УДК 532.529: 517.4

Б.Б.Рохман, докт.техн.наук (Институт угольных энерготехнологий (ИУЭ) НАН Украины, Киев)

О парокислородной газификации коксозольных частиц бурых и каменных углей в кипящем слое под давлением

Рассматривается задача об эволюции состояния ансамбля реагирующих коксозольных частиц в газификаторе с кипящим слоем. Построено и проинтегрировано кинетическое уравнение относительно функции распределения частиц в малых диапазонах изменения концентрации углерода для этапов поверхностного и объемного реагирования. Сформулированы граничные условия (условия "сшивки") на границах раздела указанных диапазонов. Исследовано влияние гранулометрического состава исходного угля, высоты, порозности и температуры слоя на процесс парокислородной газификации коксозольных частиц отдельных сортов топлив и бинарной угольной смеси.

Ключевые слова: парокислородная газификация, уголь, бинарная смесь, генераторный газ, функция распределения, кипящий слой.

Розглядається задача про еволюцію стану ансамблю реагуючих коксозолових частинок у газифікаторі з киплячим шаром. Побудовано і проінтегровано кінетичне рівняння щодо функції розподілу частинок у малих діапазонах зміни концентрації вуглецю для етапів поверхневого і об'ємного реагування. Сформульовано граничні умови (умови "зшивання") на межах розділу зазначених діапазонів. Досліджено вплив гранулометричного складу вихідного вугілля, висоти, порозності і температури шару на процесс парокисневої газифікації коксозолових частинок окремих сортів палив і бінарної вугільної суміші. Ключові слова: парокиснева газифікація, вугілля, бінарна суміш, генераторний газ, функція розподілу, киплячий шар.

Обозначения

A, N,	массовые доли золы, азота, кислорода и летучих ве-	R	объемная доля компонента газовой смеси				
O, V	ществ в твердом топливе	1					
Ar	критерий Архимеда	Re	критерий Рейнольдса				
В	расход, кг/ч	r	радиус частицы, м				
C	концентрация газовых компонентов (кмоль/м³) или	S	массовая доля серы в исходном угле или				
	массовая доля углерода в твердом топливе	5	параметр				
c	теплоемкость, кДж/(кг·К)	S	количество частей, на которые разбивается				
C			интервал объемного реагирования				
D	коэффициент диффузии, м ² /с	Z	массовая доля частиц исходного угля				
E	энергия активации, кДж/кмоль	Z	продольная координата, м				
f	функция распределения частиц по концентрациям уг-	t	температура, °С				
J	лерода		температура, С				
H	высота (м) или массовая доля водорода в исходном	T	количество сортов угля				
	угле		Kom reerbo coprob yran				
h	коэффициент теплообмена между слоем и частицей,	и	скорость, м/с				
"	кДж/(с·м²·К)		enopoets, in e				
	интегралы от ненормированной (с) или нормированной						
I	функций распределения частиц по концентрациям уг-	U	постоянная интегрирования, с-1				
	лерода						
k	константа скорости реакции, м/с	α	коэффициент массообмена, м/с				
L	универсальная газовая постоянная, кДж/(кмоль·К)	δ	диаметр частицы, м				
l	сечение, м2	3	порозность слоя в рабочем состоянии				
M	количество фракций	η	кинематическая вязкость, м ² /с				
m	масса, кг	μ	молекулярная масса, кг/кмоль				
10	количество частей, на которые разбивается интервал	ζ	HPA TOYCHOHAHHHATI HI IX MHOYKITAHI MA				
n	поверхностного реагирования		предэкспоненциальный множитель, м/с				
Nu	критерий Нуссельта	ρ	плотность, кг/м ³				

P	давление, H/м ²	τ	время, с
Pr	критерий Прандтля	φ	массовая доля частиц в узком интервале $\{C_{\mathrm{C}i}, C_{\mathrm{C}i+1}\}$
Q	тепловой эффект реакции (кДж/кмоль) или тепловой поток (кДж/ч)	Ψ	калорийность генераторного газа, МДж/м ³
q	скорость реагирования частицы, с-1		

Индексы нижние: air — воздух; ash — зола; b — кипящий слой; C — углерод; cond — конвективно-кондуктивный теплообмен; D — диффузия; fuel — исходное топливо; fix — фиксированный; e — выход; eq — эквивалентный параметр; g — газ; i=1-n, s; j=1-M; lim — граничное значение; m — осреднение по высоте кипящего слоя или осреднение по фракциям; p — частица; rad — лучистый теплообмен; scr — экранные поверхности в слое; v — объем; volat — летучие; x=1-4; y=1-T; 0 — начальные условия; Γ CШ — газовый каменный уголь; Γ D — марка бурого угля; Γ D — варианты расчета; Γ D — номера фракций; Γ D — осреднение в узком интервале Γ D — осреднение в узком и в осреднение в узком и в осреднение в узком и в осреднение в у

Индексы верхние: d – сухая масса; daf – горючая масса; s – поверхность; v – объем.

Введение. Настоящая работа посвящена математическому моделированию и теоретическому анализу парокислородной газификации в кипящем слое (КС) коксозольных частиц твердых топлив, таких как газовый каменный уголь марки ГСШ (шахта Добропольская, Донбасс) и бурые угли (БУ) марок Б1 (Днепровский бассейн) и Б2 (Канско-Ачинский бассейн). Для конструирования подобных устройств необходимо: а) построить кинетическое уравнение для функции распределения частиц (ФРЧ) по концентрациям углерода на случай парокислородной газификации коксозольного остатка в КС; б) на базе этого уравнения разработать методику расчета аэродинамики и физико-химических процессов в КС с учетом гетерогенных и гомогенных реакций, лучистого и кондуктивно-конвективного теплообмена; в) на основе модели провести численные исследования процесса парокислородной газификации отдельных сортов твердых топлив и бинарных угольных смесей.

Постановка задачи. Предлагаемая модель базируется на следующих основных предпосылках: 1) процесс стационарный; 2) твердая фаза распределена равномерно по всему объему и для нее реализуется модель идеального перемешивания, а газ движется в режиме идеального вытеснения; 3) стехиометрическая схема реакций включает в себя четыре гетерогенные реакции $C + O_2 = CO_2$, $2C + O_2 = 2CO$, $C + CO_2 = 2CO$, $C + H_2O = CO + H_2$, которые протекают как на поверхности частицы, так и в ее объеме, и три

гомогенные: $2CO + O_2 = 2CO_2$, $2H_2 + O_2 = 2H_2O$ и $CO + H_2O \leftrightarrow CO_2 + H_2$; 4) для поверхностного реагирования используется модель сжимающегося горючего ядра - реакция происходит на границе между горючим ядром и золовой оболочкой, а для объемного – модель прочного золового каркаса, когда реакция протекает во всем объеме частицы; 5) используется следующая схема горения и газификации частицы: на первом этапе при достаточно высокой концентрации углерода $(C_{\text{C.lim}} < C_{\text{C}} < C_{\text{C0}})$ реагирование происходит на поверхности частицы с уменьшением ее диаметра; на втором ($C_{\rm C} \le C_{\rm C.lim}$) – реагирование протекает в объеме при неизменном размере частицы; 6) в течение всего времени пребывания в КС частицы сохраняют шарообразную форму; 7) твердая фаза состоит из Т сортов углей, каждый из которых включает в себя M монодисперсных фракций коксозольных частиц; 8) газовая смесь состоит из кислорода, азота, двуокиси и окиси углерода, водяного пара и водорода; 9) летучие вещества и влага выходят в надслоевом пространстве. В КС поступают частицы исходного топлива, состоящие из фиксированного углерода и золы. Массовые концентрации указанных компонентов коксозольных частиц фракции ј топлива сорта у вычисляются по формулам:

$$C_{\text{C0}y,j} = \frac{C_{\text{fix},y,j}^{\text{d}}}{100 - S_{y,j}^{\text{d}} - H_{y,j}^{\text{d}} - O_{y,j}^{\text{d}} - N_{y,j}^{\text{d}} - C_{\text{volaty},j}^{\text{d}}},$$

$$C_{\text{fixy},j}^{\text{d}} = 100 - \frac{V_{y,j}^{\text{daf}} (100 - A_{y,j}^{\text{d}})}{100},$$
(1)

$$\begin{split} A_{0y,j} = & \frac{A_{y,j}^{\rm d}}{100 - S_{y,j}^{\rm d} - H_{y,j}^{\rm d} - O_{y,j}^{\rm d} - N_{y,j}^{\rm d} - C_{\text{volaty},j}^{\rm d}} \,, \\ C_{\text{volaty},j}^{\rm d} = C_{y,j}^{\rm d} - C_{\text{fixy},j}^{\rm d} \,. \end{split}$$

