УДК 532.529: 517.4

Б.Б.Рохман, докт.техн.наук (Институт угольных энерготехнологий НАН Украины, Киев)

О технологии газификации твердых топлив в вертикальном поточном реакторе под давлением

Построена модель аэродинамики, теплообмена и химического реагирования мелкодисперсной угольной пыли в вертикальном газогенераторе. Исследован процесс парокислородной газификации под давлением 3,2-3,8 МПа различных комбинаций бинарных смесей: бурого угля (БУ) и газового каменного (ГСШ), антрацитового штыба (АШ) и БУ (или ГСШ). Показано, что при использовании двухступенчатой схемы термохимической переработки твердых топлив содержание метана в синтетическом газе (4,3%) оказывается существенно выше, чем при одноступенчатой (0,06%). При двухстадийном процессе газификации бинарных смесей для исключения сжигания пиролизных газов, которые являются сырьем для производства генераторного газа, в обогащенную окислителем нижнюю часть реактора целесообразно подавать уголь с малым содержанием летучих веществ. Определены оптимальные диаметры частиц ГСШ и БУ (одностадийный процесс), обеспечивающие минимальный механический недожог при различных соотношениях расходов компонентов бинарной смеси. Ключевые слова: горение, газ, газификация, реактор, уголь, пиролиз, бинарная смесь.

Побудовано модель аеродинаміки, теплообміну і хімічного реагування дрібнодисперсного вугільного пилу у вертикальному газогенераторі. Досліджено процес парокисневої газифікації під тиском 3,2-3,8 МПа різних комбінацій бінарних сумішей: бурого вугілля (БВ) та газового кам'яного (ГСШ), антрацитового штибу (АШ) і БВ (або ГСШ). Показано, що при використанні двоступеневої схеми термохімічної переробки твердих палив вміст метану в синтетичному газі (4,3%) виявляється істотно вищим, ніж при одноступеневій (0,06%). При двостадійному процесі газифікації бінарних сумішей для виключення спалювання піролізних газів, які є сировиною для виробництва генераторного газу, в збагачену окислювачем нижню частину реактора доцільно подавати вугілля з малим вмістом летких речовин. Визначено оптимальні діаметри частинок ГСШ і БВ (одностадійний процес), які забезпечують мінімальний механічний недопал при різних співвідношеннях витрат компонентів бінарної суміші. **Ключові слова:** горіння, газ, газифікація, реактор, вугілля, піроліз, бінарна суміш.

A, N, O, S, V	 массовые доли золы, азота, кислорода, серы и летучих веществ в твердом топливе 	R	 универсальная газовая постоянная, кДж/(кмоль·К), или объемная доля компонента газовой смеси
В	– расход, кг/ч	r	 скорость реакции водяного сдвига, кмоль/(м³·с)
С	 концентрации газовых компонентов, кмоль/м³, или массовая доля углерода в твердом топливе 	t	– температура, °С
с	 теплоемкость, кДж/(кг·К); 	и	– скорость, м/с
Ε	 энергия активации, кДж/кмоль 	Z	 аксиальная координата, м
F	– сила, Н/м ³	α	 коэффициент массообмена, м/с
f	– сечение, м ²	β	 истинная объемная концентрация частиц
Н	 высота, м, или массовая доля водорода 	δ	– диаметр частицы, м
h	 коэффициент конвективного теплообмена, кДж/(с⋅м²⋅К) 	μ	 молекулярная масса, кг/кмоль
g	– ускорение свободного падения, м/с ²	ξ	 массовая доля водяного пара в парокислородной смеси
k	 константа скорости реакции, м/с 	ρ	- плотность, кг/м ³
K	 константа равновесия 	φ	 степень конверсии углерода
Nu	 критерий Нуссельта 	АШ, БУ, ГСШ	 антрацитовый штыб, бурый и газовый каменный уголь соответственно
Р	– давление газа, Н/м ²	М	 количество фракций
Q	 тепловой эффект реакции (кДж/кмоль) или тепловой поток (кДж/(с·м³)) 	D	 коэффициент диффузии, м²/с

Обозначения

Индексы нижние: а – сила аэродинамического сопротивления частицы; ash – зола; С – углерод; СО, СО₂, CH₄, H₂O, N₂ – окись и двуокись углерода, метан, водяной пар и азот; C + O₂, C + 0,5O₂, C + CO₂, C + H₂, C + H₂O – гетерогенные реакции; CO + O₂, CH₄ + O₂, H₂ + O₂, CO + H₂O, CO₂ + H₂ – гомогенные реакции; conv – конвективный теплообмен; CO₂ \rightarrow см,

© Б.Б.Рохман, 2014

Відновлювана енергетика. 2014. № 2

 $O_2 \rightarrow cm$, $CO \rightarrow cm$, $H_2O \rightarrow cm$ – диффузия углекислого газа, кислорода, окиси углерода и водяного пара в газовую смесь; D – диффузия; е – выход; еq – константа равновесия или эквивалентный параметр; g – газ; g \rightarrow w, j \rightarrow w, s \rightarrow w, j \rightarrow g, s \rightarrow g – лучистый теплообмен между газом и стенкой, частицами кокса фракции j и стенкой, золы фракции s и стенкой, кокса фракции j и газом, золы фракции s и газом; i = j, s; j = 1 – M_c ; s = 1 – M_{ash} ; max – максимальное значение; O_2 – кислород; p – частица; r – реактор; гаd – лучистый теплообмен; rerad – переизлучение; экр – экранные поверхности; Σ – сумма; 1–3 – номера фракций; I–XII – номера вариантов; 0 – начальные условия.

Индексы верхние: w – поверхность; d – сухая масса; daf – горючая масса.

