплотворную способность генераторного газа изза увеличения в нем доли балласта H_2O и CO_2 .

Рис. 7. Распределение объемных долей компонентов газовой смеси по высоте реактора-газификатора при совместной газификации пылевидных фракций ГСШ и БУ для вариантов VI-IX: $1-CO_{VI}$; $2-CO_{VII}$; $3-H_{2,IX}$; $4-H_{2,VII}$; $5-H_{2,VIII}$; $6-H_{2,VI}$; $7-CO_{VIII}$; $8-H_2O_{VIII}$; $9-CO_{2,VIII}$; $10-CO_{2,VII}$; $11-H_2O_{VII}$; $12-CO_{2,VI}$; $13-H_2O_{VI}$

На рис. 8 приведены численные результаты двухстадийного процесса парокислородной газификации бинарной смеси ГСШ ($A^d = 25\%$) и БУ ($A^d = 15\%$) для варианта X. В нижней ошипованной зоне реактора 5 (рис. 1б) происходит термохимическая переработка ГСШ ($\xi_X = 0,4$; таблица 3), результатом которой является генераторный газ (CO=43%, CO₂=1,9%, H₂=20%, $H_2O=33,9\%$), обладающий высокой тепловой энергией ($t_g = 1661$ °C; рис. 8a). Благодаря этой энергии в верхней зоне реактора 7 (рис. 1б) происходит газификация БУ. Так как этот процесс протекает в бескислородной зоне, содержание метана в синтетическом газе (СО=51,6%, $CO_2=1,8\%$, $H_2=36\%$, $H_2O=5,9\%$, $CH_4=3,6\%$) 3a счет выхода летучих из БУ оказывается значительно выше, чем при одностадийной схеме термохимической переработки бинарной смеси $(R_{CH_4,e} < 0.1\%;$ ср. рис. 3г и рис. 8б, кривая 8).

Рис. 8. Распределение температур газа и золы, объемных долей компонентов несущей среды по высоте реактора при двухстадийной схеме термохимической переработки ГСШ и БУ для варианта $X: 1-CO; 2-H_2O; 3-H_2; 4-CO_2; 5-O_2; 6-t_g; 7-t_{ash}; 8-CH_4; a-нижняя ошипованная зона реактора, где происходит горение и газификация ГСШ; <math>6-$ верхняя зона газогенератора, предназначенная для газификации БУ.

Недостатком организации рассматриваемого процесса является сжигание пиролизных газов угля марки ГСШ (A^{daf} =37,44%) в обогащенной окислителем нижней зоне газогенератора. Чтобы не расходовать летучие вещества на горение, в ошипованную зону 5 (рис. 1б) следует подавать уголь с малым выходом пиролизных газов, например АШ (рис. 9а). В этом случае на выходе из торкретированной зоны 5 получается синтетический газ $(CO=43\%, CO_2=3\%, H_2=12,5\%, H_2O=41\%)$, Temпература которого оказывается на 197°С выше, чем в варианте X (ср. рис. 8а и рис. 9а, кривые 6). Такое приращение температуры на входе в верхнюю зону топки несколько улучшает качество генераторного rasa $(R_{\text{CO eXI}}/R_{\text{CO eX}} = 1.05, R_{\text{Ha eXI}}/R_{\text{Ha eX}} = 0.93,$ $R_{\text{CO}_2,\text{eXI}} / R_{\text{CO}_2,\text{eX}} = 0.79, \quad R_{\text{H},\text{O},\text{eXI}} / R_{\text{H},\text{O},\text{eX}} = 0.92$ $R_{\rm CH, \, eXI}/R_{\rm CH, \, eX}$ = 1,2; ср. рис. 8б и рис. 9б, кривые 1-4, 8) и увеличивает количество прореагировавше-БУ $(B_{\text{C0.}\Gamma\text{CIII}}/B_{\text{C0.}\text{EV}}=1,28$ И $B_{\rm C0,AIII}/B_{\rm C0,BY}=$ =1,22; таблица 3).

Рис. 9. Распределение температур газа и золы, объемных долей компонентов несущей среды по высоте реактора при двухстадийной схеме термохимической переработки АШ и БУ для варианта XI: 1-CO; $2-H_2O$; $3-H_2$; $4-CO_2$; $5-O_2$; $6-t_g$; $7-t_{ash}$; $8-CH_4$; a- нижняя ошипованная зона реактора, где происходит горение и газификация АШ; 6- верхняя зона газогенератора, предназначенная для газификации БУ.

Рис. 10. Распределение температуры и объемных долей компонентов газа по высоте зоны газификации для варианта XII: 1-CO; $2-H_2$; $3-t_g$; $4-H_2O$; $5-CH_4$; $6-CO_2$ (в нижней торкретированной зоне реактора происходит термохимическая переработка АШ (рис. 9а), в верхней – Γ СШ).