Основные уравнения. Подобно [1] можно получить выражение для функции распределения частиц фракции j угля сорта y по массовым концентрациям углерода:

$$f_{y,j} = \frac{U_{y,j}}{|q_{y,j}|(1 - C_{\rm C})} \exp\left[-\frac{B_{{\rm ash}y,j}}{m_{{\rm b}y,j}} \int \frac{dC_{\rm C}}{q_{y,j}}\right] (C_{\rm C} < C_{{\rm C}(0,y,j)}), (2)$$

путем интегрирования кинетического уравнения:

$$B_{p0yj}f_{0yj} - B_{ashy,j}f_{y,j} - \frac{m_{by,j}d(q_{y,j}f_{y,j})}{dC_C} + \frac{m_{by,j}q_{y,j}f_{y,j}}{1 - C_C} = 0.$$
 (3)

Конкретизируем вид зависимости $q_{y,j}(C_{\rm C})\equiv (dC_{\rm C}/d\tau)_{y,j},$ фигурирующей в (3), с учетом того, что в интервале $C_{{\rm C,limy},j} < C_{{\rm C}} < C_{{\rm C0}y,j}$ реагирование происходит на поверхности частицы (первый этап), а при $0 < C_{{\rm C}} \le C_{{\rm C,limy},j}$ – в ее объеме (второй этап). Построим уравнение для определения скорости конверсии $q_{y,j}^{\rm s}$ в интервале $C_{{\rm C,limy},j} < C_{{\rm C}} < C_{{\rm C0}y,j}$.

Запишем выражения для массы коксозольной частицы j твердого топлива сорта y в начальный и текущий моменты времени:

$$m_{py,j} = \frac{m_{p0,y,j}(1 - C_{C0y,j})}{(1 - C_{C})},$$

$$m_{p0,y,j} = \frac{4\pi r_{0y,j}^{3} \rho_{p0,y,j}}{3}, \quad C_{C0y,j} = \frac{m_{C0y,j}}{m_{p0,y,j}}$$
(4)

и ее объема ($\tau = 0$):

$$\frac{1}{\rho_{p0y,j}} = \frac{m_{C0y,j} / m_{p0y,j}}{\rho_{C}} + \frac{m_{ash y,j} / m_{p0y,j}}{\rho_{ash}}.$$
 (5)

Преобразуя (5) с использованием соотношения $m_{{\rm ash}y,j} \ / \ m_{{\rm p0}y,j} = 1 - C_{{\rm C0}y,j}$, получим формулу для плотности частицы j исходного топлива сорта y:

$$\rho_{p0y,j} = \frac{\rho_{ash} \rho_{C}}{\rho_{C} + C_{C0,y,j}(\rho_{ash} - \rho_{C})}.$$
 (6)

Производная от первого выражения (4) с учетом (6) записывается как

$$\frac{dm_{\text{py,j}}}{d\tau} = \frac{4\pi r_{0y,j}^{3} \rho_{\text{ash}} \rho_{\text{C}} (1 - C_{\text{C0y,j}})}{3 \left[\rho_{\text{C}} + C_{\text{C0y,j}} (\rho_{\text{ash}} - \rho_{\text{C}}) \right] (1 - C_{\text{C}})^{2}} \frac{dC_{\text{C}}}{d\tau} . (7)$$

С другой стороны, уравнение баланса массы коксозольной частицы j угля сорта y можно представить в виде:

$$\frac{dm_{\text{py,j}}}{d\tau} = -4\pi r_{y,j}^{2} \mu_{\text{C}} \left[(k_{\text{C+O}_{2}y,j} + 2k_{\text{C+O},5O_{2}y,j}) C_{\text{O}_{2}y,j}^{\text{s}} + k_{\text{C+O}_{2}y,j} C_{\text{CO}_{3}y,j}^{\text{s}} + k_{\text{C+H},O_{y,j}} C_{\text{H},O_{y,j}}^{\text{s}} \right],$$
(8)

где концентрации газовых компонентов на поверхности коксозольной частицы j угля сорта y и константы скоростей гетерогенных реакций находятся по формулам:

$$C_{O_{2}yj}^{s} = \frac{\alpha_{D,O_{2}yj}C_{O_{2}}}{\alpha_{D,O_{2}yj} + k_{C+O_{2}yj} + k_{C+0,5O_{2}yj}}, C_{CO_{2}yj}^{s} = \frac{\alpha_{D,CO_{2}yj}C_{CO_{2}} + k_{C+O_{2}yj}C_{O_{2}yj}^{s}}{\alpha_{D,CO_{2}yj} + k_{C+CO_{2}yj}},$$

$$C_{CO_{2}yj}^{s} = \frac{\alpha_{D,CO_{2}yj}C_{CO} + 2(k_{C+0,5O_{2}yj}C_{O_{2}yj}^{s} + k_{C+CO_{2}yj}C_{CO_{2}yj}^{s}) + k_{C+H_{2}Oyj}C_{H_{2}Oyj}^{s}}{\alpha_{D,CO_{2}yj}},$$

$$C_{H_{2}Oyj}^{s} = \frac{\alpha_{D,H_{2}Oyj}C_{H_{2}O}}{\alpha_{D,H_{2}Oyj} + k_{C+H_{2}Oyj}}, k_{x,y,j} = \xi_{x,y} \exp\left[-E_{x,y}/(L(t_{py,j} + 273))\right], \alpha_{D,O_{2}yj} = \frac{D_{O_{2}\to c_{M}}Nu_{Dyj}}{2r_{yj}},$$

$$\alpha_{D,CO_{2}yj} = \frac{D_{CO_{2}\to c_{M}}Nu_{Dyj}}{2r_{yj}}, \alpha_{D,CO_{2}yj} = \frac{D_{CO\to c_{M}}Nu_{Dyj}}{2r_{yj}}, \alpha_{D,H_{2}Oyj} = \frac{D_{H_{2}O\to c_{M}}Nu_{Dyj}}{2r_{yj}},$$

$$Nu_{Dyj} = 2 + 0.51Re_{pyj}^{0.52} Pr_{g}^{0.33}.$$

$$(9)$$

Здесь индексы x=1-4 относятся к гетерогенным реакциям: $C+O_2=CO_2$, $2C+O_2=2CO$, $C+CO_2=2CO$ и $C+H_2O=CO+H_2$.

Температура частицы j угля сорта y вычисляется по уравнению:

$$\begin{split} t_{\text{py,j}} &= t_{\text{g}} + \frac{\left[(k_{\text{C+O}_2y,j} Q_{\text{C+O}_2} + k_{\text{C+0},5O_2y,j} Q_{\text{C+0},5O_2}) C_{\text{O}_2y,j}^{\text{s}} - \right. \\ & - \frac{k_{\text{C+CO}_2y,j} C_{\text{CO}_2y,j}^{\text{s}} Q_{\text{C+CO}_2} - k_{\text{C+H}_2\text{O}y,j} C_{\text{H}_2\text{O}y,j}^{\text{s}} Q_{\text{C+H}_2\text{O}} \right] C_{\text{v}y,j}}{h_{\text{cond}y,j} + h_{\text{rady},j}} , (10) \end{split}$$

где объемная концентрация углерода в ней находится по формуле [1]:

$$C_{vyj} = \frac{C_{\rm C} \rho_{\rm ash} (1 - C_{\rm C, lim} y_j)}{(1 - C_{\rm C})(\rho_{\rm C} + (\rho_{\rm ash} - \rho_{\rm C}) C_{\rm C, lim} y_j)}$$

$$(C_{\rm C} \le C_{\rm C, limy, j}),$$

$$C_{vy,j} = \frac{C_{\rm C}\rho_{\rm ash}(1 - C_{{\rm C}0y,j})}{C_{\rm C}\rho_{\rm ash}(1 - C_{{\rm C}0y,j}) + \rho_{\rm C}(1 - C_{\rm C})(1 - C_{{\rm C}0y,j})}$$
(11)
$$(C_{\rm C} > C_{\rm C,limy,j}),$$

а коэффициенты теплообмена $h_{\text{cond }y,j}$ и $h_{\text{rad}y,j}$ – согласно рекомендациям [2].

В (8) фигурирует неизвестная функция $r_{y,j}(C_{\rm C})$. Для вывода выражения $r_{y,j}(C_{\rm C})$ запишем отношение объемов частицы j твердого топлива сорта y в начальный и текущий моменты времени в следующем виде:

$$\frac{r_{y,j}^3}{r_{0y,j}^3} = \frac{m_{Cy,j}}{m_{C0y,j}} \left(\frac{\rho_{ash} + m_{ash\,y,j} \, \rho_C / m_{Cy,j}}{\rho_{ash} + m_{ash\,y,j} \, \rho_C / m_{C0y,j}} \right). \tag{12}$$

Преобразуем (12) с учетом $\frac{m_{\text{ash}y,j}}{m_{\text{Cy},j}} = \frac{1}{C_{\text{C}}} - 1$,

$$rac{\emph{m}_{{
m ash}\,y,j}}{\emph{m}_{{
m C0}\,y,j}} = rac{1}{\emph{C}_{{
m C0}\,y,j}} - 1$$
 и $rac{\emph{m}_{{
m Cy},j}}{\emph{m}_{{
m C0}\,y,j}} = rac{1 \, / \, \emph{C}_{{
m C0}\,y,j} - 1}{1 \, / \, \emph{C}_{{
m C}} - 1}$.