В настоящей работе рассматриваются два способа термохимической переработки твердых топлив под давлением $P_g = 3,2-3,8$ МПа (рис. 1). Первый (одностадийный процесс газификации) основан на подаче угля (или бинарной смеси ГСШ и БУ) и парокислородной смеси в нижнюю ошипованную зону реактора 5 (рис. 1а). Второй способ представляет собой двухстадийный (комбинированный) процесс газификации (рис. 1б), когда в торкретированной зоне 5 происходит термохимическая переработка угля типа ГСШ (или АШ), а в верхней нефутерованной части газогенератора 7 – газификация твердого топлива марки БУ (или ГСШ).

Рис. 1. Одноступенчатая (а) и двухступенчатая (б) схемы газификации углей в вертикальном поточном реакторе: 1 – уголь (или бинарная смесь); 2 – смесь кислорода и водяного пара; 3 – уголь; 4 – шлак; 5 – ошипованная зона; 6 – синтетический газ; 7 – нефутерованная зона газификации; 8 – обмуровка.

Для конструирования подобных устройств необходимо: а) построить модель, описывающую восходящее движение, тепломассообмен и химическое реагирование полидисперсного ансамбля частиц угля в реакторе с учетом лучистого и конвективного теплообмена между газом и частицами, газодисперсным потоком и экранами реактора, межфракционного переизлучения, гетерогенных и гомогенных реакций, сил тяжести и межфазного взаимодействия; б) на ее основе провести численные исследования одностадийного и двухстадийного процессов газификации отдельных видов топлив и бинарных смесей. Предлагаемая методика расчета базируется на следующих основных предпосылках:

1) процесс стационарный;

2) стехиометрическая схема реакций включает в себя пять гетерогенных реакций: C + O₂ = = CO₂; 2C + O₂ = 2CO; C + CO₂ = 2CO; C + H₂O = = CO + H₂; C + 2H₂ = CH₄ и четыре гомогенные: 2CO + O₂ = 2CO₂; CH₄ + 2O₂ = CO₂ + 2H₂O; 2H₂ + + O₂ = 2H₂O; CO + H₂O ↔ CO₂ + H₂;

3) газовая смесь в реакторе состоит из кислорода, азота, двуокиси и окиси углерода, метана, водяного пара, водорода и сероводорода;

4) дисперсная фаза включает в себя $M_{\rm C}$ фракций коксовых и $M_{\rm ash}$ фракций золовых частиц сферической формы;

 протекание гетерогенных реакций горения и газификации на поверхности коксовых частиц приводит к уменьшению их размера;

6) выход летучих веществ (CO, CH₄, CO₂, H₂O, H₂ и H₂S) происходит мгновенно на входе в рассматриваемую зону. Считаем, что часть летучих в виде тяжелых углеводородов C₆H₆ остается в частице и подвергается термохимической переработке вместе с фиксированным углеродом;

7) будем пренебрегать влиянием летучих АШ ($V^{daf} = 3,5\%$) на рабочий процесс в газогенераторе.

Основные уравнения. Система уравнений, описывающая аэродинамику, тепломассообмен и химическое реагирование газодисперсного потока в вертикальном газификаторе, может быть представлена в следующем виде.

Уравнения неразрывности для компонентов газа и частиц кокса фракции *j*:

$$\frac{d(u_{\rm g}C_{\rm O_2})}{dz} = -6\sum_{j=1}^{\rm M_c} \frac{\alpha_{\rm D,O_2j}(C_{\rm O_2} - C_{\rm O_2j}^{\rm w})\beta_j}{\delta_{\rm Cj}} - k_{\rm CO+O_2}C_{\rm O_2}C_{\rm CO} - 2k_{\rm CH_4+O_2}C_{\rm O_2}C_{\rm CH_4} - (1) - k_{\rm H_2+O_2}C_{\rm O_2}C_{\rm H_2}^2/C_{\rm CO},$$

КОМПЛЕКСНІ ЕНЕРГЕТИЧНІ СИСТЕМИ НА ОСНОВІ НВДЕ

$$\frac{d(u_{g}C_{CO_{2}})}{dz} = 6\sum_{j=1}^{M_{C}} \alpha_{D,CO_{2}j} (C_{CO_{2}j}^{w} - C_{CO_{2}}) \frac{\beta_{j}}{\delta_{Cj}} + 2k_{CO+O_{2}}C_{O_{2}}C_{CO} + k_{CH_{4}+O_{2}}C_{O_{2}}C_{CH_{4}} + k_{CO+H_{2}O} \left[C_{H_{2}O}C_{CO} - \frac{C_{CO_{2}}C_{H_{2}}}{K_{eq,CO+H_{2}O}} \right], \quad (2)$$

$$K_{eq,CO+H_{2}O} = 0,029 \exp\left(\frac{4094}{t_{g}+273}\right), \quad (2)$$

$$\frac{d(u_{g}C_{CO})}{dz} = 6\sum_{j=1}^{M_{C}} \alpha_{D,COj} (C_{COj}^{w} - C_{CO}) \frac{\beta_{j}}{\delta_{C,j}} - 2k_{CO+O_{2}}C_{O_{2}}C_{CO} - (3)$$

$$-k_{CO+H_{2}O} \left[C_{H_{2}O}C_{CO} - \frac{C_{CO_{2}}C_{H_{2}}}{K_{eq,CO+H_{2}O}} \right], \quad (3)$$

$$\frac{d(u_{g}C_{CH_{4}})}{dz} = -k_{CH_{4}+O_{2}}C_{O_{2}}C_{CH_{4}} + 7,2\sum_{j=1}^{M_{C}} \exp\left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj}+273)}\right) \left[P_{H_{2}}10^{-5} - (4) - \sqrt{P_{CH_{4}}10^{-5}/K_{eq,C+H_{2}j}} \right] \frac{\beta_{j}}{\delta_{Cj}\mu_{C}}, \quad K_{eq,C+H_{2}j} = \frac{0,175}{34713} \exp\left(\frac{18400}{1,8(t_{Cj}+273)}\right), \quad (4)$$