При этом степень конверсии углерода в варианте XI ($\varphi_{\text{БУ,XI}}$ =0,99) оказывается несколько больше, чем в X ($\varphi_{\text{БУ,X}}$ =0,986). Для достижения высоких значений φ в обоих вариантах используется мелкодисперсная угольная пыль БУ δ_{C0} =0,06 мм. Чтобы получить такую фракцию, необходимо применять

струйные мельницы, поскольку использование традиционных (молотковых, среднеходных и т.д.) малоэффективно.

Если в варианте XI вместо БУ использовать ГСШ (A^d =15%), то калорийность и качество генераторного газа и количество прогазифицированного углерода ГСШ падают (ср. рис. 96 и рис. 10; $B_{\text{C0,AIII}}/B_{\text{C0,\GammaCIII}}$ = 1,84; таблица 3).

Выводы. 1. Предложенная модель позволяет получить детальную информацию о геометрических, аэродинамических, тепловых и физикохимических параметрах парокислородной газификации мелкодисперсной угольной пыли, что может быть полезно при конструировании вертикальных поточных газогенераторов на стадиях технического и рабочего проектирования.

- 2. Численно исследованы два способа процесса парокислородной газификации (одно- и двухстадийный) следующих бинарных смесей: БУ и ГСШ, АШ и БУ (или ГСШ).
- 3. Изучено влияние размера углеродных частиц двухкомпонентной смеси и соотношения их расходов на основные параметры рабочего процесса в газификаторе. В частности, найдены оптимальные диаметры частиц кокса (БУ и ГСШ), обеспечивающие минимальный мехнедожог при различных значениях $B_{\text{С0,БУ}}/(B_{\text{С0,БУ}}+B_{\text{С0,ГСШ}})$.
- 4. Анализ численных результатов показывает, что при одноступенчатой схеме газификации отклонение от оптимальных размеров частиц углерода ГСШ или БУ в ту или иную сторону приводит к росту мехнедожога, что создает значительные трудности в организации, регулировании и управлении рассматриваемым процессом в отличие от двухступенчатой схемы термохимической переработки твердых топлив.
- 5. Содержание метана в синтетическом газе при использовании двухступенчатой схемы парокислородной газификации (4,3%) оказывается гораздо выше, чем при одноступенчатой (0,06%).
 - 6. При двухстадийном процессе термохимии-

ческой переработки бинарных смесей для исключения выгорания пиролизных газов, которые являются исходным материалом для производства генераторного газа, в нижнюю ошипованную зону реактора, обогащенную окислителем, следует подавать угольную пыль с малым содержанием летучих веществ (например, АШ).

- 7. Повышение содержания H_2O в парокислородной смеси способствует уменьшению теплотворной способности генераторного газа из-за увеличения в нем доли балласта H_2O и CO_2 .
- 8. При газификации полидисперсного ансамбля коксозольной примеси степень конверсии углерода φ обратно пропорциональна диаметру $\delta_{\rm CO}$.
- 9. Для достижения высоких значений φ в зоне газификации необходимо использовать мелкодисперсную угольную пыль размером ~0,06 мм. Чтобы получить такую дисперсность, целесообразно применять струйные мельницы, поскольку использование традиционных (молотковых, среднеходных и т.д.) малоэффективно.
- 1. Chernyavskiy N. The main natural laws of high-rate coal pyrolysis // Thermal Science. -2003. Vol. 7. No. 2. P. 77–87.
- 2. Чернявский Н.В. Механизм торможения газовыделения при термоконтактном пиролизе угля // Промышленная теплотехника. 2000. N 1. C. 41–48.
- 3. *Gómes-Barea A., Leckner B.* Modelling of biomass gasification in fluidized bed // Progress in Energy and Combustion Science. 2010. Vol. 36. P. 449–509.
- 4. *Weimer A.W., Clough D.E.* Modelling a low pressure steam-oxygen fluidized bed coal gasifying reactor // J. AIChE. 1981. Vol. 36. P. 549–567.
- 5. Wen C.Y., Chaung T.Z. Entrainment Coal Gasification Modeling // Ind. Eng. Chem. Process Des. Dev. 1979. Vol. 18. N $\underline{0}$ 4. P. 684–695.
- 6. Zhong L. D., Mei W. H., Hong Z. Kinetic model establishment and verification of the biomass gasification on fluidized bed // Proceedings of the Eighth International Conference on Machine Learning and Cybernetics. Baoding, 12-15 July 2009. P. 2112–2117.
- 7. Govind R., Shah J. Modelling and Simulation of An Entrained Flow Coal Gasifier // J. AIChE. 1984. Vol. 30. N_2 1. P. 79–92.