В результате:

$$r_{y,j} = r_{0y,j} \sqrt[3]{\frac{(\rho_{\rm C} + (\rho_{\rm ash} - \rho_{\rm C})C_{\rm C})(1 - C_{{\rm C}0y,j})}{(\rho_{\rm C} + (\rho_{\rm ash} - \rho_{\rm C})C_{{\rm C}0y,j})(1 - C_{\rm C})}}$$

$$(C_{\rm C,limy,j} < C_{\rm C} < C_{{\rm C}0y,j}),$$

$$r_{y,j} = r_{\rm limy,j} = r_{0y,j} \sqrt[3]{\frac{(\rho_{\rm C} + (\rho_{\rm ash} - \rho_{\rm C})C_{{\rm C,limy,j}})(1 - C_{{\rm C}0y,j})}{(\rho_{\rm C} + (\rho_{\rm ash} - \rho_{\rm C})C_{{\rm C}0y,j})(1 - C_{{\rm C,limy,j}})}}$$

$$(0 < C_{\rm C} \le C_{\rm C,limy,j}). \tag{13}$$

Приравнивая правые части выражений (7) и (8), с учетом (13) после несложных преобразований получим уравнение для скорости реагирования частицы $q_{v,j}^{s}$ в интервале $C_{C,\lim v,j} < C_{C} < C_{C0v,j}$:

$$q_{y,j}^{s} = \left(\frac{dC_{C}}{d\tau}\right)_{y,j} = -F_{y,j}S_{y,j}(1 - C_{C})^{4/3}(1 + bC_{C})^{2/3},$$

$$b = \frac{\rho_{ash}}{\rho_{C}} - 1, F_{y,j} = \frac{3\mu_{C}(1 + bC_{C0y,j})^{1/3}}{r_{0y,j}\rho_{ash}(1 - C_{C0y,j})^{1/3}},$$

$$S_{y,j} = (k_{C+O_{2}y,j} + 2k_{C+0.5O_{2}y,j})C_{O_{2}y,j}^{s} + k_{C+CO_{2}y,j}C_{CO_{2}y,j}^{s} + k_{C+H_{2}Oy,j}C_{H_{2}Oy,j}^{s}.$$
(14)

Рассуждая подобным образом, можно построить выражение для скорости конверсии углерода $q_{y,j}^{\rm v}$ в диапазоне $0 < C_{\rm C} \le C_{\rm C, lim_{y,j}}$:

$$q_{y,j}^{V} \equiv \left(\frac{dC_{C}}{d\tau}\right)_{y,j} = -\frac{3\mu_{C}(1 - C_{C})C_{C}}{r_{\lim y,j}} \times \left[(k_{C+O_{2}y,j} + 2k_{C+O_{2}y,j})C_{O_{2}y,j}^{s} + k_{C+CO_{2}y,j}C_{CO_{2}y,j}^{s} + k_{C+CO_{2}y,j}C_{CO_{2}y,j}^{s} + k_{C+H_{2}O_{2}y,j}C_{H_{2}O_{2}y,j}^{s} \right].$$
(15)

Для того чтобы найти окончательный вид ФРЧ по концентрациям углерода для первого и второго этапов реагирования, необходимо подставить в (2) соответственно первое уравнение (14) и формулу (15), а затем проинтегрировать полученные выражения. В этом случае аналитических решений для ФРЧ получить не удается, поэтому здесь будем использовать следующий прием. Разбиваем интервал изменения концентрации углерода в частице $C_{C, limv, j} < C_C < C_{C0v, j}$ на nчастей (i = 1 - n), а диапазон $0 < C_C \le C_{C, limv, i}$ на s частей (i = 1 - s). Считаем, что в каждом малом интервале $\{C_{Ci}, C_{Ci+1}\}$ температуры и коэффициенты массообмена частиц не меняются. Опираясь на принятое допущение, запишем аналитические решения для ФРЧ фракции ј угля сорта у по концентрациям углерода для интервалов $\{C_{Ci}, C_{Ci+1}\}$ первого и второго этапов реагирования:

$$f_{yj,i}^{s} = \frac{U_{yj,i}^{s}}{F_{y,j}S_{y,j,i}(1 - C_{Ci})^{7/3}(1 + bC_{Ci})^{2/3}} \times \exp\left\{\frac{B_{ashy,j}\rho_{C}(1 + bC_{Ci})^{1/3}}{1200m_{by,j}\rho_{ash}F_{y,j}S_{y,j,i}(1 - C_{Ci})^{1/3}}\right\},$$

$$f_{yj,i}^{v} = 3600U_{y,j,i}^{v}\gamma_{y,j,i}C_{Ci}^{\gamma_{yj,i}-1} \times \times (1 - C_{Ci})^{-2 - \gamma_{yj,i}}m_{by,j}/B_{ash,y,j}$$

$$\gamma_{y,j,i} = \frac{B_{ashy,j}}{3600m_{by,j}\theta_{y,j,i}},$$
[1],

$$\theta_{y,j,i} = \frac{3\mu_{C}}{r_{\lim y,j}\rho_{C}} \Big[(k_{C+O_{2}y,j,i} + 2k_{C+0.5O_{2}y,j,i}) C_{O_{2}y,j,i}^{s} + + k_{C+CO_{2}y,j,i} C_{CO_{2}y,j,i}^{s} + k_{C+H_{2}Oy,j,i} C_{H_{2}Oy,j,i}^{s} \Big].$$
(17)

В (16) переменная $S_{v,i,i}$ определяется из выражения (14), где величины $C_{O,\nu,j}^{s}$, $C_{CO,\nu,j}^{s}$, $C_{H,Oy,j}^{s}$, $k_{C+CO,y,j}$, $k_{C+H,Oy,j}$, $k_{C+O,y,j}$ и $k_{C+0.5O,y,j}$ рассчитываются в каждом малом диапазоне $\{C_{Ci}, C_{Ci+1}\}$ по формулам (9)-(11), (13) через средние значения переменных $< C_{C,P} \in \{C_{C_i}, C_{C_{i+1}}\}$, $< t_{p,y,j,r} > \in \{C_{Ci}, C_{Ci+1}\}$ и средние (по высоте КС) концентрации газовых $C_{0,m}$, компонентов $C_{{
m CO}, .m}$, $\, C_{{
m CO}, m} \,$ и $\, C_{{
m H}, {
m O}, m}$. Принимая во внимание, температура коксозольной частицы $< t_{p,y,j,r} > \in \{C_{C_i}, C_{C_{i+1}}\}$ является функцией от параметров, фигурирующих в третьем выражении (14), и коэффициента $h_{\text{rad}_{v,j}}(< t_{\text{p},v,j,}>)$, для их определения строится итерационный процесс. Подобным образом находится переменная $\theta_{v,j,i}$ (см. (17)).

Для вычисления постоянных интегрирования $U^{\rm s}_{y,j,i}$ и $U^{\rm v}_{y,j,i}$, присутствующих в (16) и (17), будем полагать, что в каждом малом диапазоне $\left\{C_{{\rm C}i},C_{{\rm C}i+1}\right\}$ в точке i+1 должны выполняться условия:

$$\begin{split} &\frac{U_{y,j,i}^{s}}{F_{y,j}S_{y,j,i}(1-C_{C_{i+1}})^{7/3}(1+bC_{C_{i+1}})^{2/3}}\times\\ &\times\exp\left\{\frac{B_{ashy,j}\rho_{C}(1+bC_{C_{i+1}})^{1/3}}{1200m_{by,j}\rho_{ash}F_{y,j}S_{y,j,i}(1-C_{C_{i+1}})^{1/3}}\right\} = \end{split}$$

$$= \frac{U_{y,j,i+1}^{s}}{F_{y,j}S_{y,j,i+1}(1 - C_{C_{i+1}})^{7/3}(1 + bC_{C_{i+1}})^{2/3}} \times \exp \left\{ \frac{B_{ashy,j}\rho_{C}(1 + bC_{C_{i+1}})^{1/3}}{1200m_{by,j}\rho_{ash}F_{y,j}S_{y,j,i+1}(1 - C_{C_{i+1}})^{1/3}} \right\}$$

$$(i = 1-n), \qquad (18)$$

$$U_{y,j,i}^{v}\gamma_{y,j,i}C_{C_{i+1}}^{\gamma_{y,j,i}-1}(1 - C_{C_{i+1}})^{-2-\gamma_{y,j,i}} =$$

$$= U_{y,j,i+1}^{v}\gamma_{y,j,i+1}C_{C_{i+1}}^{\gamma_{y,j,i+1}-1}(1 - C_{C_{i+1}})^{-2-\gamma_{y,j,i+1}}$$

$$(i = 1-s). \qquad (19)$$

На границе раздела первого и второго этапов реагирования предусматривается условие "сшивки":

$$\frac{C_{y,j,n}^{U}}{F_{y,j}S_{y,j,n}(1-C_{C_{n+1}})^{7/3}(1+bC_{C_{n+1}})^{2/3}} \times \exp\left\{\frac{B_{\text{ash}y,j}\rho_{\text{C}}(1+bC_{C_{n+1}})^{1/3}}{1200m_{\text{b}y,j}\rho_{\text{ash}}F_{y,j}S_{y,j,n}(1-C_{C_{n+1}})^{1/3}}\right\} = (20)$$