$$\frac{d(u_{g}C_{H_{2}O})}{dz} = 2k_{CH_{4}+O_{2}}C_{O_{2}}C_{CH_{4}} - -6\sum_{j=1}^{M_{c}}\frac{k_{C+H_{2}Oj}C_{H_{2}Oj}^{w}\beta_{j}}{\delta_{Cj}} + (5) + 2k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO} - --k_{CO+H_{2}O}\left[C_{H_{2}O}C_{CO} - \frac{C_{CO_{2}}C_{H_{2}}}{K_{eq,CO+H_{2}O}}\right],$$

$$\frac{d(u_{g}C_{H_{2}})}{dz} = 6\sum_{j=1}^{M_{c}}\frac{k_{C+H_{2}Oj}C_{H_{2}Oj}^{w}\beta_{j}}{\delta_{Cj}} - -2k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO} - --14\mathcal{A}\sum_{j=1}^{M_{c}}\beta_{j}\exp\left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj}+273)}\right) \times (6) + \frac{\left[P_{H_{2}}10^{-5} - \sqrt{P_{CH_{4}}10^{-5}/K_{eq,C+H_{2}j}}\right]}{\delta_{Cj}\mu_{C}} + k_{CO+H_{2}O}\left[C_{H_{2}O}C_{CO} - \frac{C_{CO_{2}}C_{H_{2}}}{K_{eq,CO+H_{2}O}}\right],$$

 \sim

$$\frac{d(\beta_{j}u_{p,j})}{dz} = -\left[(k_{C+O_{2}j} + 2k_{C+0.5O_{2}j})C_{O_{2}j}^{w} + k_{C+CO_{2}j}C_{CO_{2}j}^{w} + k_{C+H_{2}Oj}C_{H_{2}Oj}^{w} \right] \frac{6\mu_{C}\beta_{j}}{\delta_{Cj}\rho_{Cj}} - 7,2\beta_{j}\exp\left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj} + 273)}\right) \times \frac{\left[P_{H_{2}}10^{-5} - \sqrt{P_{CH_{4}}10^{-5}/K_{eq,C+H_{2}j}}\right]}{\delta_{Cj}\rho_{Cj}},$$
(7)

где концентрации газовых компонентов на поверхности углеродной частицы фракции *j* и коэффициенты массообмена находятся по формулам:

$$C_{O_{2}j}^{w} = \frac{\alpha_{D,O_{2}j}C_{O_{2}}}{\alpha_{D,O_{2}j} + k_{C+O_{2}j} + k_{C+O_{2}j}}, C_{CO_{2}j}^{w} = \frac{\alpha_{D,CO_{2}j}C_{CO_{2}} + k_{C+O_{2}j}C_{O_{2}j}^{w}}{\alpha_{D,CO_{2}j} + k_{C+CO_{2}j}}, C_{H_{2}Oj}^{w} = \frac{\alpha_{D,H_{2}Oj}C_{H_{2}O}}{\alpha_{D,H_{2}Oj} + k_{C+H_{2}Oj}}, C_{H_{2}Oj}^{w} = \frac{\alpha_{D,H_{2}Oj}C_{H_{2}Oj}}{\alpha_{D,H_{2}Oj} + k_{C+H_{2}Oj}}, C_{H_{2}Oj}^{w} = \frac{\alpha_{D,H_{2}Oj}C_{H_{2}Oj}}{\alpha_{D,H_{2}Oj} + k_{C+H_{2}Oj}}, C_{H_{2}Oj}^{w} = \frac{\alpha_{D,H_{2}Oj}C_{H_{2}Oj}}{\alpha_{D,H_{2}Oj} + k_{C+H_{2}Oj}}, (8)$$

$$\alpha_{D,CO_{2}j} = \frac{D_{CO_{2} \to cM}}{Nu} \frac{Nu}{D_{j}}}{\delta_{Cj}}, \alpha_{D,COj} = \frac{D_{CO \to cM}}{Nu} \frac{Nu}{D_{j}}}{\delta_{Cj}}, \alpha_{D,H_{2}Oj} = \frac{D_{H_{2}O \to cM}}{\delta_{Cj}}.$$

Відновлювана енергетика. 2014. № 2

Уравнение переноса импульса частиц фракции *i*:

$$\frac{d(\beta_i u_{pi}^2)}{dz} = \frac{F_{ai}}{\rho_{pi}} - g\beta_i.$$
(9)

Уравнение сохранения количества движения газовой фазы:

$$\frac{d(\rho_{\rm g} u_{\rm g}^2)}{dz} = -\frac{dP_{\rm g}}{dz} - g\rho_{\rm g} - \sum_{i=1}^{M_{\rm C}+M_{\rm ash}} F_{\rm ai} \ . \ (10)$$

Уравнение сохранения энергии несущей среды:

$$\frac{d(\rho_{g}u_{g}c_{g}t_{g})}{dz} = 6 \sum_{i=1}^{M_{C}+M_{ash}} h_{convi}(t_{pi} - t_{g}) \frac{\beta_{i}}{\delta_{i}} - \frac{Q_{rad,g \to w}}{\delta_{i}} + \sum_{i=1}^{M_{C}+M_{ash}} Q_{rad,i \to g} + \frac{k_{CO+O_{2}}C_{O_{2}}C_{CO}Q_{CO+O_{2}} + k_{CO+O_{2}}C_{O_{2}}C_{CO}Q_{CO+O_{2}} + k_{CH_{4}+O_{2}}C_{O_{2}}C_{CH_{4}}Q_{CH_{4}+O_{2}} + k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}Q_{H_{2}+O_{2}}/C_{CO} + \frac{k_{H_{2}+O_{2}}Q_{CO+H_{2}O}}{K_{eq,CO+H_{2}O}} \left[C_{H_{2}O}C_{CO} - \frac{C_{CO_{2}}C_{H_{2}}}{K_{eq,CO+H_{2}O}} \right].$$
(11)

Уравнение теплового баланса частиц кокса фракции *j*:

$$\frac{d(\beta_{j}u_{pj}c_{pj}t_{pj})}{dz} = \left[(k_{C+O_{2}j}Q_{C+O_{2}} + k_{C+O_{5}O_{2}j}Q_{C+O_{5}O_{2}}) \times \right] \times C_{O_{2}j}^{w} - k_{C+CO_{2}j}C_{CO_{2}j}Q_{C+O_{2}} - k_{C+H_{2}Oj}C_{H_{2}Oj}^{w}Q_{C+H_{2}O} - \right] \\
-h_{convj}(t_{pj} - t_{g}) \frac{6\beta_{j}}{\delta_{Cj}\rho_{Cj}} - \frac{Q_{radj \to w}}{\rho_{Cj}} - \frac{Q_{radj \to w}}{\rho_{Cj}} - \frac{Q_{radj \to w}}{\rho_{Cj}} - \left[\frac{12}{P_{Cj}} + 7,2\beta_{j}\exp\left(-\frac{E_{C+H_{2}j}}{R_{g}(t_{Cj} + 273)}\right) \times \right] \\
\times \frac{\left[P_{H_{2}}10^{-5} - \sqrt{P_{CH_{4}}10^{-5}/K_{eq,C+H_{2}j}} \right] Q_{C+H_{2}}}{\mu_{C}\delta_{Cj}\rho_{Cj}}.$$

Уравнение теплового баланса частиц золы фракции *s*:

$$\frac{d(\beta_{s}u_{ps}c_{ps}t_{ps})}{dz} = -h_{convs}(t_{ps}-t_{g})\frac{6\beta_{s}}{\delta_{s}\rho_{ashs}} - \frac{Q_{rads\to g}}{\rho_{ashs}} - \frac{Q_{rads\to g}}{\rho_{ashs}} - \frac{Q_{rerads}}{\rho_{ashs}}.$$
(13)

В уравнениях движения фаз (9), (10) фигурируют градиент давления, силы тяжести и межфазного взаимодействия. Правая часть уравнения (11) учитывает конвективный и радиационный теплообмен между частицами и газом, лучистое тепло, переданное газовой фазой экранам газификатора и тепловыделение гомогенных реакций. Слагаемые уравнения (12) описывают конвективный теплообмен дисперсной фазы с несущей средой, тепловыделение гетерогенных реакций, лучистый теплообмен кокса с настенными поверхностями нагрева и газом, переизлучение между частицами. Температура золовых фракций (13) определяется конвективным и радиационным теплообменом между золой и газовой смесью, лучистым теплообменом дисперсной фазы с поверхностями реактора, межфракционным переизлучением.

На основании системы уравнений (1)–(13) разработана программа для расчета аэродинамики, тепломассообмена и химического реагирования твердого топлива в вертикальном газификаторе.

Некоторые численные результаты. Обсудим результаты расчетов двенадцати вариантов горения и газификации ГСШ, БУ и АШ в реакторе-газификаторе, работающем под давлением P_g =3,2-3,8 МПа. Исходные данные представлены в табл. 1-3. В вариантах I-V рассматривается одностадийный процесс парокислородной газификации коксозольного остатка без учета влияния на рабочий процесс пиролизных газов, а в VI-IX – с учетом их влияния. Варианты X-XII описывают комбинированный процесс газификации, когда в нижней торкретированной зоне происходит термохимическая переработка угля типа ГСШ (или АШ), а в верхней – газификация твердого топлива марки БУ (или ГСШ).

Tr	1	n			
гаолица	1.	элементарныи	состав	исходных	углеи
		· · · · · · ·			

			-				-	
Вели- чины	Раз- мер- ность	C ^d	$\mathbf{H}^{\mathbf{d}}$	N ^d	$\mathbf{O}^{\mathbf{d}}$	S ^d	V ^{daf}	A ^d
ГСШ	%	69,66	4,51	1,36	7,88	1,62	36,43	15
ГСШ	%	60,25	4,07	1,2	7,73	1,79	37,44	25
БУ	%	58,65	4,93	0,85	17,17	3,4	60	15
АШ	%	71,4	1,39	0,76	1,93	1,79	3,5	22,694