 $=3600 U_{y,j,s}^{\rm v} \ \gamma_{y,j,s} \ C_{\rm Cs+1}^{\gamma_{y,j,s}-1} (1-C_{\rm Cs+1})^{-2-\gamma_{y,j,s}} \ \emph{m}_{\rm by,\it{j}} \ / \ \emph{B}_{\rm ash}_{y,\it{j}}.$ Далее определяются интегралы от ненормированных функций $f_{y,j,i}^{\rm s} \ / U_{y,j,i}^{\rm s}$ и $f_{y,j,i}^{\rm v} \ / U_{y,j,i}^{\rm v}$ на

каждом участке $\{C_{Ci}, C_{Ci+1}\}$:

$$I_{y,j,i}^{s} = \int_{C_{C_{i}}}^{C_{i+1}} \frac{1}{F_{y,j}S_{y,j,i}(1 - C_{C_{i}})^{7/3}(1 + bC_{C_{i}})^{2/3}} \times \exp \left\{ \frac{B_{ashy,j}\rho_{C}(1 + bC_{C_{i}})^{1/3}}{1200m_{by,j}\rho_{ash}F_{y,j}S_{y,j,i}(1 - C_{C_{i}})^{1/3}} \right\} dC_{C_{i}},$$

$$I_{y,j,i}^{v} = \int_{C_{C_{i}}}^{C_{C_{i+1}}} \frac{f_{y,j,i}^{v}}{U_{y,j,i}^{v}} dC_{C_{i}} = \frac{3600\gamma_{y,j,i}m_{by,j}}{B_{ashy,j}} \times \left[\frac{C_{C_{i+1}}^{\gamma_{y,j,i}} + \frac{K_{y,j,i}C_{C_{i+1}}^{\gamma_{y,j,i}+1}}{\gamma_{y,j,i}+1} + \frac{K_{y,j,i}(K_{y,j,i}+1)C_{C_{i+1}}^{\gamma_{y,j,i}+2}}{2(\gamma_{y,j,i}+2)} + \frac{K_{y,j,i}(K_{y,j,i}+1)(K_{y,j,i}+2)C_{C_{i+1}}^{\gamma_{y,j,i}+3}}{6(\gamma_{y,j,i}+3)} - \frac{C_{C_{i}}^{\gamma_{y,j,i}+2}}{\gamma_{y,j,i}} - \frac{C_{C_{i}}^{\gamma_{y,j,i}+2}}{2(\gamma_{y,j,i}+2)} - \frac{K_{y,j,i}C_{C_{i}}^{\gamma_{y,j,i}+1}}{2(\gamma_{y,j,i}+1)(K_{y,j,i}+2)C_{C_{i}}^{\gamma_{y,j,i}+3}}}{2(\gamma_{y,j,i}+2)} \right], K_{y,j,i} = 2 + \gamma_{y,j,i}$$

и записывается условие нормировки для каждой фракции j угля сорта y:

$$\sum_{i=1}^{s} U_{y,j,i}^{\mathsf{v}} I_{y,j,i}^{\mathsf{v}} + \sum_{i=1}^{n} U_{y,j,i}^{\mathsf{s}} I_{y,j,i}^{\mathsf{s}} = 1.$$
 (23)

Из решения системы уравнений (18)–(23) можно найти постоянные интегрирования $U^{\rm s}_{y,j,i}$ и $U^{\rm v}_{y,j,i}$ в каждом малом интервале $\left\{C_{{\rm C}i},C_{{\rm C}i+1}\right\}$, что позволяет определить следующие интегралы:

$$I_{\text{C}y,j,i}^{\text{s}} = \int_{C_{\text{C}i}}^{C_{\text{C}i+1}} C_{\text{C}i} f_{y,j,i}^{\text{s}} dC_{\text{C}i} ,$$

$$I_{\text{C}y,j,i}^{\text{v}} = \int_{C_{\text{C}i}}^{C_{\text{C}i+1}} C_{\text{C}i} f_{y,j,i}^{\text{v}} dC_{\text{C}i} = \frac{3600 U_{y,j,i}^{\text{v}} \gamma_{y,j,i} m_{\text{b}y,j}}{B_{\text{ash}y,j} (\gamma_{y,j,i}+1)} \times \left[\left(\frac{C_{\text{C}i+1}}{1 - C_{\text{C}i+1}} \right)^{\gamma_{y,j,i}+1} - \left(\frac{C_{\text{C}i}}{1 - C_{\text{C}i}} \right)^{\gamma_{y,j,i}+1} \right] [1], \quad (24)$$

массовую долю частиц фракции j топлива сорта y в каждом диапазоне $\{C_{C_i}, C_{C_{i+1}}\}$:

$$\varphi_{v,i,i}^{s} = U_{v,i,i}^{s} I_{v,i,i}^{s}, \ \varphi_{v,i,i}^{v} = U_{v,i,i}^{v} I_{v,i,i}^{v},$$
 (25)

среднюю массовую концентрацию углерода во фракции j угля сорта y в псевдоожиженном слое и мехнедожог:

$$C_{C,my,j} = \sum_{i=1}^{s} I_{Cy,j,i}^{v} + \sum_{i=1}^{n} I_{Cy,j,i}^{s} ,$$

$$C_{C,b} = \sum_{v=1}^{T} \sum_{j=1}^{M} C_{C,my,j} Z_{y,j} ,$$
(26)

среднюю плотность частиц фракции j твердого топлива сорта y в КС [1]:

$$\rho_{p,m y,j} = \frac{1}{\left[\frac{1}{\rho_{ash}} + \frac{C_{C,lim y,j}}{\rho_C (1 - C_{C,lim y,j})}\right] (1 - C_{C,m y,j})} (1 - C_{C,m y,j})$$

$$(C_{C,m y,j} \le C_{C,lim y,j}),$$

$$\rho_{p,m y,j} = \frac{\rho_{ash} \rho_C (1 - C_{C0 y,j})}{(1 - C_{C,m y,j})(\rho_C + (\rho_{ash} - \rho_C)C_{C0 y,j}) - \rho_{ash} (C_{C0 y,j} - C_{C,m y,j})}$$

$$(C_{C,m y,j} > C_{C,lim y,j}).$$
(27)

Скорость газа в КС вычисляется по рекомендациям [2]:

$$u_{g} = \frac{\eta_{g} \operatorname{Ar}_{eq} \varepsilon^{4.75}}{\delta_{eq} (18 + 0.61 \sqrt{\operatorname{Ar}_{eq} \varepsilon^{4.75}})},$$

$$\delta_{eq} = \frac{1}{\rho_{p,eq} \sum_{y=1}^{T} \sum_{j=1}^{M} \frac{Z_{y,j}}{\rho_{p,my,j} \delta_{my,j}}},$$

$$\rho_{p,eq} = \sum_{y=1}^{T} \sum_{j=1}^{M} \rho_{p,my,j} Z_{y,j},$$
(28)

масса и сечение псевдоожиженного слоя рассчитываются по формулам:

$$m_{\rm b} = (1 - \varepsilon) l_{\rm b} H_{\rm b} \rho_{\rm p,eq} , l_{\rm b} = \frac{B_{\rm air} + B_{\rm g,b,e}}{7200 u_{\rm g} \rho_{\rm g,m}} .$$
 (29)