	таблица 2. Энсргий активации исходных углей													
Велич	ины	$E_{{ m C+O}_2}$, кДж/ кмоль		ль <i>E</i> _C	$E_{ m C+0.5O_2}$, кДж/кмоль		E _{C+C}	$E_{{ m C+CO}_2}$, кДж/кмоль			$E_{ m C+H_2O}$, кДж/кмоль		$E_{\mathrm{C+H}_2}$, кДж/кмоль	
ГС	Ш	114	$4 \cdot 10^{3}$		125.1	0^{3}		250,8·10 ³		$182,4\cdot10^{3}$		14	149·10 ³	
Б	y	98	8·10 ³		108.1	0 ³		215·10 ³		156	,8·10 ³	14	140·10 ³	
AI	Ш	13	0.10^{3}		143·10 ³			286·10 ³		20	$8 \cdot 10^3$	17	0.10^{3}	
				Ta	аблица З	. Исходн	ые данн	ые для ј	расчето	В				
Вели-	Раз-				Номера вариантов									
чи- ны	мер- ность	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	ХП	
Тип	noerb													
угля.		ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	AIII	AIII	
Низ	-	15%	15%	15%	15%	15%	25%	25%	25%	25%	25%	23%	23%	
топки		золы	золы	золы	золы	золы и БУ	золы и БУ	золы и БУ	золы и БУ	золы и БУ	золы	золы	золы	
Тип											ΓV	ΓV	ECIII	
угля.	_		_	_	_		_	_	_	_	БУ 150/	БУ 150/	ТСШ 15%	
Bepx											20111	20111	20111	
топки											30,151	30,151	30,151	
B	к г/п	01.8	01.8	01.8	01.8	3715	1881	1881	1733	1733	1616	1808	1808	
DC01	NI/ I	71,0	71,0	71,0	71,0	ГСШ	ГСШ	ГСШ	ГСШ	ГСШ	1260	1478	982,8	
B _{C02}	кг/ч	91,8	91,8	91,8	91,8	3914 БУ	2759 БУ	2759 БУ	2648 БУ	2648 БУ	_	-	-	
B _{C03}	кг/ч	7522	7866	7522	7843	_	Ι	_	_	_	_	_	-	
$\delta_{\rm C01}$	ММ	0,12	0,12	0,12	0,12	0,08 ГСШ	0,06 ГСШ	0,06 ГСШ	0,07 ГСШ	0,07 ГСШ	$\frac{0,1}{0,06}$	$\frac{0,1}{0,06}$	$\frac{0,1}{0,04}$	
δ_{C02}	ММ	0,1	0,1	0,1	0,1	0,15 БУ	0,15 БУ	0,15 БУ	0,16 БУ	0,16 БУ	_	_	-	
δ_{C03}	ММ	0,08	0,08	0,08	0,08	_		_	—	_	-	_	_	
t _{C1}	°C	30	30	30	30	30	30	30	30	30	$\frac{30}{130}$	$\frac{30}{200}$	$\frac{30}{200}$	
t _{C02}	°C	30	30	30	30	30	30	30	30	30	_	_	-	
t _{C03}	°C	30	30	30	30	-	Ι	_	-	-	_	_	_	
t _g	°C	900	900	900	900	900	350	350	350	500	500	500	500	
$B_{O_2 0}$	кг/ч	7500	7500	7500	7500	7500	5000	3900	3900	3820	$\frac{3000}{0}$	$\frac{3000}{0}$	$\frac{3000}{0}$	
$B_{\rm CO_20}$	кг/ч	0	0	0	0	0	867,6	867,6	828	828	$\frac{105}{340}$	$\frac{0}{399}$	$\frac{0}{65,3}$	
B_{H_20}	кг/ч	0	0	0	0	0	206,7	206, 7	195,6	195,6	$\frac{64}{61}$	$\frac{0}{71}$	$\frac{0}{30}$	
B _{CO0}	кг/ч	0	0	0	0	0	1663	1663	1582	1581	$\frac{319}{589}$	$\frac{0}{692}$	$\frac{0}{158}$	

таблица 2. Эпертии активации исходных углен	Таблица 2	2. Энергии	активации	исходных	углей
---	-----------	------------	-----------	----------	-------

Вели-	Раз-		Номера вариантов										
чи- ны	мер- ность	Ι	П	ш	IV	V	VI	VII	VIII	IX	Х	XI	ХП
$B_{\rm CH_40}$	кг/ч	0	0	0	0	0	1033	1033	979	979	$\frac{265}{331}$	$\frac{0}{388}$	$\frac{0}{180}$
$B_{\rm N_20}$	кг/ч	100	100	100	100	100	100	100	100	100	$\frac{100}{31,5}$	$\frac{100}{37}$	$\frac{100}{25}$
$B_{\rm H_2O0}$	кг/ч	4000	4000	4000	4000	4000	3000	4600	6910	7900	$\frac{2006}{70}$	$\frac{2200}{82}$	$\frac{2200}{13,5}$
B_{H_2S0}	кг/ч	0	0	0	0	0	377	377	358,6	358,6	$\frac{68}{136}$	$\frac{0}{160}$	0 32,65
t _{экр}	°C	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{850}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$	$\frac{1350}{800}$
$\mathbf{f}_{\mathbf{r}}$	м ²	0,49	0,49	0,49	0,49	0,49	0,487	0,487	0,487	0,487	$\frac{0,322}{0,35}$	$\frac{0,322}{0,35}$	$\frac{0,322}{0,35}$
H _r	М	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	$\frac{1,1}{5,9}$	$\frac{1,1}{5,9}$	$\frac{1,1}{5,9}$

Примечание. В числителе приведены параметры нижней зоны реактора, в знаменателе – верхней. В вариантах VI-XII начальные условия для компонентов газовой смеси формируются с учетом состава летучих веществ ГСШ (или БУ) [1, 2].

Расчетный материал проиллюстрирован на рис. 2-10, где представлены профили наиболее важных параметров рабочего процесса в газогенераторе. На рис. 2 показано распределение температур полидисперсного ансамбля коксозольных частиц ГСШ и газовой фазы по высоте реактора для варианта IV (кривые 4-8). На разгонном участке 0 < z < 0,1 м, где тепловыделение экзотермических гетерогенных и гомогенных реакций

превалирует над лучистым теплообменом между газовзвесью и экранами топки, происходит быстрый рост кривых $t_g(z)$, $t_{ash}(z)$ и $t_{Cf}(z)$, в результате чего зависимость $R_{O_2}(z) \rightarrow 0$ (рис. 3в). При этом максимальное значение температуры частиц кокса $t_{C3,max}$ оказывается ниже величин $t_{ash,max}$ и $t_{g,max}$ на 243°C и 270°C соответственно, что обусловлено эндотермическими реакциями, протекающими на поверхности частиц углерода.

Рис. 2. Распределение температур газа и золы, коксовых частиц ГСШ и их диаметров (а) и расходов углерода (б) по высоте газификатора для варианта IV: $1 - \delta_{Cl}$; $2 - \delta_{C2}$; $3 - \delta_{C3}$; $4 - t_g$; $5 - t_{ash}$; $6 - t_{Cl}$; $7 - t_{C2}$; $8 - t_{C3}$; $9 - B_{Cl}$; $10 - B_{C2}$; $11 - B_{C3}$.

Рис. 3. Распределение объемных долей окиси углерода и водорода (а), водяного пара (б), углекислого газа и окислителя (в), метана (г) по высоте реактора-газификатора: 1 - вариант I; 2 - вариант II; 3 - вариант III; $4 - вариант IV; \diamond - CO; \Delta - H_2$

Высокий уровень температур t_g и t_{Cj} способствует существенному повышению скоростей гомогенных и гетерогенных химических реакций, что приводит к резкому возрастанию функций $R_{CO_2}(z), R_{H_2}(z), R_{CO}(z)$ и $R_{CH_4}(z)$ и значительному уменьшению объемной доли водяного пара в газовой смеси (рис. 3, а-г, кривые 4). Кроме того, в рассматриваемом диапазоне наблюдается высокая степень конверсии углерода, которая возрастает с уменьшением диаметра коксовых частиц (рис. 2, ср. кривые 1 и 3, 9 и 11).

Быстрое убывание зависимостей $t_g(z)$, $t_{ash}(z)$ и $t_{Cj}(z)$ в бескислородной зоне 0,1 м < z < 6,8 м связано, прежде всего, с протеканием эндотермических реакций C + CO₂ = 2CO, C + H₂O = CO + H₂ и радиационным теплообменом между газодисперсным потоком и настенными поверхностями реактора.

При такой организации процесса термохимической переработки ГСШ на выходе из газификатора получается синтетический газ следующего состава: CO=61,8%, CO₂=1,65%, H₂=35,4%, H₂O = 2,2%, CH₄ = 0,054%. Численные исследования показывают, что при одностадийном процессе парокислородной газификации объемная доля метана в газовой смеси незначительна и составляет менее 0,1% (рис. 3г).

Из рис. 3a следует, что отношение $R_{\rm CO,e}$ / $R_{\rm H_{2},e}$ изменяется в зависимости от варианта расчета ($R_{\rm CO,el}$ / $R_{\rm H_2,el}$ = 2,87 и $R_{\rm CO,elv}$ / $R_{\rm H_2,elv}$ = = 1,75), хотя начальные условия для вариантов I-IV мало отличаются друг от друга (таблица 3). Такое расхождение численных результатов в первую очередь связано с использованием различных эмпирических зависимостей для расчета скорости реакции водяного сдвига, одна из которых присутствует в уравнениях (2), (3), (5), (6) и (11) [3] (вариант I). Приведем выражения для остальных вариантов.

Вариант II:

 $r_{\rm II} = k_{\rm CO+H_2O} C_{\rm H_2O} C_{\rm CO} - k_{\rm CO_2+H_2} C_{\rm CO_2} C_{\rm H_2}$ [4]; (14) вариант III:

$$r_{\rm III} = 0,5754 \cdot 10^{5} \left[\frac{P_{\rm CO}}{P_{\rm g}} - \frac{P_{\rm CO_{2}} P_{\rm H_{2}}}{P_{\rm H_{2}O} P_{\rm g} K_{\rm eq,CO+H_{2}OIII}} \right] \times \\ \times \exp\left(-\frac{27760}{1,987(t_{\rm g} + 273)} \right) \frac{P_{\rm g}^{0.5 - P_{\rm g}/(25010^{5})}}{10^{5}} \times (15) \\ \times \exp\left(-8,91 + \frac{5553}{(t_{\rm g} + 273)} \right) \beta_{\rm ash,eq} \rho_{\rm ash,eq} \left[5 \right];$$

вариант IV:

$$r_{\rm IV} = k_{\rm CO+H_2O} \left[C_{\rm H_2O} C_{\rm CO} - \frac{C_{\rm CO_2} C_{\rm H_2}}{0,0265} \right] [6].$$
(16)

Сопоставление результатов расчетов вариантов I-IV с данными, представленными в работах [5, 7] показывает, что наиболее близкие расчетные значения объемных долей компонентов газовой смеси получаются при использовании выражения (14).

Рис. 4 иллюстрирует распределение удельных радиационных потоков газа Q_{rad,g}, коксовых $Q_{\rm rad,C\Sigma}$ и золовых $Q_{\rm rad,ash}$ частиц ГСШ на стенку реактора для варианта IV. В ошипованной зоне 0,1 м < z < 0,5 м, предназначенной для жидкого шлакоудаления (*t*_{экр}=1350°С), происходит резкое уменьшение удельных тепловых потоков за счет падения температур фаз (рис. 2а, кривые 4-8). Скачок функций $Q_{rad,C\Sigma}(z)$, $Q_{rad,ash}(z)$ и $Q_{rad,g}(z)$ на входе в верхнюю нефутерованную зону реактора 0,5 м < z < 6,8 м можно объяснить уменьшением температуры загрязненной поверхности экранов с 1350°С до 800°С (таблица 3). Дальнейшее убывание зависимостей $Q_{rad,C\Sigma}(z)$, $Q_{rad,ash}(z)$ и $Q_{rad,g}(z)$ обусловлено эндотермическими гетерогенными реакциями и теплообменом между газовзвесью и экранами газогенератора.

Рис. 4. Распределение удельных радиационных потоков излучения газа, частиц кокса и золы ГСШ на экранные поверхности по высоте реактора-газификатора для варианта IV: 1 – кокс; 2 – зола; 3 – газ.

Перейдем к технологии термохимической переработки бинарной смеси (ГСШ и БУ) в вертикальном поточном реакторе. Рассмотрим одностадийную схему газификации, когда парокислородная 2 и угольная 1 смеси подаются в нижнюю зону реактора 5 (рис. 1а). Для организации указанного процесса необходимо, прежде всего, выбрать соотношение расходов ГСШ и БУ и подобрать оптимальные диаметры частиц $\delta_{C0,\Gamma CIII}$ и $\delta_{C0,FY}$, при которых механический недожог бинарной смеси был бы минимальным. Численные исследования рабочего процесса для варианта V показывают, что при отношении $B_{C0, EY} / (B_{C0, EY} + B_{C0, \Gamma C I II}) = 0,51$ (таблица 3) оптимальными являются размеры частиц кокса $\delta_{\rm C0, FY} = 0,15$ мм и $\delta_{\rm C0, \Gamma CIII} = 0,08$ мм, которые обеспечивают минимальный мехнедожог ГСШ и БУ, о чем свидетельствует рис. 5 (кривые 4-7).