Систему уравнений (9)–(11), (13)–(29) необходимо дополнить уравнениями неразрывности для компонентов газовой смеси:

$$\frac{u_{g}dC_{O_{2}}}{dz} = -6\sum_{y=1}^{T}\sum_{j=1}^{M} \frac{\alpha_{D,O_{2},my,j}(C_{O_{2}} - C_{O_{2},my,j}^{s})(1-\varepsilon)C_{v,my,j}Z_{y,j}}{\delta_{my,j}} - k_{CO+O_{2}}C_{O_{2}}C_{CO} - \frac{-k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO}}{\delta_{my,j}} - k_{CO+O_{2}}C_{O_{2}}C_{O_{2}}C_{CO} - \frac{-k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO}}{\delta_{my,j}} + 2k_{CO+O_{2}}C_{O_{2}}C_{CO} + \frac{-k_{CO+H_{2}O}C_{CO_{2},my,j}(C_{CO_{2},my,j}^{s} - C_{CO_{2}})(1-\varepsilon)C_{v,my,j}Z_{y,j}}{\delta_{my,j}} + 2k_{CO+O_{2}}C_{O_{2}}C_{CO} + \frac{-k_{CO+H_{2}O}C_{CO}C_{CO} - k_{CO_{2}+H_{2}}C_{CO_{2}}C_{H_{2}}}{\delta_{my,j}} - 2k_{CO+O_{2}}C_{O_{2}}C_{CO} - \frac{-k_{CO+O_{2}}C_{CO}C_{CO} - k_{CO_{2}+H_{2}}C_{CO_{2}}C_{CO}C_{CO}}{\delta_{my,j}} - 2k_{CO+O_{2}}C_{O_{2}}C_{CO} - \frac{-k_{CO+O_{2}}C_{CO}$$

$$\frac{u_{g}dC_{H_{2}O}}{dz} = -6\sum_{y=1}^{T}\sum_{j=1}^{M}\frac{k_{C+H_{2}O,my,j}C_{H_{2}O,my,j}^{s}(1-\varepsilon)C_{v,my,j}Z_{y,j}}{\delta_{my,j}} + 2k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO} - (k_{CO+H_{2}O}C_{H_{2}O}C_{CO} - k_{CO_{2}+H_{2}}C_{CO_{2}}C_{H_{2}}),$$

$$\frac{u_{g}dC_{H_{2}}}{dz} = 6\sum_{y=1}^{T}\sum_{j=1}^{M}\frac{k_{C+H_{2}O,my,j}C_{H_{2}O,my,j}^{s}(1-\varepsilon)C_{v,my,j}Z_{y,j}}{\delta_{my,j}} - 2k_{H_{2}+O_{2}}C_{O_{2}}C_{H_{2}}^{2}/C_{CO} + k_{CO+H_{2}O}C_{H_{2}O}C_{CO} - k_{CO_{2}+H_{2}}C_{CO_{2}}C_{H_{2}}$$

$$+k_{CO+H_{2}O}C_{H_{2}O}C_{CO} - k_{CO_{2}+H_{2}}C_{CO_{2}}C_{H_{2}}$$
(34)

и теплового баланса псевдоожиженного слоя:

$$\sum_{y=1}^{T} B_{\text{fuely}} c_{\text{fuely}} t_{\text{fuely}} + B_{\text{air}} c_{\text{air}} t_{\text{air}} + \sum_{y=1}^{T} \sum_{j=1}^{M} \frac{21600 l_{\text{b}} (1-\varepsilon) C_{\text{v,my,j}} Z_{y,j}}{\delta_{\text{my,j}}} \int_{0}^{H_{\text{b}}} \left[(k_{\text{C+O}_{2},\text{my,j}} Q_{\text{C+O}_{2}} + k_{\text{C+O}_{2},\text{my,j}} Q_{\text{C+O}_{2}}) C_{\text{O}_{2},\text{my,j}}^{s} - k_{\text{C+CO}_{2},\text{my,j}} C_{\text{CO}_{2},\text{my,j}}^{s} Q_{\text{C+CO}_{2}} - k_{\text{C+H}_{2}\text{O},\text{my,j}} C_{\text{H}_{2}\text{O},\text{my,j}}^{s} Q_{\text{C+H}_{2}\text{O}} \right] dz + \\
+3600 l_{\text{b}} \int_{0}^{H_{\text{b}}} \left[k_{\text{CO+O}_{2}} C_{\text{O}_{2}} C_{\text{CO}} Q_{\text{CO+O}_{2}} + k_{\text{CO+H}_{2}\text{O}} C_{\text{H}_{2}\text{O}} C_{\text{CO}} Q_{\text{CO+H}_{2}\text{O}} - k_{\text{CO}_{2}+\text{H}_{2}} C_{\text{CO}_{2}} C_{\text{H}_{2}} Q_{\text{CO}_{2}+\text{H}_{2}} + \\
+ k_{\text{H}_{2}+\text{O}_{2}} C_{\text{O}_{2}} C_{\text{H}_{2}}^{2} Q_{\text{H}_{2}+\text{O}_{2}} / C_{\text{CO}} \right] dz = B_{\text{g,b,e}} c_{\text{g}} t_{\text{g}} + \sum_{y=1}^{T} \sum_{j=1}^{M} \frac{B_{\text{ashy,j}} c_{\text{ashy,j}} t_{\text{p,m,y,j}}}{1 - C_{\text{C,my,j}}} + Q_{\text{scr}}, \quad (35)$$

где константы скоростей гомогенных реакций $k_{\rm H_2+O_2}$, $k_{\rm CO+H_2O}$, $k_{\rm CO_2+H_2}$ и $k_{\rm CO+O_2}$ вычислялись по рекомендациям [3]. В уравнениях (28), (30)-(35) средние значения диаметра частицы $\delta_{{
m my},j} = 2r_{{
m my},j}$ и концентрации углерода в ее объеме $C_{v,mv,j}$ рассчитываются по формулам (11) и (13), в которые вместо $C_{\rm C}$ следует подставить величину $C_{\mathrm{C},\mathrm{m}_{\mathrm{V},j}}$. Найденные размеры $\delta_{\mathrm{m}_{\mathrm{V},j}}$ позволяют вычислить коэффициенты массообмена $\alpha_{D,O_{\gamma},m_{j}}$, $lpha_{\mathrm{D,CO}_2,\mathrm{mv},j},\ lpha_{\mathrm{D,CO},\mathrm{mv},j},\ lpha_{\mathrm{D,H}_2\mathrm{O,mv},j},\$ исходя из выражений (9), и коэффициент $h_{\text{cond } y,j}$ по формуле, в [2]. Концентрации газовых приведенной $C_{\mathcal{O}_2, m\nu, j}^{\mathsf{s}}, C_{\mathcal{C}\mathcal{O}_2, m\nu, j}^{\mathsf{s}},$ компонентов $C_{\text{CO,mv},i}^{\text{s}}$, $C_{\mathrm{H,O,m}\nu,j}^{\mathrm{s}}$ зависят от констант скоростей гетерогенных реакций $k_{C+0.5O_2,my,j}$ $(t_{p,my,j})$, $k_{C+O_2,my,j}(t_{p,my,j})$,

 $k_{\text{C+CO}_2y,j}(t_{\text{p,my},j})$ и $k_{\text{C+H}_2\text{Oy},j}(t_{\text{p,my},j})$ (см. (9)). В свою очередь, температура коксозольной частицы $t_{\text{p,my},j}$ является функцией от перечисленных параметров и коэффициента лучистого теплообмена $h_{\text{rady},j}(t_{\text{p,my},j})$ [2] (см. (10)). Поэтому для определения рассматриваемых переменных строится итерационный процесс. На основе изложенной модели разработаны алгоритм и программа для расчета параметров рабочего процесса в газогенераторе.

Некоторые результаты расчетов. Обсудим результаты расчетов восьми вариантов парокислородной газификации (под давлением) коксозольных частиц различных сортов углей в псевдоожиженном слое. Начальные условия, элементарный и фракционный составы исходных твердых топлив представлены в табл. 1–3.

Таблица 1. Элементарный состав исходных углей

Марка угля	Размерность	C ^d	H^{d}	N^{d}	O^{d}	S^{d}	V ^{daf}	A^{d}
ГСШ	%	69,66	4,51	1,36	7,88	1,62	36,43	15
Б1	%	58,65	4,93	0,85	17,17	3,4	60	15
Б2	%	60,78	4,25	0,85	18,87	0,25	47	15

Таблица 2. Фракционный состав исходных топлив

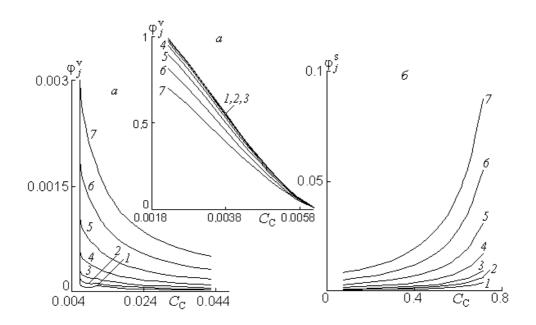
тамінца 2. Фракционный состав исходных топонь											
Номер	Наиме- нование	Размер- ность	Номер фракции <i>ј</i> коксозольной частицы исходного топлива								
варианта	величин		1	2	3	4	5	6	7		
I, II, VI	δ_{0j}	MM	0,251	0,3569	0,502	0,793	1,262	1,996	2,962		
1, 11, V1	Z_j	-	0,0335	0,031	0,0558	0,2145	0,2076	0,2504	0,2072		
III, IV	δ_{0j}	MM	0,251	0,3569	0,502	1,072	2,661	4,039	4,993		
111, 1 V	Z_j	_	0,0335	0,031	0,0558	0,2145	0,2076	0,2504	0,2072		
V	δ_{0j}	MM	0,251	0,3569	0,502	1,072	2,661	4,039	4,993		
v	Z_j	_	0,0335	0,031	0,0558	0,2545	0,3076	0,2104	0,1072		
	δ_{0j}	MM	0,251	0,3569	0,502	0,793	1,262	1,996	2,962		
VII, VIII	$Z_{\Gamma ext{CIII}j}$	_	0,023	0,0498	0,0722	0,05	0,1174	0,2124	0,175		
	$Z_{ ext{bV}j}$	-	0,01	0,0213	0,0338	0,0345	0,05	0,0782	0,0725		