Рис. 5. Распределение температур газа, частиц кокса ГСШ и БУ, их диаметров (а) и расходов (б) по высоте реактора-газификатора для варианта V: $1 - t_g$; $2 - t_{C,FCШ}$; $3 - t_{C,EY}$; $4 - \delta_{C,FCШ}$; $5 - \delta_{C,EY}$; $6 - B_{C,FCШ}$; $7 - B_{C,EY}$.

Рис. 6. Распределение объемных долей компонентов газовой смеси по высоте реактора-газификатора при совместном сжигании и газификации пылевидных фракций ГСШ и БУ для варианта V: $1 - CO; 2 - CO_2; 3 - H_2; 4 - H_2O.$

Из рис. 5 следует, что степень конверсии крупных частиц кокса БУ $\delta_{C0, \text{БУ}} = 0,15$ мм оказывается выше, чем мелких – $\delta_{C0, \text{ГСШ}} = 0,08$ мм

 $(\varphi_{\rm БУ} = \frac{B_{\rm C0, БУ} - B_{\rm Ce, БУ}}{B_{\rm C0, БУ}} = 0,99$, $\varphi_{\rm ГСIII} = 0,97$) за счет

более низких значений энергий активации для БУ по сравнению с ГСШ (таблица 2). При такой организации рабочего процесса на выходе из газогенератора получается синтетический газ (CO=67,5%, CO₂=5,8%, H₂=24,6%, H₂O=1,62%), несколько отличающийся по составу от генераторного газа, полученного в варианте I ($R_{\rm CO,eI}/R_{\rm CO_2,eV}$ =1,03, $R_{\rm H_2,eI}/R_{\rm H_2,eV}$ =0,98 и $R_{\rm CO_2,eI}/R_{\rm CO_2,eV}$ =0,74; ср. рис. 3, кривые 1 и рис. 6), хотя в обоих вариантах использовались одни и те же эмпирические зависимости для расчета скорости реакции водяного сдвига [3].

На рис. 7 изображены результаты расчетов термохимической переработки бинарной смеси (ГСШ и БУ) с использованием одноступенчатой схемы газификации с учетом влияния летучих веществ на рабочий процесс при различных значе-

ниях отношения $\xi = \frac{B_{\rm H_2O}}{B_{\rm H_2O} + B_{\rm O_2}}$ для вариантов

VI-IX (таблица 3). Видно, что с увеличением величины ξ от 0,375 (вариант VI) до 0,64 (вариант VIII) происходит уменьшение отношения $R_{\rm CO,e} / R_{\rm H_2,e}$ от 1,27 до 0,77 (рис. 7, кривые 1, 5-7). При этом объемная доля CO₂ в синтетическом

газе возрастает с 5,8 до 14,3%, а содержание H₂O – с 3,95 до 15% (рис. 7, ср. кривые 8 и 13, 9 и 12). Таким образом, повышение содержания H₂O в парокислородной смеси уменьшает теплотворную способность генераторного газа изза увеличения в нем доли балласта H₂O и CO₂.

Рис. 7. Распределение объемных долей компонентов газовой смеси по высоте реактора-газификатора при совместной газификации пылевидных фракций ГСШ и БУ для вариантов VI-IX: $1 - CO_{VI}$; $2 - CO_{VII}$; $3 - H_{2JX}$;

 $\begin{aligned} &4 - H_{2,VII}; \ 5 - H_{2,VIII}; \ 6 - H_{2,VI}; \ 7 - CO_{VIII}; \ 8 - H_2O_{VIII}; \\ &9 - CO_{2,VIII}; \ 10 - CO_{2,VII}; \ 11 - H_2O_{VII}; \ 12 - CO_{2,VI}; \ 13 - H_2O_{VI}. \end{aligned}$

На рис. 8 приведены численные результаты двухстадийного процесса парокислородной газификации бинарной смеси ГСШ (А^d=25%) и БУ ($A^d = 15\%$) для варианта Х. В нижней ошипованной зоне реактора 5 (рис. 1б) происходит термохимическая переработка ГСШ ($\xi_X = 0,4$; таблица 3), результатом которой является генераторный газ (CO=43%, CO₂=1,9%, H₂=20%, Н₂О=33,9%), обладающий высокой тепловой энергией (t_g=1661°C; рис. 8а). Благодаря этой энергии в верхней зоне реактора 7 (рис. 1б) происходит газификация БУ. Так как этот процесс протекает в бескислородной зоне, содержание метана в синтетическом газе (СО=51,6%, СО₂=1,8%, H₂=36%, H₂O=5,9%, CH₄=3,6%) за счет выхода летучих из БУ оказывается значительно выше, чем при одностадийной схеме термохимической переработки бинарной смеси (*R*_{СН₄, е} <0,1%; ср. рис. Зг и рис. 8б, кривая 8).

Рис. 8. Распределение температур газа и золы, объемных долей компонентов несущей среды по высоте реактора при двухстадийной схеме термохимической переработки

ГСШ и БУ для варианта X: 1 – CO; 2 – H₂O; 3 – H₂; 4 – CO₂; 5 – O₂; 6 – t_g; 7 – t_{ash}; 8 – CH₄; а – нижняя ошипованная зона реактора, где происходит горение и газификация ГСШ; 6 – верхняя зона газогенератора, предназначенная для газификации БУ.