Таблица 3. Исходные данные для расчетов

Номера вариан- тов	$B_{ m O_2}$ кг/ч	$B_{ m H_2O}$ кг/ч	$B_{ m N_2}$ кг/ч	δ _{eq0} ΜΜ	<i>B</i> _{fuel} кг/ч	P _g МПа	3	<i>t</i> _b °C	<i>l</i> _b м ²	$H_{\rm b0},{ m M}$ $(\epsilon_0{=}0{,}4)$	Мар- ка угля
I	12825	12000	675	1,039	31700	1,1	0,65	900	6,08	0,6	Б2
II	12825	12000	675	1,039	31595	1,1	0,6	903	8,08	0,9	Б2
III	13680	12000	720	1,402	33225	0,88	0,55	912	9,39	1,3	Б2
IV	16188	12000	852	1,402	39438	0,88	0,55	970	11,06	1,3	Б2
V	14250	12000	750	1,319	46726	1,4	0,55	930	6,98	1,3	Б1
VI	13443	12000	708	1,039	44148	1,4	0,6	926	6,54	1,1	Б1
VII	10973	12000	578	0,988	28571	1,5	0,6	940	6,44	1,1	Б1 и ГСШ
VIII	12018	12000	633	0,9753	33048	1,5	0,6	940	6,23	1,1	Б1 и ГСШ

В вариантах I-VI рассматривается процесс парокислородной газификации коксозольных частиц одного сорта топлива Γ СШ (или БУ), а в вариантах VII, VIII — бинарной смеси Γ СШ и бурого угля марки Б1. В вариантах I-VII массовые доли золы и

углерода во всех фракциях частиц исходного угля ГСШ (или БУ) принимались одинаковыми (см. табл. 1), в отличие от варианта VIII, где содержание золы и углерода во фракциях 5 и 6 исходных топлив ГСШ и бурого угля марки Б1 составляли:


 $A_{\Gamma \text{СШ,5}}^{\text{d}} = A_{\Gamma \text{СШ,6}}^{\text{d}} = 34,85\%, A_{\text{Б1,5}}^{\text{d}} = A_{\text{Б1,6}}^{\text{d}} = 24,85\%$ и $C_{\Gamma \text{СШ,5}}^{\text{d}} = C_{\Gamma \text{СШ,6}}^{\text{d}} = 48,96\%, C_{\text{Б1,5}}^{\text{d}} = C_{\text{Б1,6}}^{\text{d}} = 48,06\%.$ Расчетный материал проиллюстрирован на рис. 1—8, где представлены профили наиболее важных параметров рабочего процесса в КС. На рис. 1 приведена "ступенчатая" функция распределения коксозольных частиц бурого угля марки Б2 по концентрациям углерода. Характер распределения зависимостей $\phi_i^{\text{v}}(C_{\text{C}})$ и $\phi_i^{\text{s}}(C_{\text{C}})$ свидетельст-

вует о том, что мелкие частицы δ_{ml} =0,148 мм

практически полностью прореагировали в КС ($\phi_{1,I}^{v}(0,00225)=0,987$, $\phi_{1,I}^{s}(0,714)=0,0037$), в отличие от крупных $\delta_{m7}=1,849$ мм — $\phi_{7,I}^{v}(0,00225)=0,7$ и $\phi_{7,I}^{s}(0,714)=0,0875$ (рис. 1 a, δ , кривые l, l). В результате среднее значение содержания углерода в первой фракции $C_{C,m1}=0,006793$ оказывается значительно ниже, чем в седьмой $C_{C,m7}=0,16$ (рис. 2, кривая l). В этом случае мехнедожог в КС составляет $C_{C,bl}=7,8\%$ (табл. 4, вариант I).

Таблица 4. Результаты расчетов

Номера вариантов	CO, %	H ₂ , %	CO ₂ , %	H ₂ O, %	N ₂ , %	Ψ, МДж/м ³	φ, %	<i>т</i> _{b,} кг	C _{C,b} , %	Марка угля
I	47,6	35,71	15,32	0,095	1,28	9,87	89,6	2944	7,8	Б2
II	47,26	35,8	15,58	0,08	1,29	9,84	93,99	5885	4,5	Б2
III	49,2	34,69	14,76	0,033	1,33	9,96	91,2	9837	6,6	Б2
V	53,04	33,38	12,24	0,0008	1,329	10,31	91,2	7338	6,12	Б1
VI	50,2	34,65	13,82	0,021	1,3	10,1	94,25	5839	3,99	Б1
VII	45,84	37,68	15,144	0,177	1,16	9,86	93,26	6025	5,1	Б1 и ГСШ
VIII	47,55	36,43	14,74	0,05	1,224	9,94	89,98	5837	6,58	Б1 и ГСШ

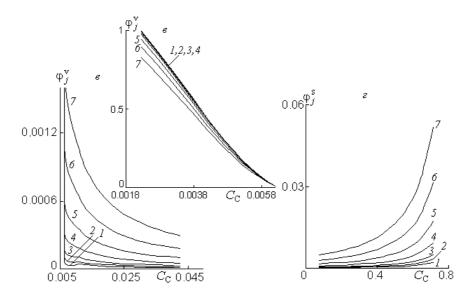


Рис. 1. "Ступенчатая" функция распределения коксозольных частиц бурого угля марки Б2 диаметром δ_{0j} : $1 - \delta_{01}$, $2 - \delta_{02}$, $3 - \delta_{03}$, $4 - \delta_{04}$, $5 - \delta_{05}$, $6 - \delta_{06}$, $7 - \delta_{07}$ по концентрациям углерода для объемного (а), (в) и поверхностного (б), (г) этапов реагирования (вариант I (а), (б); вариант I (в), (г)).

Существует несколько эффективных способов уменьшения величины $C_{\mathrm{C,b}}$, основанных на увеличении массы слоя $m_{\mathrm{b}}(H_{\mathrm{b}}, \varepsilon) = \sum_{y=1}^{T} \sum_{j=1}^{M} m_{\mathrm{by},j}$ и

констант скоростей гетерогенных реакций $k_{x,y,j}(t_{\mathsf{p},\mathsf{m} y,j})$ за счет повышения высоты насыпного слоя H_{b0} и температуры t_b и снижения порозности є. Такое целенаправленное изменение параметров $m_{{\rm b}y,j}$ и $k_{{\rm x},y,j}$ приводит к перестройке профилей $\varphi_{v,j}^{v}(C_{C})$ и $\varphi_{v,j}^{s}(C_{C})$ (см. (21), (22), (25)), обусловленной переходом коксозольных частиц из области с высоким содержанием углерода $(C_{C,\lim\nu,j} < C_C < C_{C0\nu,j})$ в низкую $(0 < C_C < C_{C,\lim\nu,j})$, вследствие чего концентрации $C_{C,my,j}$ и $C_{C,b}$ уменьшаются (см. (24), (26)). Еще одним важным фактором, непосредственно влияющим на рабочий процесс в КС, является гранулометрический состав твердого топлива, поступающего в КС. Укрупнение частиц исходного угля способствует уменьшению скорости конверсии углерода $q_{v,j}^{s}$ (см. (14)), что приводит к увеличению значений функции $f_{y,j}^{\mathrm{s}}(C_{\mathrm{C}})$ (см. (16)), а следовательно, и концентраций $C_{C,m_{V,j}}$ и $C_{C,b}$.

На основе сделанного анализа эволюции состояния реагирующих в КС коксозольных частиц рассмотрим методы снижения мехнедожога на конкретных примерах. Если в варианте I высоту насыпного слоя H_{b0} увеличить в 1,5 раза, а порозность є понизить на 7,7%, то в этом случае (вариант II) доля прореагировавших частиц δ_{m7} =1,79 мм возрастает до 82,2% ($\phi_{7,II}^{v}(0,00225)/\phi_{7,I}^{v}(0,00225)$ = =1,174; ср. рис. 1a и рис. 1e, кривые 7), благодаря чему среднее содержания углерода в седьмой фракции и мехнедожог в КС снижаются соответственно на 40,5% ($C_{\text{C,m7,II}}/C_{\text{C,m7,I}}$ =0,595; рис. 2, ср. кривые I и I) и 42,3% (табл. 4, ср. варианты I и II).