Недостатком организации рассматриваемого процесса является сжигание пиролизных газов угля марки ГСШ (A^{daf}=37,44%) в обогащенной окислителем нижней зоне газогенератора. Чтобы не расходовать летучие вещества на горение, в ошипованную зону 5 (рис. 1б) следует подавать уголь с малым выходом пиролизных газов, например АШ (рис. 9а). В этом случае на выходе из торкретированной зоны 5 получается синтетический газ (СО=43%, СО₂=3%, Н₂=12,5%, Н₂О =41%), температура которого оказывается на 197°С выше, чем в варианте Х (ср. рис. 8а и рис. 9а, кривые 6). Такое приращение температуры на входе в верхнюю зону топки несколько улучшает качество генераторного rasa $(R_{\rm CO\,eXI} / R_{\rm CO\,eX} = 1,05, R_{\rm H_{2}\,eXI} / R_{\rm H_{2}\,eX} = 0,93,$ $R_{\rm CO_2,eXI} / R_{\rm CO_2,eX} = 0,79, R_{\rm H_2O,eXI} / R_{\rm H_2O,eXI} = 0,92$ $R_{\rm CH, eXI}/R_{\rm CH, eX} = 1,2$; ср. рис. 8б и рис. 9б, кривые 1-4, 8) и увеличивает количество прореагировавшего БУ $(B_{\rm C0,\Gamma CIII}/B_{\rm C0,FY}=1,28$ И $B_{\rm C0,AIII}/B_{\rm C0, EV} =$ =1,22; таблица 3).

Рис. 9. Распределение температур газа и золы, объемных долей компонентов несущей среды по высоте реактора при двухстадийной схеме термохимической переработки АШ и БУ для варианта XI: 1 – CO; 2 – H₂O; 3 – H₂;

4 – CO₂; 5 – O₂; 6 – t_g; 7 – t_{ash}; 8 – CH₄; а – нижняя ошипованная зона реактора, где происходит горение и газификация АШ; 6 – верхняя зона газогенератора, предназначенная для газификации БУ.

При этом степень конверсии углерода в варианте XI ($\varphi_{\text{БУ,XI}}=0,99$) оказывается несколько больше, чем в X ($\varphi_{\text{БУ,X}}=0,986$). Для достижения высоких значений φ в обоих вариантах используется мелкодисперсная угольная пыль БУ $\delta_{\text{C0}}=0,06$ мм. Чтобы получить такую фракцию, необходимо применять струйные мельницы, поскольку использование традиционных (молотковых, среднеходных и т.д.) малоэффективно.

Если в варианте XI вместо БУ использовать ГСШ ($A^d=15\%$), то калорийность и качество генераторного газа и количество прогазифицированного углерода ГСШ падают (ср. рис. 96 и рис. 10; $B_{C0,AIII}/B_{C0,FCIII}=1,84$; таблица 3).

Выводы. 1. Предложенная модель позволяет получить детальную информацию о геометрических, аэродинамических, тепловых и физикохимических параметрах парокислородной газификации мелкодисперсной угольной пыли, что может быть полезно при конструировании вертикальных поточных газогенераторов на стадиях технического и рабочего проектирования.

2. Численно исследованы два способа процесса парокислородной газификации (одно- и двухстадийный) следующих бинарных смесей: БУ и ГСШ, АШ и БУ (или ГСШ).

3. Изучено влияние размера углеродных частиц двухкомпонентной смеси и соотношения их расходов на основные параметры рабочего процесса в газификаторе. В частности, найдены оптимальные диаметры частиц кокса (БУ и ГСШ), обеспечивающие минимальный мехнедожог при различных значениях $B_{\rm C0, БУ}/(B_{\rm C0, БУ}+B_{\rm C0, ГСШ})$.

4. Анализ численных результатов показывает, что при одноступенчатой схеме газификации отклонение от оптимальных размеров частиц углерода ГСШ или БУ в ту или иную сторону приводит к росту мехнедожога, что создает значительные трудности в организации, регулировании и управлении рассматриваемым процессом в отличие от двухступенчатой схемы термохимической переработки твердых топлив.

5. Содержание метана в синтетическом газе при использовании двухступенчатой схемы парокислородной газификации (4,3%) оказывается гораздо выше, чем при одноступенчатой (0,06%).

6. При двухстадийном процессе термохимии-

ческой переработки бинарных смесей для исключения выгорания пиролизных газов, которые являются исходным материалом для производства генераторного газа, в нижнюю ошипованную зону реактора, обогащенную окислителем, следует подавать угольную пыль с малым содержанием летучих веществ (например, АШ).

7. Повышение содержания H₂O в парокислородной смеси способствует уменьшению теплотворной способности генераторного газа из-за увеличения в нем доли балласта H₂O и CO₂.

8. При газификации полидисперсного ансамбля коксозольной примеси степень конверсии углерода φ обратно пропорциональна диаметру δ_{C0} .

9. Для достижения высоких значений φ в зоне газификации необходимо использовать мелкодисперсную угольную пыль размером ~0,06 мм. Чтобы получить такую дисперсность, целесообразно применять струйные мельницы, поскольку использование традиционных (молот-ковых, среднеходных и т.д.) малоэффективно.

1. Chernyavskiy N. The main natural laws of high-rate coal pyrolysis // Thermal Science. -2003. - Vol. 7. - No 2. - P. 77–87.

2. *Чернявский Н.В.* Механизм торможения газовыделения при термоконтактном пиролизе угля // Промышленная теплотехника. – 2000. – № 1. – С. 41–48.

3. *Gómes-Barea A., Leckner B.* Modelling of biomass gasification in fluidized bed // Progress in Energy and Combustion Science. – 2010. – Vol. 36. – P. 449–509.

4. *Weimer A.W., Clough D.E.* Modelling a low pressure steam-oxygen fluidized bed coal gasifying reactor // J. AIChE. – 1981. – Vol. 36. – P. 549–567.

5. Wen C.Y., Chaung T.Z. Entrainment Coal Gasification Modeling // Ind. Eng. Chem. Process Des. Dev. – 1979. – Vol. 18. – Nº 4. – P. 684–695.

6. *Zhong L. D., Mei W. H., Hong Z.* Kinetic model establishment and verification of the biomass gasification on fluidized bed // Proceedings of the Eighth International Conference on Machine Learning and Cybernetics. Baoding, 12-15 July 2009. – P. 2112–2117.

7. Govind R., Shah J. Modelling and Simulation of An Entrained Flow Coal Gasifier // J. AIChE. – 1984. – Vol. 30. – N 1. – P. 79–92.