Проанализируем влияние двух факторов размера частиц исходного топлива и массы КС на рабочий процесс в газогенераторе. Увеличим параметры δ_{eq0} и H_{b0} соответственно в 1,35 и 1,44 раза и понизим порозность є на 8,3% по сравнению с вариантом II (табл. 2, 3, варианты II и III). При такой организации процесса газификации бурого угля марки Б2 (вариант III) первый фактор $\delta_{\rm eq0}$ превалирует над вторым $m_{\rm b}$, в результате чего мехнедожог $C_{\text{C.biii}}$ возрастает в 1,47 раза (табл. 4, ср. варианты II и III). Это можно объяснить присутствием в КС крупных фракций =2,44 мм и $\delta_{m7}=3,063$ мм, у которых доля прореагировавших частиц невелика и составляет $\varphi_{6 \text{ III}}^{v}(0,00225)=0,82$ и $\varphi_{7 \text{ III}}^{v}(0,00225)=0,765$ (рис. 3a, кривые 6, 7), вследствие чего содержание углерода в указанных фракциях возрастает до $C_{\text{C,m6,III}}$ = 0,097 и $C_{\text{C,m7,III}}$ = 0,126 (рис. 2, кривая 4).

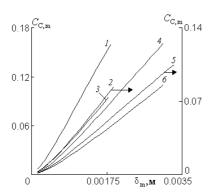


Рис. 2. Зависимость массовой концентрации углерода от диаметров коксозольных частиц бурых углей марок Б1 и Б2: I-I, 2-VI, 3-II, 4-III, 5-V, 6-IV.

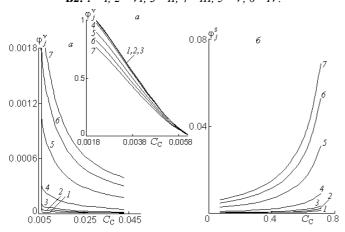


Рис. 3. "Ступенчатая" функция распределения коксозольных частиц бурого угля марки Б2 диаметром δ_{0j} : $1-\delta_{01}$, $2-\delta_{02}$, $3-\delta_{03}$, $4-\delta_{04}$, $5-\delta_{05}$, $6-\delta_{06}$, $7-\delta_{07}$ по концентрациям углерода для объемного (а) и поверхностного (б) этапов реагирования (вариант III).

Следует подчеркнуть, что степень конверсии углерода более мелких частиц $0 < \delta_{\rm m} < 2,44$ мм в варианте III оказывается несколько выше, чем в II, что связано с влиянием второго фактора $m_{\rm b}$ (рис. 2, ср. кривые 3 и 4). Подобные результаты были получены при парокислородной газификации коксозольных частиц бурого угля марки Б1, о чем свидетельствую кривые 2 и 5, приведенные на рис. 2.

Для уменьшения влияния первого фактора $\delta_{\rm eq0}$ на мехнедожог поднимем температуру рабочего процесса в КС до 970°С (табл. 3, ср. варианты III и IV). В этом случае (вариант IV) средняя концентрация углерода во фракциях $C_{\rm C,m_{\it j}}$ оказывается ниже, чем в варианте III (рис. 2, ср. кривые 4 и 6), что влечет за собой понижение мехнедожога на 12,7%. Такое снижение величины $C_{\rm C,b}$ связано с увеличением температуры коксозольных частиц $t_{\rm p_{\it j}}^{\rm s}$ (ср. рис. 4a и рис. 4 δ), а следова-

тельно, и констант скоростей гетерогенных реакций (рис. 5 ср. кривые I и 3, 2 и 6, 4 и 5, 11 и 12). Особенно это касается восстановительных реакций $C + CO_2 = 2CO$ и $C + H_2O = CO + H_2$, которые протекают в кинетической и переходной областях реагирования, в отличие от окислительных: $C + O_2 = CO_2$ и $2C + O_2 = 2CO$, где реагирование углерода происходит преимущественно в диффузионной зоне и зависит в основном от размера частиц (рис. 5 ср. кривые I и 8, 4 и 8, 2 и 9, 10 и 11). Отметим, что представленные на рис. 46 значения температур t_{pj}^s не превышают температуру начала деформации золы бурого угля марки E0 1180°C [4], что обеспечивает бесшлаковочную работу газогенератора.

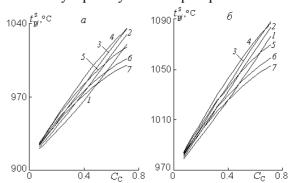


Рис. 4. Распределение температуры коксозольных частиц бурого угля марки Б2 по массовым концентрациям углерода для поверхностного этапа реагирования для вариантов III (a) и IV (б): $1-t_{\rm pl},\,2-t_{\rm p2},\,3-t_{\rm p3},\,4-t_{\rm p4},$

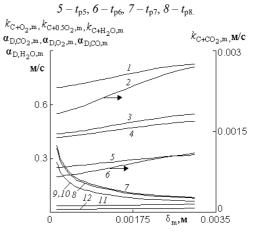


Рис. 5. Зависимость констант скоростей гетерогенных реакций и коэффициентов массообмена от диаметров коксозольных частиц бурого угля марки Б2:

$$\begin{split} \textit{1, 3} - k_{\text{C+O}_2,\text{m}}, \textit{2, 6} - k_{\text{C+CO}_2,\text{m}}, \textit{4, 5} - k_{\text{C+0.5O}_2,\text{m}}, \textit{7} - \\ \alpha_{\text{D,CO,m}}, \textit{8} - \alpha_{\text{D,O}_2,\text{m}}, \textit{9} - \alpha_{\text{D,CO}_2,\text{m}}, \textit{10} - \alpha_{\text{D,H}_2\text{O,m}}, \textit{11}, \\ \textit{12} - k_{\text{C+H}_2\text{O,m}}; \textit{вариант III: 3, 5, 6, 12}; \\ \textit{вариант IV: 1, 2, 4, 7-10, 11}. \end{split}$$

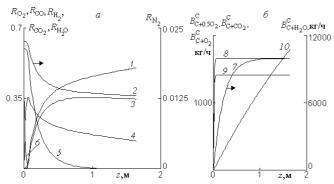


Рис. 6. Распределение объемных долей компонентов газовой смеси по высоте КС (a) и количество углерода бурого угля марки Б1 (δ), прореагировавшего с кислородом, водяным паром и двуокисью углерода на участке (0-z) псевдоожиженного слоя для варианта VI: $I-\mathrm{CO}$,

$$\begin{split} 2 - \mathrm{N_2}, & \, 3 - \mathrm{H_2}, \, 4 - \mathrm{CO_2}, \, 5 - \mathrm{H_2O}, \, 6 - \mathrm{O_2}, \, 7 - \, B_{\mathrm{C} + \mathrm{H_2O}}^{\,\mathrm{C}} \, , \\ \\ 8 - \, B_{\mathrm{C} + 0.5\mathrm{O_2}}^{\,\mathrm{C}} \, , \, 9 - \, B_{\mathrm{C} + \mathrm{O_2}}^{\,\mathrm{C}} \, , \, 10 - \, B_{\mathrm{C} + \mathrm{CO_2}}^{\,\mathrm{C}} \, . \end{split}$$

На рис. 6а изображены профили объемных долей компонентов газовой смеси для варианта VI. Видно, что высоту КС можно условно разбить на три зоны. В окислительной области $0 < z < 0.08 \,\mathrm{m}$ происходит резкое убывание функции $R_{\mathrm{O}_{2}}\left(z\right)$ (кривая 6) за счет интенсивной конверсии углерода (рис. 66, кривые 8, 9) и выгорания продуктов газификации, образовавшихся в результате взаимодействия углерода с кислородом, водяным паром и двуокисью углерода (см. (30)). По этой причине наблюдается быстрый рост кривой $R_{\rm CO}$ (z) (первый и второй члены уравнения (31)) и слабое изменение зависимостей $R_{\rm H_2}(z)$, $R_{\rm CO}(z)$ и $R_{\rm H_2O}(z)$ (рис. 6a, кривые 1, 3-5). В бескислородной зоне 0.08 м < z < 1 м скорость паровой конверсии углерода значительно выше, чем скорость генерации СО, обусловленная взаимодействием кокса с углекислым газом ($E_{\rm C+CO}$ > $E_{\rm C+H,O}$), вследствие чего функция $R_{\rm H,O}(z)$ убывает значительно быстрее, чем кривая $R_{{\rm CO}_{2}}\left(z\right)$ (первые члены уравнений (31), (33)). Такое поведение зависимостей $R_{\rm H_2O}(z)$ и $R_{\rm CO}$ (z) обеспечивает быстрый рост кривых $R_{\rm H_2}(z),\ R_{\rm CO}(z),\ B_{\rm C+H_2O}^{\rm C}(z)$ (первые члены уравнений (32), (34)) и монотонное возрастание функции $B_{\rm C+CO_2}^{\rm C}(z)$ (рис. $6a, \, 6$, кривые $1, \, 3, \, 7, \, 10$). На отметке реактора z=1 м зависимость $B_{\rm C+H_2O}^{\rm C}(z)$ имеет максимум, величина которого существенно больше, чем значение функции $B_{\rm C+CO_2}^{\rm C}(z)$ в рассматриваемой точке. В третьей зоне $1\ {\rm M} < z$, где содержание ${\rm H_2O}$ и ${\rm O_2}$ в газовой смеси пренебрежимо мало, газификация коксозольного остатка осуществляется в основном по реакции ${\rm C+CO_2}=2{\rm CO}$, благодаря чему функция $R_{\rm CO_2}(z)$ продолжает убывать, а кривые $R_{\rm CO}(z)$ и $B_{\rm C+CO_2}^{\rm C}(z)$ монотонно возрастают.

Интересно сопоставить составы синтетического газа для вариантов V и VI, приведенные в табл. 4. Из таблицы видно: чем выше мехнедожог в КС ($C_{\text{C,bV}}/C_{\text{C,bVI}}=1,53$), а следовательно, и реакционная поверхность частиц ($1-\varepsilon$) $C_{\text{v,my},j}Z_{y,j}/\delta_{\text{my},j}$, тем больше объемная доля СО ($R_{\text{CO,V}}/R_{\text{CO,VI}}=1,06$) и меньше содержание СО2 ($R_{\text{CO}_2\text{V}}/R_{\text{CO}_2\text{VI}}=0,89$) в генераторном газе (см. (11), первые члены уравнений (31), (32)).

Перейдем к обсуждению результатов расчета варианта VII парокислородной газификации в КС бинарной смеси, состоящей из 70% коксозольных частиц газового каменного угля ГСШ и 30% частиц бурого угля марки Б1 (табл. 2, 3, вариант VII). Из рисунка 7 видно, что степень конверсии углерода крупных фракций ГСШ ниже, чем у бурого угля: $\phi_{\text{Б1.6.VII}}^{\text{V}}(0,00235)/\phi_{\text{ГСШ.6.VII}}^{\text{V}}(0,00235)=1,06;$

$$\begin{split} &\phi^{v}_{\text{B1,7,VII}}(0,\!00235)\!/\,\phi^{v}_{\text{\GammaCIII,7,VII}}(0,\!00235)\!\!=\!1,\!11;\\ &\phi^{s}_{\text{B1,6,VII}}(0,\!745)\!/\,\phi^{s}_{\text{\GammaCIII,6,VII}}(0,\!745)\!\!=\!0,\!435;\\ &\phi^{s}_{\text{B1,7,VII}}(0,\!745)\!/\,\phi^{s}_{\text{\GammaCIII,7,VII}}(0,\!745)\!\!=\!0,\!439. \end{split}$$

Это связано с тем, что энергии активаций гетерогенных реакций у ГСШ значительно выше, чем у бурого угля.

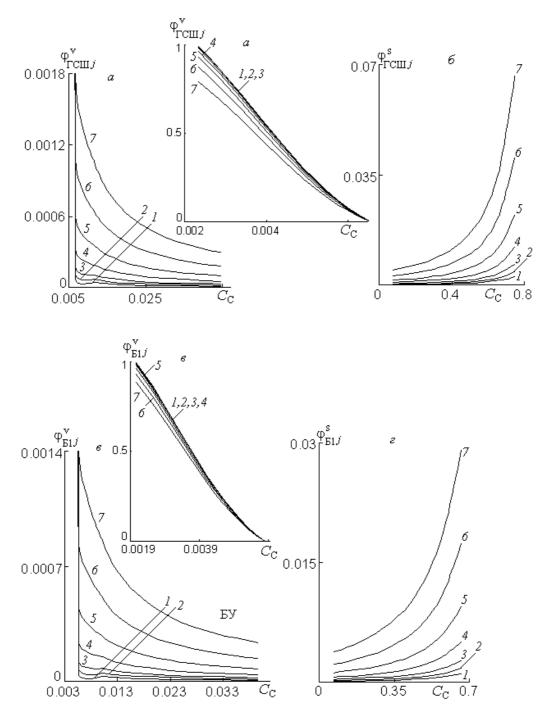


Рис. 7. "Ступенчатая" функция распределения коксозольных частиц ГСШ (a), (б) и бурого угля марки Б1 (в), (г) диаметром δ_{0yj} ($\delta_{061,j} = \delta_{0\Gamma CIII,j}$): $1 - \delta_{0y,l}$, $2 - \delta_{0y,2}$, $3 - \delta_{0y,3}$, $4 - \delta_{0y,4}$, $5 - \delta_{0y,5}$, $6 - \delta_{0y,6}$, $7 - \delta_{0y,7}$ по концентрациям углерода для объемного (a), (в) и поверхностного (б), (г) этапов реагирования для варианта VII (индексы y = 1, 2 относятся к ГСШ и Б1).

Проанализируем виляние зольности двухкомпонентной угольной смеси на процесс парокислородной конверсии коксозольных частиц ГСШ и бурого угля марки Б1. Увеличим в варианте VII зольность частиц во фракциях 5 и 6 исходных топлив ГСШ и бурого угля марки Б1 соответственно до 34,85% и 24,85%, уменьшив при этом содержание углерода до 48,96% и 48,06% (см. выше). В этом случае (вариант VIII) мехнедожог в КС повышается на 22,5% (табл. 4, ср. варианты VII и VIII) за счет снижения массовой доли прореагировавших частиц крупных фракций 5-7 (ср. рис. 7a, 8 и рис. 8a, 8, кривые 5-7).

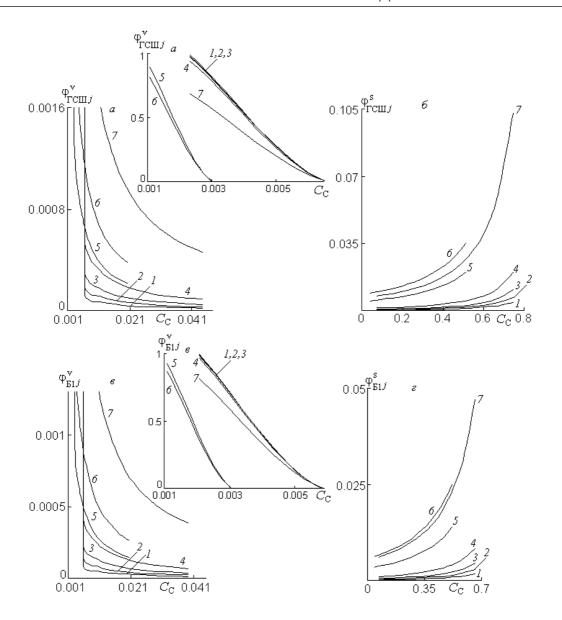


Рис. 8. "Ступенчатая" функция распределения коксозольных частиц ГСШ (a), (б) и бурого угля марки Б1 (в), (г) диаметром $\delta_{0y,j}(\delta_{0\text{Б1},j} = \delta_{0\Gamma\text{СПЦ},j})$: $1 - \delta_{0y,l}$, $2 - \delta_{0y,2}$, $3 - \delta_{0y,3}$, $4 - \delta_{0y,4}$, $5 - \delta_{0y,5}$, $6 - \delta_{0y,6}$, $7 - \delta_{0y,7}$ по концентрациям углерода для объемного (а), (в) и поверхностного (б), (г) этапов реагирования для варианта VIII (индексы y = 1, 2 относятся к ГСШ и Б1).

Заключение. Предложенная модель позволяет корректно рассчитать эволюцию состояния ансамбля реагирующих частиц в газификаторе с псевдоожиженным слоем, что дает основание использовать ее при конструировании химических реакторов на стадиях технического и рабочего проектирования.

1. Шрайбер А.А., Рохман Б.Б., Харченко А.В. К мате-

матическому моделированию эволюции состояния горящих частиц в псевдоожиженном слое // Пром. теплотехника. — 1996. - T. 18. - N 1. - C. 86-91.

- 2. Баскаков А.П., Лукачевский Б.П., Мухленов И.П. и ∂p . Расчеты аппаратов кипящего слоя. Справочник. Л.: Химия, 1986. 351 с.
- 3. Weimer A.W., Clough D.E. Modeling a low pressure steam-oxygen fluidized bed coal gasifying reactor // J. AIChE. 1981. Vol. 36. P. 549–567.
- 4. *Кузнецов Н.В., Митор В.В. и др.* Тепловой расчет котельных агрегатов (Нормативный метод) М.: Энергия, 1973. 296 с.